

ANALYTIC METHODS FOR

THE FPGA PLACEMENT PROBLEM

A Thesis

Presented to

The Faculty of Graduate Studies

of

The University of Guelph

by

MING XU

In partial fulfilment of requirements

for the degree of

Doctor of Philosophy

May, 2009

© Ming Xu, 2009

Abstract
Within the last 20 years, the use of Field Programmable Gate Arrays (FPGAs) to

implement digital systems has grown significantly because of their flexibility, dramatic

reduction in turn-around time, and start-up costs compared with traditional Application

Specific Integrated Circuits (ASICs). Moreover, FPGAs themselves have experienced an

exponential growth in size, complexity, and performance. Computer-Aided Design (CAD)

plays a critical role in optimizing high-performance design solutions using these high-end

FPGAs. However, compilation times for designs, which are dominated by placement and

routing times, are growing much more rapidly than the available computation power.

While current CAD algorithms provide quality solutions, they often require significant

amounts of CPU time. For many circuits, the compile time can be on the order of tens of

CPU hours, which adversely impacts the use of FPGAs by hardware designs. This

provides compelling motivation to explore new methods for fast compilation of designs.

In this thesis, we focus on the placement phase of the FPGA design process.

Given a circuit represented as a connection of logic blocks, the placement problem can be

stated as that of assigning each logic block to a unique physical resource on the FPGA

while achieving a given overall performance. Placement is an NP-complete problem [10]

and one of the most time-consuming tasks in the automation of FPGA design.

We present a new "near-linear" model for estimating wirelength, called Star+. The

model is similar to the traditional star model [21], but is strictly differentiable, making it

suitable for use with analytic placement methods. Most importantly, the time to compute

the change in cost resulting from the swap of two blocks always runs in O(1) time. We

also present two analytic placement methods based on Conjugate Gradient (CG) [18] and

Successive Over-Relaxation (SOR) [33], respectively. Both analytic methods seek to

minimize total wirelength using the Star+ model as an estimate of wirelength. The

novelty of the CG method lies in the fact that this method avoids computing the Hessian

matrix on each iteration, thus reducing the (traditional) cost of computing the inner loop

from O(n2) to O(n). The SOR method, on the other hand, has the same runtime

complexity as CG, but by properly arranging the sequence in which equations in the non-

linear equation system are processed, SOR placement runs faster by a constant amount

(approximately 7x). We also present a novel pre-placement method for pre-assigning

certain blocks on the FPGA which runs in O(n log n) time. Finally, we develop and

present a timing-driven placement algorithm by adding timing-driven parameters into the

original (Star+) objective function used by both CG and SOR.

Compared with Versatile Place and Route (VPR) – the state-of-the-art academic

placement tool, with our methods we are able to achieve solutions 4 to 40 times faster and

with 1 to 8.8% less critical-path delay.

 i

Acknowledgements

First, I would like to acknowledge my sincere gratitude to my advisor, Dr. Gary Grewal,

for his continuous and wholehearted support in the Ph.D. program. He was always

willing to listen and gave many valuable suggestions. He not only taught me skills and

approaches to solve problems, but also helped and encouraged me when I was in

difficulty. His broad knowledge and rich experience were essential to the accomplishment

of my thesis. To me, he is a responsible supervisor, as well as a reliable mentor.

I would also like to thank Dr. Dilip Banerji, for his generous help and expert

advice. I am indebted to him for his high requirements and thoughtful recommendations.

I would like to thank Dr. Kenneth Kent from University of New Brunswick, for

his willingness to read my thesis and precious feedback.

I really appreciate the help of Dr. Tom Wilson for his enlightening suggestion and

feedback on my thesis.

Many thanks to Dr. Charlie Obimbo, Dr. Shawki Areibi, Dr. Judi McCuaig, Dr.

William Gardener, Sheryl Beauchamp, Debra Byart, Pam Varga, and others for all their

help.

Last, but not least, I thank my parents, Junyu Xu and Wenruo Li. I thank my wife,

Xiaoyan, and my son, Jason, for their persistent support and understanding.

 ii

Contents

1 Introduction.. 1

 1.1 Motivation and Technology Trends .. 1

 1.2 Overview of the Placement Problem... 3

 1.3 FPGA Placement Methods.. 7

 1.4 Contributions... 12

 1.5 Thesis Organization .. 13

2 Relevant Background .. 15

 2.1 FPGA Architecture(s) ... 15

 2.2 FPGA Design Procedure ... 17

 2.3 Placement Methods ... 22

 2.3.1 Partition-Based Methods.. 22

 2.3.2 Simulated Annealing.. 23

 2.3.3 Analytic Methods ... 28

 2.3.4 Multilevel Clustering ... 31

 2.3.5 Other Approaches to Placement... 33

 2.4 Wire-Length Models .. 34

 2.5 Summary ... 42

 2.6 Benchmarks... 43

3 The Star+ Model .. 45

 3.1 Wire-estimation based on the Star+ model ... 46

 3.2 Constant-time update of cost... 48

 3.3 Star+ Model Evaluation .. 50

 3.3.1 Routability.. 51

 3.3.2 Critical Path Delay ... 55

 3.3.3 CPU Running Time.. 62

 3.3.4 Wirelength.. 65

 3.4 Parameter Tuning .. 67

 iii

 3.5 Limitations of the Star+ Model ... 72

 3.6 Summary ... 73

4 Modifying Conjugate Gradient for Placement.. 75

 4.1 Conjugate Gradient Method.. 76

 4.1.1 Standard Conjugate Gradient Algorithm ... 77

 4.2 Conjugate Gradient Placement.. 82

 4.2.1 Objective Function)(xf ... 82

 4.2.2 Gradient)(' xf .. 84

 4.2.3 Hessian Matrix)(" xf ... 86

 4.3 Conclusion... 91

5 Pre-Placement and Legalization Methods ... 93

 5.1 I/O Pad Pre-placement .. 94

 5.1.1 Terminology... 96

 5.1.2 Shrubbery Example.. 98

 5.1.3 Shrubbery Algorithm ... 103

 5.1.4 Implementation and Time Complexity .. 106

 5.2 Legalizing Solutions using Recursive Bi-partitioning .. 106

 5.3 The CG Placement Algorithm... 107

 5.4 Convergence of CG... 109

 5.5 Experimental Results .. 111

 5.5.1 Shrubbery versus Random Pre-Placement ... 111

 5.5.2 CG versus VPR .. 113

 5.6 Summary ... 117

6 Successive Over-Relaxation Placement.. 119

 6.1 Background ... 120

 6.1.1 Jacobi Method .. 120

 6.1.2 Gauss-Seidel Method ... 121

 6.1.3 Successive Over-Relaxation... 124

 6.2 SOR Placement ... 125

 6.3 Improving SOR for FPGA Placement... 128

 6.3.1 Ordering Heuristic.. 129

 iv

 6.3.2 Effect of Ordering Heuristic... 135

 6.3.3 Choosing the Value of Relaxation Factor ω .. 136

 6.4 Experimental Results .. 138

 6.4.1 SOR versus CG .. 138

 6.4.2 SOR versus VPR.. 140

 6.5 Convergence of SOR... 144

 6.6 Hybrid Approach... 145

 6.7 Conclusion... 149

7 Conclusions and Future Work.. 151

 7.1 Contributions... 151

 7.2 Future Work .. 154

 7.2.1 Multilevel Optimization ... 154

 7.2.2 FPGA Routing.. 155

 7.2.3 Algorithm Acceleration via Multi-Core and/or Re-configurable Computing..

 .. 156

 7.2.4 Timing and Congestion .. 156

 7.2.5 Modern FPGA Architectures ... 157

A Timing-Driven Placement .. 158

 A.1 Background ... 158

 A.1.1 Timing Analysis .. 159

 A.1.2 Criticality and Cost.. 161

 A.2 SOR Timing-driven Placement ... 162

Bibliography .. 171

 v

List of Tables

2.1: Weight of net with cardinality less than or equal to 50. .. 37

2.2: 20 MCNC benchmarks. ... 44

3.1: Channel Width and Routing (breadth_first and inner_num=1). 52

3.2: Channel Width and Routing (breadth_first and inner_num=10). 53

3.3: Channel Width and Routing (timing_driven and inner_num=1) 54

3.4: Channel Width and Routing (timing_driven and inner_num=10) 55

3.5: Summary of Minimum Routable Channel Widths .. 56

3.6: Critical Path Delay... 57

3.7: Results of Student T-test.. 59

3.8: CPU Running Time ... 64

3.9: Re-computing time for HPWL and Star+ .. 65

3.10: The number of Wire Segments Needed for Successful Routing 66

3.11: Routing Results for Different Values of  (between 0.5 and 0.7) 68

3.12: Routing Results for Different Values of  (between 0.8 and 1.1) 69

3.13: Routing Results for Different Values of  (between 1.2 and 1.5) 70

3.14: Routing Results for Different Values of  (Summary).. 70

3.15: Experimental Results of Different  Values.. 71

5.1: Shrubbery pre-placement vs. random pre-placement .. 113

5.2: Running time of CG and VPR in Seconds... 114

5.3: Critical-path delays (CG vs. VPR) .. 115

5.4: Wirelength (CG vs. VPR).. 116

6.1: With ordering vs. without ordering.. 136

6.2: Comparisons between SOR and CG.. 139

6.3: Running time of SOR and VPR in Seconds .. 141

6.4: Critical path delays (SOR vs. VPR)... 142

6.5: Wirelength (SOR vs. VPR).. 143

6.6: Critical path delays (hybrid) .. 147

 vi

6.7: Wirelength (hybrid) ... 148

7.1: Summary of contributions ... 152

 vii

List of Figures

1.1: A “good” placement... 6

1.2: A “bad” placement. .. 6

2.1: Architecture of Island Style FPGA. ... 16

2.2: Typical FPGA design flow. ... 19

2.3: Pseudo-code for simulated annealing. ... 26

2.4: Multi-level clustering... 32

2.5: Steiner tree example with a 3-block net... 36

2.6: HPWL model for 3-block net. ... 37

2.7: Two nets with the same bounding-box size... 38

2.8: The clique model of the net in Figure 2.6 (x-dimension). ... 40

2.9: The star model of the net in Figure 2.6 (x-dimension). ... 41

3.1: A star model of a 4-pin net .. 48

3.2: The placement of Net clma:661 obtained using bounding box 61

3.3: The placement of Net clma:661 obtained using Star+... 61

3.4: Pseudo-code of incremental bounding box evaluation .. 62

3.5: Pseudo-code for re-computing the Star+ model of net l .. 63

3.6: A hard logic within the Star+ model of a net... 72

4.1: The graph of a positive-definite function)(xf .. 78

4.2: The contours of)(xf .. 79

4.3: The gradient)(' xf of)(xf ... 80

4.4: The Conjugate Gradient method.. 81

4.5: Pseudo-code of CG placement algorithm .. 92

5.1: The pre-placement of I/O blocks ... 95

5.2: Illustration of shrub, hedge, and grove .. 97

5.3: An arbitrary circuit... 99

5.4: The corresponding graph ... 100

5.5: The shrubs when distance is 1 ... 101

 viii

5.6: The shrubs when distance is 2 ... 101

5.7: The shrubs when distance is 3 ... 102

5.8: The final tree .. 103

5.9: Shrubbery algorithm .. 104

5.10: Placement of I/O pads shown in Fig 5.8 .. 105

5.11: Pseudo-code of bi-partitioning algorithm .. 108

5.12: Entire CG placement algorithm ... 109

5.13: Wirelength with different reduction rates of the iteration number 110

5.14: CPU running time with different reduce rates of the iteration number 111

6.1: Jacobi method .. 122

6.2: Gauss-Seidel method ... 123

6.3: Successive Over-Relaxation method ... 125

6.4: The corresponding graph ... 131

6.5: The graph after a, e, c, d, f are in the source pool.. 131

6.6: Sort the equations... 132

6.7: Ordering heuristic .. 133

6.8: Pseudo-code of SOR placement algorithm.. 134

6.9: Wirelength with different values of ω ... 137

6.10: Convergence of SOR and VPR.. 145

A.1: Timing analysis graph... 160

A.2: Pseudo-code of SOR timing-driven placement... 170

 1

Chapter 1

Introduction

1.1 Motivation and Technology Trends

Field-Programmable Gate Arrays (FPGAs) represent a major manifestation of

microelectronics as a key enabling technology. Since their inception in 1985, FPGA use

has grown almost exponentially because they dramatically reduce design turnaround time

and manufacturing costs for prototype circuits and small to medium volume electronic

products. This is due to the fact that the logic and interconnect components in an FPGA

are reconfigurable, making design debugging and modifications as easy as downloading

another file to the chip. It has been estimated that more than 80% of design starts rely on

the use of FPGAs, because they do represent an ideal means of establishing proof-of-

concept, prototyping, and use in low and medium volume products. Due to the

prohibitive cost of using the services of silicon foundries, many companies have turned

away from designing and fabricating Application Specific Integrated Circuits (ASICs),

instead relying on FPGAs even for high-volume products. A major part of the impetus for

this switch comes from the need to upgrade or modify the product functionality even after

CHPATER 1: Introduction

 2

releasing it in the market. The change is simply affected by downloading new

configuration information into the FPGA. This makes it extremely cost-effective to make

product/service changes in the field. This factor has become very important in today’s

highly competitive marketplace, where time to market and time to change or modify

functionality in response to customer needs can make or break a company. From all

indications, FPGAs have assumed a central role in digital system design. In fact, FPGA

revenues are expected to grow from just under 4 billion in 2008 to just under 6 billion by

2011 [110].

Of course, technology must constantly change to meet the needs of the

marketplace. When FPGAs first debuted in the mid-1980s, the Xilinx XC2064 (Xilinx,

San Jose) FPGA had only 64 Lookup Tables (LUTs) and was used as simple glue logic.

Today, Altera’s Stratix IV (Altera, San Jose) and Xilinx’s Virtex-6 both offer over

680,000 logic cells, plus a large number of hard-wired macro blocks such as embedded

memories, DSP blocks, embedded processors, high-speed IOs, and clock synchronization

circuits, representing more than a 10,000 times increase in logic capacity [110]. These

modern FPGA devices are being used in entertainment, navigation, information,

communication, and safety systems [1-5], including highly-complex System-on-Chip

(SoC) components that contain both hardware and software elements.

Computer-Aided Design (CAD) plays a critical role in optimizing high-

performance, high-density, and low-power design solutions using these high-end FPGAs.

However, compilation times for designs are dominated by placement and routing time†.

FPGA placement usually begins with a netlist of logic blocks and their interconnections.

The result of placement is the physical assignment of all blocks on the target FPGA in a

way that minimizes one or more specific objective cost functions (e.g., wirelength, delay,

power dissipation, etc.). FPGA placement is similar to the more general ASIC placement

problem in the sense that all blocks must be arranged inside a prescribed region on the

chip such that no two blocks overlap and the estimated wirelength needed to implement

the connections is minimized. However, it differs from the ASIC problem in that both the

† A detailed overview of the FPGA design flow is given in Chapter 2

CHPATER 1: Introduction

 3

size of the logic blocks, the type of logic blocks available, and the location that the blocks

can occupy on the chip is fixed. Thus, FPGA placement can be viewed as a more

constrained version of the general ASIC placement problem. In practice, placement has a

significant impact on the performance and routability of circuit design, especially in

nanometer designs because a placement solution, to a large extent, defines the amount of

interconnect in the design, which now becomes the bottleneck of circuit performance.

FPGA routing is similar to the general ASIC routing problem in that all nets

(wires that must be connected) must be successfully routed subject to timing constraints.

However, FPGA routing is more constrained in the sense that it can use only the

prefabricated routing resources on the FPGA, including available wire segments,

programmable switches, and multiplexers. Therefore, achieving 100% routability is more

challenging than ASIC routing. Moreover, a poor placement cannot be improved later by

a high-quality routing.

For today’s modern designs, FPGA placement and routing times are growing

much more rapidly than the available computation power. While current CAD algorithms

provide high-quality solutions, they often require great amounts of CPU time. For many

circuits, this compile time can be in the order of tens of CPU hours, which adversely

impacts the use of FPGAs by hardware designers. This provides compelling motivation to

explore new methods for fast compilation of designs.

 The focus of this thesis is on the FPGA placement problem. The objective is to

develop efficient and effective placement algorithms. The strategy is based on developing

novel analytic models and solution methods.

1.2 Overview of the Placement Problem

The FPGA placement problem usually begins with a netlist of logic blocks and their

interconnections. The result of placement is the physical assignment of all blocks on the

CHPATER 1: Introduction

 4

target FPGA, which minimizes one or more specific cost functions. A formal description

of the FPGA placement problem follows:

 Given a set of blocks B = {b1, b2, … bm}, a set of signals S = {s1, s2, … sn}, and a

set of locations on the field-programmable gate-array L = {l1, l2, … lp}, where p  |B|. 

bi  B, there is a set of signals Sbi  S, and  si  S, there is a set of blocks Bsi , Bsi = {bj |

si  Sbj }. Bsi only contains all the blocks that send or receive signal si, and Sbj only

contains all the signals that are sent or received by block bj . The goal is to assign each

block bi  B to a location lj  L such that the chosen objective function is optimized.

In practice, Bsi is said to be a “signal net,” and each such net specifies the

connectivity of the original circuit. Typically, each block belongs to several nets.

Locations on the FPGA typically correspond to Configurable Logic Blocks (CLBs) or I/O

pads. CLBs are used to implement logic, while the pads are used for input/output to and

from the FPGA. These blocks have distinct connection points on their boundary (called

pins), which are used to provide each net a unique connection point.

When performing placement, the most basic objective is to minimize the

wirelength required to complete the routing. Routing cost is used because reducing it

reduces a number of associated design parameters. By reducing the routing length, the

routing resources required by all interconnections are reduced. This results in an increase

in circuit speed due to the reduction in connection capacitance and resistance. Power

consumption, which is another important parameter to measure the quality of an FPGA

implementation, is reduced too [12]. If the objective of the placement tool is to minimize

the routing cost, the process is known as wirelength driven placement. There are other

objective terms that can be added to the original cost function to directly optimize various

design goals. For example, placement can be performed to minimize the length of the

critical path to meet timing constraints, referred to as timing-driven placement. Circuits

implemented on an FPGA are synchronous and, therefore, are driven by a clock.

 For simplicity, we leave off any discussion regarding the need to deal with timing constraints on signal nets

CHPATER 1: Introduction

 5

Minimizing the length of the critical path to meet timing constraints has the effect of

maximizing the speed at which the circuit can be clocked.

In this thesis, the focus is primarily on using a near-linear wirelength objective in

the analytical placement algorithms that we present. However, we also present a novel

multi-objective analytical model that seeks to simultaneously optimize wirelength and

critical-path delay.

A tiny problem is given in the (simplified) illustration in Fig. 1.1. (The illustration

is simplified in that, for the sake of clarity, all of the programmable routing resources on

the FPGA have been omitted. A much more detailed illustration is given in Chapter 2

which shows the typical routing resources available on an FPGA.) I/O pads are shown as

shaded squares; CLBs are shown as non-shaded squares; and signal nets are shown as

connections between the I/O pads and CLBs. Fig. 1.2 shows a “bad” placement that does

not minimize total wirelength. As discussed, minimizing wirelength is important because

excess wirelength degrades the performance of the final circuit. Moreover, excessive

wirelength may lead to congestion in different parts of the chip making routing

impossible (due to the limited and fixed number of routing resources available on the

FPGA). Figure 1.1 shows a much better placement, from a wirelength perspective.

CHPATER 1: Introduction

 6

Figure 1.1: A “good” placement.

Figure 1.2: A “bad” placement.

C A B

F D E

I G H

 CLB

I/O
PAD

3-pin
net

B E F

I G H

C A D

 CLB

I/O
PAD

3-pin
net

CHPATER 1: Introduction

 7

1.3 FPGA Placement Methods

Over the last few years, many FPGA placement algorithms have been proposed to handle

the objective of wirelength minimization. However, as the placement problem is NP-hard

[10], no polynomial-time algorithm is known to produce an exact solution. Therefore,

most algorithms are heuristic, seeking to find “good” solutions in “reasonable” amounts

of time. Historically, these algorithms have been divided into three classes: partitioning-

based placement [13][14], iterative improvement [15], and analytical-based placement

[16-26].

In partitioning-based placement, a circuit is recursively bisected, minimizing the

number of cuts of nets that connect components between partitions, while leaving highly

connected blocks in one partition. Eventually, the partition size reaches a few blocks to

obtain improvement by grouping highly connected blocks in one partition. These kinds of

methods are good from a “global” perspective, but they do not directly attempt to

optimize wirelength, timing, or routability. Therefore, the solutions obtained are inferior

compared with other placement methods. However, partitioning methods run fast, and are

normally used in conjunction with other search techniques, such as local search [15] for

further quality improvement or quadratic programming [17].

Iterative methods, on the other hand, start with an initial placement and seek

improvements by searching for small perturbations in the neighbourhood of the

placement that result in better solutions. For FPGA placement, perturbations are location

swaps (pair-wise moves) between blocks or moves (in the case where one of the

“swapped blocks” is an empty location on the FPGA). The well-known Versatile

Placement and Routing (VPR) [27][28] package for FPGA placement and routing uses

the Simulated-Annealing (SA) method as its optimization engine for placement.

The simulated annealing algorithm simulates the annealing process that is used to

temper metals. Given an initial placement configuration, a change to that configuration is

made by either swapping the positions of two blocks, or moving a single block to an

CHPATER 1: Introduction

 8

unoccupied location on the FPGA. In simulated annealing, all swaps (or moves) that

result in a decrease in cost are accepted. Swaps (or moves) that result in an increase in

cost are accepted with a probability that decreases over the iterations. More specifically,

moves and swaps that deteriorate the solution are accepted in SA with a probability of

T
C

e



, where C is the change in cost, and T is analogous to temperature in the metal-

crystallization process. The change of T is referred to as an annealing schedule. Initially,

T is set to a high value such that most inferior solutions can be accepted. This helps the

search escape the many local optima it is likely to encounter as it begins to explore the

problem’s search space. As the annealing process continues, T gradually decreases

(cools), reducing the probability of accepting poor solutions. This causes the search to

slowly turn its focus away from exploring the search space in a global fashion to

exploiting the current region of the search space. In the final state, T usually is only a

small fraction of its original value, and almost only improving solutions are allowed;

thus, the primary focus of the search becomes one of pure exploitation.

In the context of FPGA placement, it is too expensive to determine the exact

configuration of routing resources needed to realize physical connections between the

blocks, which is another NP-hard problem [10]. Besides distance (wirelength) between

connections, there may be constraints on the number of wires sharing a channel, the

allowed length or number of turns for certain wires, the availability of routing junctions,

etc. For this reason, the routing cost is approximated during placement. The speed and

accuracy of routing-cost estimation has a significant effect on the overall performance of

any placement method. For example, VPR [27] (and many similar methods) employ the

well known Half-Perimeter Wirelength (HPWL) model [30][31] to estimate the

wirelength of a net. The wirelength is approximated by half the perimeter of the smallest

bounding rectangle that encloses all terminals in the net. For a net with two or three

terminals, the routing cost is accurate. However, when there are more than three

terminals, a factor [27] can be introduced to compensate for the fact that HPWL

underestimates the wire length required to connect all blocks. Using the HPWL model,

VPR has achieved similar or higher quality solutions, compared with other types of

CHPATER 1: Introduction

 9

placement methods. However, because SA-based approaches must test an enormous

number of possible swaps and moves, and because the annealing schedule required to

find high-quality solutions is typically slow, the improvement over other placement

methods comes at the cost of significantly longer run times.

In order to improve the runtime of SA-based approaches, some researchers apply

multilevel techniques [66]. Multilevel optimization starts with multilevel clustering [82].

It requires cluster sizes at each level to be the same to facilitate pair-wise exchange at

each level later on by simulated annealing. The clustering begins with a cluster with a

random seed occupying an arbitrary slot in the cluster. Then, it grows the cluster by

adding a logic block with the highest connectivity, measured by the summation of the

shared nets between the block and the cluster. If all blocks on a net belong to the cluster,

that net is absorbed. When the cluster is full, a new cluster is started with a random seed.

This process is repeated until all blocks are clustered. The result is a clustered netlist with

the absorbed nets removed. Then, it proceeds to create the next level of the clustering

hierarchy. After the clustering hierarchy is created, low-temperature simulated annealing

is performed at each level of the clustering hierarchy. During de-clustering from a coarser

level to a finer level, the position of each cluster (or logic block) in the finer level is

determined by the mean of the positions of the I/O pads and the parent clusters that are

connected to it. Multilevel techniques speed up SA-based approaches at the cost of

quality.

The last category of FPGA placement algorithms, and the focus of this thesis, is

analytical placement methods. Rather than evaluate many small-scale provisional

modifications (like iterative improvement methods), analytical placement methods

typically tackle the problem from the top down by considering global (block and I/O pad)

connectivity. They include both force-directed [16] and quadratic-programming

[17][18][95] methods. The force-directed method introduces attracting, repelling, and

other additional forces, and then solves a linear equation system using these forces. In

contrast, the quadratic programming (QP) method solves a sequence of quadratic

programming problems derived from the circuit connectivity information. On each

CHPATER 1: Introduction

 10

iteration, additional constraints are added to restrict the movement of blocks in order to

gradually reduce the amount of block overlap.

Analytical methods are widely used for ASIC placement, but not as widely used

for FPGA placement. Unlike ASICs, FPGAs are pre-fabricated before logic designs.

Consequently, the placement solutions (in the form of the x- and y-coordinates of all logic

blocks and I/O blocks) must be integers. However, the solutions obtained by solving

equation systems are non-integers, which are acceptable in ASIC placement but are

illegal in FPGA situation. In FPGA placement, the solutions directly obtained by solving

equation systems must be legalized. This legalization procedure is usually performed at a

cost of sacrificing placement quality.

 Recently, graph-based approaches have been combined with analytic methods to

better capture the true cost of using routing resources on the FPGA [95]. The algorithm in

[95] views the placement task as an embedding of a graph (representing the netlist) into a

chosen metric space. It first defines an analytic metric of “distance” in terms of the total

delay through switches on the FPGA routing architectures, and then uses it to construct a

metric space that captures FPGA performance. Next, the netlist graph is embedded into

the metric space based on a binary quadratic assignment formulation, which is solved

with a heuristic technique based on matrix projections followed by online bipartite graph

matching. At last, the resulting solution is improved using low-temperature simulated-

annealing method for local optimization.

In general, analytic placement is very promising as both the force-directed and

quadratic-programming methods, if implemented correctly, have the potential to produce

good solutions in small amounts of time. However, one of the primary considerations

when implementing an analytic method is the form of wirelength model to use. Although

HPWL [31] is widely used by iterative-improvement based methods, the fact that it is not

continuously differentiable makes it difficult to employ in analytic methods that rely on

the presence of first- and second-order partial derivatives. Moreover, HPWL ignores the

relative positions of blocks inside the bounding box, despite the fact that the position of

CHPATER 1: Introduction

 11

these blocks has a direct affect on the total wirelength required. Due to these limitations,

HPWL is rarely used by analytic methods directly. Analytic methods typically begin by

transforming a hypergraph representation of the original circuit into a graph, where each

(hyper) edge is modeled as a star [21] or a clique [21]. The actual effect of these models

depends on the type of objective used. As discussed above, analytic FPGA placement

algorithms commonly utilize a squared (quadratic) wirelength objective, as this allows

efficient quadratic programming techniques to be applied [18] – something that is very

important from a performance perspective. However, the quadratic wirelength objective

has the effect of overemphasizing the optimization of longer nets at the expense of shorter

nets. To compensate, some analytic methods have tried using a regularized linear wire-

length estimate [17][21] in the context of ASIC placement. However, minimizing

regularized linear wire-length is computationally more difficult than minimizing squared

wire-length. Moreover, regularized linear wire-length results in lower-quality solutions

compared with HPWL, again in the context of ASIC placement.

In this thesis, we propose to employ a new, near-linear wirelength model that is

both differentiable (and hence suitable for use with the analytic methods we present later

in the thesis) and accurate (does not overemphasize the optimization of longer nets). The

employment of a near-linear objective into an analytic placement method is not new. For

example, in the context of ASIC placement, the Gordian-L [17] uses iteratively refined

piece-wise “linear” approximation of wire length. Compared with Gordian, which uses a

traditional quadratic objective, Gordian-L is generally observed to lead to higher-quality

placements. Moreover, the term-wise scaling approached used in Gordian-L does not

change the properties of the underlying wirelength matrix. Hence, the same fast

numerical techniques can be used to solve sequences of linear systems of equations

arising in both formulations.

The proposed wire-length model, which we call Star+, is a variant of the well-

known star model [21] (which was originally proposed for estimating wirelength in the

context of ASIC placement) but with some key differences1. By using a near-linear wire-

1 Differences between Star+ and existing models are described in detail in Chapter 3

CHPATER 1: Introduction

 12

length model in our analytic optimization engine, wirelength can be more accurately

estimated compared to the quadratic wirelength objective. This provides another avenue

for analytic methods to follow. However, there is an important caveat. By employing a

non-linear objective the resulting system of equations that must be solved is no longer

linear, but non-linear; thus, making the resulting optimization problem (equation system)

harder to solve. To compensate, we propose both theoretical as well as heuristic

modifications to standard methods (conjugate gradient [32] and successive over-

relaxation [33]) for solving systems of non-linear equations to improve their runtime

performance. The goal is to develop analytic methods that are both effective and efficient.

1.4 Contributions

The contributions that this thesis makes are summarized as follows:

 We present a new near-linear model for estimating wirelength, called Star+. The

model is based on the star model [21], but unlike HPWL, is directly differentiable,

making it suitable for use with analytical methods. Another feature of the Star+

model is that the computation of C caused by the swap of two blocks always runs

in O(1) time. This feature makes it suitable for SA-based methods, too. The Star+

model is also accurate. Our results show that when the Star+ model replaces the

HPWL model in VPR [27][28], the quality of placements are similar with respect to

total wire length and channel capacity, but Star+ produces placements with, on

average, 6-9 percent smaller critical-path delay with no additional effort.

 We propose a novel non-linear Conjugate Gradient (CG) placement algorithm,

which generates placement solutions by minimizing an objective function based on

the Star+ model. The proposed method is more efficient than traditional conjugate

gradient method [19] for FPGA placement. When using the traditional CG method,

the Hessian matrix of the objective function has to be calculated on each iteration.

This is not a problem when the Hessian matrix is sparse. But in the case of the

CHPATER 1: Introduction

 13

FPGA placement, the Hessian matrix is dense and, therefore, the computation of the

Hessian is)(2nO . In the non-linear CG method proposed here, we avoid computing

the Hessian directly, and reduce the time complexity of an iteration to)(nO .

 We introduce a second analytic placement algorithm based on the Successive Over

Relaxation (SOR) method [33]. SOR is also based on the Star+ model and has the

same runtime complexity as CG placement. However, by properly arranging the

sequence for calculating each equation of the nonlinear equation system, SOR-

based placement runs faster by a constant amount (approximately 6.9 times as fast).

 In order to obtain non-trivial solutions of a nonlinear equation system, some logic

and/or I/O blocks must temporarily be assigned to fixed locations on the FPGA

chip. This assignment is called pre-placement. We present a novel pre-placement

algorithm (called Shrubbery) that pre-places certain blocks using a method, which

runs in)log(nnO time.

 We develop an analytical timing-driven placement algorithm by adding timing-

driven factors into the original objective function used by both non-linear CG and

SOR. The timing-driven model that is employed is the same as that used in other

timing-driven placement methods, including VPR [27][28].

1.5 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 introduces the FPGA

architecture that we target throughout the remainder of this thesis, and gives an overview

of previous works including a detailed comparison of different wirelength estimation and

timing models, and a brief analysis of current placement algorithms. Chapter 3 describes

the accuracy, computational complexity, and the differentiability of the Star+ model.

Chapter 4 presents the non-linear CG placement algorithm based on the Star+ model.

CHPATER 1: Introduction

 14

Chapter 5 introduces the pre-placement algorithm – Shrubbery. Chapter 6 gives the SOR

placement algorithm. Chapter 7 summarizes our research results and gives suggestions

for future work. Finally, Appendix A describes the timing-driven placement.

 15

Chapter 2

Relevant Background

In this chapter, we provide the necessary background material. In Section 2.1 we describe

the basic island-style FPGA architecture that we assume throughout the remainder of this

thesis. Section 2.2 describes the typical FPGA design flow. In Section 2.3, we discuss

previous relevant work related to the FPGA-placement problem, while in Section 2.5 we

describe the main wirelength estimation models employed by these placement

methodologies. In Section 2.5 we provide a brief summary that seeks to place the work

that we are proposing in this thesis in proper relation to the previous work. Finally, in

Section 2.6 we introduce the benchmarks that will be used to validate the effectiveness of

our placement algorithms.

2.1 FPGA Architecture(s)

There are various types of FPGA architectures available from different vendors including

Xilinx, Altera, Actel, Lucent, and QuickLogic. Although the exact structure of these

FPGAs varies from each other, all FPGAs consist of three fundamental components (as

seen in Fig. 2.1):

CHAPTER 2: Relevant Background

 16

1. Logic blocks that are capable of implementing multiple logic functions;

2. I/O blocks or I/O pads for communication with the outside world; and,

3. fixed, as well as programmable, routing resources used to realize all required

interconnections between the blocks.

Based on their routing architectures, current commercial FPGAs can be classified

into three groups: island-style FPGAs, row-based FPGAs and hierarchical FPGAs. As

the placement methods mentioned in this thesis are aimed mainly at island-style FPGAs,

we give a brief introduction of this FPGA architecture next.

Employed by many vendors, the island-style FPGA architecture is characterized

by its two-dimensional symmetry. The architecture contains a square array of logic blocks

surrounded by routing resources (wire segments and programmable switches). Logic

blocks in this architecture are referred to as Configurable Logic Blocks (CLBs) and are

arranged as a symmetrical array. Routing tracks have a Manhattan geometry; that is, they

are either horizontal or vertical. Figure 2.1 shows a generic model of this kind of FPGA,

an architecture that we assume throughout the rest of this thesis.

Figure 2.1: Architecture of Island Style FPGA.

CHAPTER 2: Relevant Background

 17

 The detailed routing structure consists of three components: connection blocks,

switch blocks, and routing channels. A connection block is used to connect a CLB to the

routing channels via programmable connections. The pins of each CLB pass

uninterrupted through the connection block and have the option of “fusing” to some

channel segments. The switch block is a switch matrix that is used to connect wires in

one channel segment to other wires. Depending on the topology, each wiring segment on

one side of a switch block may be connected to some or all of the wiring segments on the

other three sides. This flexible routing structure enables every CLB to have connections

with any other CLB or I/O pad, depending on the number of tracks in the routing

channels. A CLB in most commercial FPGAs consists of one or more Basic Logic

Elements (BLE). Each BLE usually consists of a Look Up Table (LUT) and a register, as

shown in Fig. 2.1. The underlying concept behind a LUT is relatively simple. A group of

input signals is used as an index (pointer) to a lookup table. The contents of this table are

arranged such that the cell pointed to by each input combination contains the desired

value. In general, an n-input LUT can implement any possible n-input combinational

circuit.

2.2 FPGA Design Procedure

As implementing a circuit using FPGAs involves the configuration of millions of

programmable gates and switches, it is impractical for designers to specify all of the

states for these components. Rather than setting the gates and switches to their proper

states directly, designers describe the circuit to be implemented on the FPGA at a high-

level of abstraction, typically using a Hardware Description Language (HDL) (or, in rare

cases, using schematic entry). Then, Computer-Aided Design (CAD) tools convert this

high-level description into a configuration file that specifies the states of all the

programmable resources on the FPGA. Figure 2.2 shows a typical design flow.

Inputs to the design flow typically include the HDL specification of the design,

design constraints, and a specification of the target FPGA. Each of these inputs is

described below:

CHAPTER 2: Relevant Background

 18

 Circuit description

During the 1980s, schematic capture programs allowed engineers to create circuit

(schematic) diagrams interactively. However, towards the end of the 1980s, as

designs grew in size and complexity, schematic-capture tools began to run out of

steam. Today, most FPGA designers use design tools and flows based on the use of

HDLs. The most widely used design specification languages are Verilog [37] and

VHDL [36], which are used at the Register-Transfer Level (RTL) to specify the

operations in each clock cycle. Recently, there has been a trend toward moving to

specification at a higher level of abstraction, using languages like System-C [89] or

Handel-C [90], or domain specific languages, such as MatLab [91] or Simulink [92].

These languages allow a designer to focus on the algorithm/behavior that is to be

implemented on the FPGA, rather than having to focus on the cycle-accurate

description of the design.

 Design Constraints

Design constraints typically include the desired operating frequencies of different

clocks employed in the design, bounds on path delays from input pads to output pads,

from input pads to registers (setup times), and from registers to output pads (hold

times), or delays between specific pairs of registers. Moreover, the user (or synthesis

tool) may specify constraints requiring that certain elements or blocks be placed at

certain physical locations on the FPGA.

 Target FPGA

The third input is the type of target FPGA to be used. Most FPGA vendors provide a

wide variety of FPGA architectures that differ with respect to size, performance,

power, and cost. Typically, a designer will start with a small (low capacity) FPGA

with nominal speed-grade. However, if the synthesis effort fails to map the design

onto the FPGA or fails to meet performance requirements, the user will have to

upgrade to a larger (higher capacity and/or higher speed grade), but more expensive

device. This fact clearly underscores the need to have better synthesis tools, as their

quality directly impacts the performance and cost of FPGA designs.

CHAPTER 2: Relevant Background

 19

We now briefly describe the FPGA design flow in Fig. 2.2. Given a design

(described in a suitable HDL), set of design constraints, and a target FPGA device, the

overall FPGA synthesis goes through the following steps.

Figure 2.2: Typical FPGA design flow

 Synthesis and logic optimization

This step involves synthesizing the designer’s original hardware description into a

logic design, using CAD tools. This involves identifying both datapath operations

and control logic. Identification of the latter is important, as modern FPGAs often

have architectural support such as embedded multipliers and adders with fast carry

chains. Next, complex logic is broken down into simple logic expressions, which are

converted into a netlist of basic gates. This netlist of basic gates is then transformed

into a netlist of FPGA logic blocks. During this stage, technology-independent logic

optimization is often involved to remove any redundant logic and simplify logic

wherever possible [38][39].

Synthesis and
Optimization

(Gate-level netlist)

Packing

Routing

Timing Reports and Simulation

HDL circuit
description

Technology
Mapping

Placement

Bit-Stream
Generation

 Bit Stream

CHAPTER 2: Relevant Background

 20

 Technology mapping

Once optimized, the netlist of logic gates has to be mapped into Look-Up Tables

(LUTs), which will be packed into FPGA logic blocks later on. In this context,

mapping refers to the process of associating entities such as gate-level functions in

the net-list with the LUT-level functions available on the FPGA. This is not a one-

for-one mapping because each LUT can be used to represent a number of logic gates.

In practice, mapping is a nontrivial problem because there are a large number of

ways in which the logic gates forming a netlist can be partitioned into the smaller

groups to be mapped into LUTs.

 Logic block packing

Following the mapping phase, the next step is packing, in which the LUTs and

registers are packed into the CLBs. A CLB usually contains more than one look-up

table and flip-flop. Logic block packing groups several look-up tables and flip-flops

into each CLB with the objective to minimize the interconnections between CLBs.

During packing, constraints such as the maximum number of inputs per CLB have to

be taken into account. In practice, packing is also a nontrivial problem because there

are myriad potential combinations and permutations.

 Placement

Following packing, we move to placement. After logic block packing, the circuit has

been transformed into a list of blocks (CLBs) and nets (pins that must be connected)

that specify the connections between these blocks. Placement algorithms now assign

these logic blocks to physical locations on an FPGA with optimization goals to

minimize the required wiring (wirelength-driven placement) [20][21], balance the

wiring density (routability-driven placement), and/or to maximize circuit speed

(timing-driven placement) [28]. In general, placement is an NP-hard problem and

represents one of the main bottlenecks in the FPGA design flow, as FPGAs can

contain hundreds of thousands of CLBs. In fact, placement times for industrial-

strength applications are often so long that most designers today would be very

CHAPTER 2: Relevant Background

 21

happy if these times could be reduced to allow for one full-compile (from HDL to

FPGA) per day.

 Routing

Following placement, routing algorithms (global and detailed) identify which

specific wire segments should be used and which programmable switches should be

turned on to connect all the nets specified in the netlist file. The optimization goals

are typically to reduce the amount of routing resources required to connect all the

nets, and/or minimize the delay.

 Simulation:

Following place-and-route, we have a fully routed physical (CLB-level) netlist. At

this point, a static timing analysis utility is run to calculate all of the input-to-output

and internal path delays and also to check for any timing violations (setup, hold, etc.)

associated with any of the internal registers. Interestingly, if the designer wishes to

re-simulate their design with accurate (post place-and-route) timing information,

they have to use the FPGA tool suite to generate a new gate-level netlist along with

associated timing information in the form of an industry-standard file format, called

standard delay format. The main reason for generating this new gate-level netlist is

that once the original netlist has been coerced into its CLB-level equivalent – it

simply isn’t possible to relate the timings associated with this new representation

back into the original gate-level incarnation.

 Bit-stream file:

The last process in the FPGA-design flow inputs the mapped, placed, and routed

design and generates a bit-stream file that can be downloaded to the target FPGA

chip. This bit-stream file stores the configuration of programmable blocks and

routing resources.

 informed through private communication with Altera’s Vaughn Betz

CHAPTER 2: Relevant Background

 22

As the focus of this thesis is on developing fast analytic methods for performing

placement, we now turn our attention to the literature and existing placement methods.

2.3 Placement Methods

In the last two decades, abundant placement approaches have been proposed to deal with

the broadly used objective of wirelength minimization. These methods can be roughly

divided into 5 categories: (i) partition-based placement; (ii) simulated-annealing based

placement; (iii) multi-level based placement; (iv) analytic placement; and (v) other

placement methods, including hybrid and parallel methods.

2.3.1 Partition-Based Methods

Partitioning-based placement methods [40][41] are also referred to as min-cut methods.

The basic idea is to use a graph-partitioning algorithm to divide a region of the FPGA

into two halves. A circuit partitioning algorithm is then applied to determine which logic

block goes to which half with the goals of minimizing the number of cuts in the nets

across the boundary between two partitions, and placing highly-connected blocks in the

same partition. These procedures are recursively repeated until each partition contains

only a few blocks. The advantage of partitioning-based placement algorithms is that they

run very fast. As they use a divide-and-conquer strategy, where large problems are

divided into small sub-problems, partitioning-based methods significantly reduce the

problem search space. However, since the cut size is not an exact function of wirelength,

timing or routability, the quality is not as good as other placement strategies.

A notable (and recent) contribution is PFFF [93], which uses the start-of-the-art

multi-level (see Section 2.3.4) partitioner hMETIS [94] as its partitioning engine. The

experimental results in [93] report a slight degradation in solution quality, with a 3-4

times improvement in runtime, compared with the state-of-the-art academic placement

tool, VPR [27][28].

CHAPTER 2: Relevant Background

 23

2.3.2 Simulated Annealing

Simulated Annealing (SA) is widely used for solving combinatorial optimization

problems and has been applied to circuit placement (in the context of ASIC design)

successfully [27][54]. As the name suggests, this method mimics the process used to

gradually cool molten metal in order to obtain a good crystalline structure. An ideally

annealed crystal should be in the lowest-energy ground state, which corresponds to the

globally optimal configuration in a combinatorial-optimization problem. SA-based

placement algorithms are readily adapted to handle any known form of constraint and

optimization goals [55]. In addition to their hill-climbing property, their ability to accept

non-improving moves enables them to escape local optima.

 Simulated annealing belongs to a class of stochastic search algorithms that accept

any randomly encountered solution within the neighborhood of solutions being currently

considered with a defined probability. In practice, new neighbouring solutions are

created incrementally from the current solution. If the cost of the new solution (derived

using an appropriate objective function for the problem) is reduced, the new solution is

accepted. However, if the new solution is found to have inferior cost, the new non-

improving solution may still be accepted with a probability of TCe  , where C is the

change in cost and T is analogous to temperature in the metal-crystallization process. The

parameter T is used to control the probability of accepting non-improving moves. In

general, a high value of T causes the search to become random, while a low value of T

causes the stochastic algorithm to revert to an ordinary hill-climber. Thus, an appropriate

value of the parameter T must be found (throughout the search) for the particular problem

being solved.

 The rate of change of T is referred to as the annealing schedule, and has a great

influence on the quality of the final solution as well as runtime. Initially, T is set to a high

value such that most non-improving solutions can be accepted. However, as the process

continues, T is gradually decreased (simulating cooling), reducing the probability of

accepting poor solutions. In the final states of the search, T is only a small fraction of its

CHAPTER 2: Relevant Background

 24

original value and only improving solutions are accepted most of the time. The

simulated-annealing algorithm is characterized by its ability to escape local optima,

which often traps other search procedures.

 Like all search methods, simulated annealing has both advantages and

disadvantages. One advantage is that theoretical analysis [56] shows that simulated

annealing converges with probability 1 to the globally optimal solution by imposing

certain conditions on the number of iterations evaluated at each T and a certain rule to

update the value of T. In addition, it is much easier to add new optimization objectives or

constraints to SA compared with most other search procedures. However, there is

precious little information on how to set the proper parameters for a particular

implementation. Moreover, the runtime to find the globally optimum solution can become

extremely large. Consequently, most current applications of simulated annealing employ

simple, yet effective, approaches to obtain good, sub-optimal solutions.

2.3.2.1 Versatile Placement and Routing (VPR)

SA-based placement methods for FPGAs have been well studied [29][50][56][58][60]. In

[103], Chen and Cong use a SA-based algorithm, called SCPlace, which performs

clustering and placement simultaneously. There are two types of moves in their approach.

The first type of move is the block level move, in which an entire Clustered-based Logic

Block (CLB) is moved to a new location and swapped with another CLB if necessary. The

second type of move is the fragment level move, in which only a Basic Logic Element

(BLE) is moved to a new CLB and swapped with another BLE if necessary. After each

move, the cost function is updated to decide whether to keep the move or not. In [27][28],

Betz et. al. present the current state-of-the-art academic place-and-route tool, Versatile

Placement and Routing (VPR). In addition to a mapping and routing tool, VPR contains

an extremely effective SA-based placement tool, called VPlace. The VPlace tool follows

the basic template of simulated annealing (see previous Section), but with several

placement-specific enhancements like: (i) a new temperature updating scheme, which

decreases the temperature faster when the move acceptance rate is very high or very low,

CHAPTER 2: Relevant Background

 25

so that the annealing process spends more time at the most productive temperature

regions (when a significant number of moves are being accepted); (ii) a limitation on the

range of cell exchanges so that the move acceptance rate is as close to 0.44 as possible

and for as long as possible; (iii) a linear congestion model that can be used when the

channel capacity is non-uniform in the FPGA; (iv) and a faster method for incremental

net bounding box updating. Overall, the VPR placement tool provides very good results

and is widely used in the FPGA research community.

Figure 2.3 shows a pseudo-code description of the VPlace algorithm. As Fig. 2.3

indicates, VPlace first creates an initial solution by placing CLBs and I/O pads randomly

into locations throughout the target FPGA (line 1). Some CLBs and I/O pads may remain

unused; these blocks are marked as void blocks. Based on earlier work by Huang et. al.

[58], the initial temperature T (line 2) is set to 20 times the standard deviation in cost after

a set of Nblocks pairwise swaps (moves) have been attempted. (Nblocks is the total number of

CLBs and I/O pads in the circuit.) The number of new configurations evaluated at this

temperature is set to:

MovesPerT = innerNum * (Nblocks) 4/3 [59]

where the scaling factor innerNum, which by default is 10, allows a trade-off between

CPU time and placement quality.

In [59][60] it is shown that the most desirable annealing schedule is one that

keeps the acceptance rate of moves near 0.44 for as long as possible. VPlace

accomplishes this by utilizing the value of the acceptance rate  to control a range limiter

Rlimit, which follows the work of Lam et. al. [60].

Rlimit= Rlimit * (1 – 0.44 + ) where

Rlimit  [1, maximum FPGA dimension]

Any attempted swap of blocks is allowed only within a square window, where the

new old

CHAPTER 2: Relevant Background

 26

[1] S = InitPlacement();
[2] T = InitTemperature();
[3] Rlimit = InitRlimit(); //set to whole chip initially
[4] while(ExitCriterion() == false) //outer loop
 {
[5] while(InnerLoopCriterion == false) //inner loop
 {

 //create a candidate solution from the current solution by
 //performing a random pair-wise move within the window
 //specified by Rlimit
[6] Scandiate = GenerateMove(Scurrent, Rlimit);

 //Calculate change in cost
[7] C = Cost(Scandidate) – Cost(Scurrent)

[8] r = random(0,1) // compute random number between 0 and 1

//if C  0, accept move; otherwise accept the move
//with probability e -C/T

[9] if(C  0 | | r < e -C/T)
[10] Scurrent = Scandidate;

} //end of inner loop

[11] Update(T); //Tnew =  * Told
[12] Update(Rlimit);

[13] } // end of outer loop

//return final placement solution S

length of each size of the window equals Rlimit. A small value of Rlimit ensures that only

blocks close together are considered for swapping. These “local” swaps tend to result in

an increase in the move being accepted. In practice, Rlimit initially spans the entire FPGA,

shrinks gradually as the search progresses and blocks find themselves settling in the

correct regions, and finally reduces to 1 during the latter part of the search where only

local refinement is necessary.

Figure 2.3: Pseudo-code for simulated annealing [28]

CHAPTER 2: Relevant Background

 27

The placement is improved by iteratively selecting random blocks and swapping

their locations. The effect of each potential swap, on total wirelength, is calculated using

the HPWL wirelength model described in Section 2.4.

Clearly, a robust FPGA placement tool must be able to effectively handle a wide

variety of circuits with different sizes. Consequently, as the core of any SA-based

implementation, the annealing schedule must automatically adapt to different circuits.

The VPlace annealing schedule is based on the following observations and methodology:

At the outset of the search when the temperature T is so high that almost every swap is

accepted, the FPGA configurations randomly move from one configuration to another

with no appreciable improvement in quality. Conversely, at the end of the search, when

very few swaps are accepted due to the extremely low temperature T and (hopefully) high

quality of the current placement, very little improvement in quality is obtained. Therefore,

VPlace searches the problem space efficiently by increasing the amount of time spent on

exploring the problem space in the middle part of the search, where more productive

swaps are likely to be found and made. The exact update schedule for T in VPlace is as

follows:

 0.5 * Told, acceptance rate > 0.96

 0.9 * Told, acceptance rate  0.96

 0.95 * Told, acceptance rate  0.8

 0.8 * Told, acceptance rate  0.15

Finally, VPlace terminates when the temperature T falls below a certain fraction

of the average cost per net (set of pins that must be connected). This makes the

acceptance of any cost-increasing move almost impossible:

 With regards to computational complexity, the timing analysis for VPlace is

performed once per temperature change, which is an O(n) operation. At each temperature,

Tnew =

bounding box cost (HPWL)
total number of nets Tend = 0.005 *

CHAPTER 2: Relevant Background

 28

the inner loop of the placer is executed O(n4/3) times; i.e., O(n4/3) swaps are performed. In

the inner loop is an incremental-bounding-box-update operation (see Section 2.4) that is

worst case O(kmax), where kmax is the fanout of the largest net in the circuit. The average

complexity of the bounding box update is O(1) [28][61]. The overall result is that VPlace

has an average runtime complexity, per temperature change, of O(n4/3).

Currently, amongst academic tools, VPlace is considered to be the best –

producing high-quality placements in reasonable amounts of time when tested with the

MCNC [62] benchmark suite. Therefore, it has become the standard by which all other

placement tools presented in the literature are compared. In this thesis, we will also be

using VPR (placement and routing) as a baseline for comparison with our analytic

technique. However, it should be noted that as FPGAs continue to grow in size, and the

problem instances mapped to these FPGAs increase in size, SA-based placers, like

VPlace, may fail to scale. Therefore, we plan to explore fast, analytic placement

techniques.

2.3.3 Analytic Methods

Analytic algorithms are among the most promising methods for performing fast

placements. These algorithms tackle the problem from the top down by considering

global connectivity rather than evaluating many small-scale provisional modifications.

They include both force-directed [16][22][105][106] and quadratic programming [17]

[18][25][43][95][104][107] methods. The force-directed method introduces attracting,

repelling, and other additional forces and then solves a linear equation system using these

forces. In [16] and [22], Eisenmann et al. introduce additional forces to each cell based on

cell distribution to pull cells away from dense regions. Xu and Khalid [104] use quadratic

programming technique to minimize the squared distance, and then use low temperature

Simulated Annealing to refine the placement. Etawil et al. [105] add repelling forces for

cells sharing a net to maintain a target distance between them and attractive forces by

fixed dummy cells to pull cells from dense to sparse regions. Hu et al. [106] introduce the

idea of a fixed-point as a more general way to add forces for cell spreading.

CHAPTER 2: Relevant Background

 29

The quadratic programming method solves the placement problem by solving a

sequence of quadratic programming problems derived from the circuit connectivity

information. This type of method maintains a whole view of the placement problem, and

hence is often used as a global optimization method [17][25][104][107]. In general,

quadratic programming methods take a hypergraph netlist as their input, and then seek to

minimize the total squared wire length. The objective function follows:

 
ji

jijiij yyxxWyx
,

22])()[(
2
1),(

where x, y are the coordinates of a logic block. Wij is the weight of the edge that connects

block (xi, yi) and block (xj, yj). Since two blocks may be connected by more than one net,

the hypergraph first needs to be converted into a weighted graph. Two models can be

used for this conversion: clique and star. A clique model introduces k(k-1)/2 edges with

each edge connecting each pair of blocks incident to a k-pin net, while a star model

creates a new node at the center of gravity of the net and introduces k edges with each

edge connecting a block and the center.

The previous objective function is often written in matrix form as shown below:

)(
2
1),(AyyAxxyx TT 

where A is an nn  symmetric matrix, called the Hessian matrix, and n is the number of

blocks. In order to obtain non-trivial solutions, some of the variables (ix ’s, jx ’s, iy ’s and

jy ’s) must be fixed. Therefore, the above objective function can be rewritten as:

ydAyyxdAxxyx T
y

TT
x

T 
2
1

2
1),(

CHAPTER 2: Relevant Background

 30

 where T
y

T
x dd and are n-dimensional vectors representing various constraints and fixed x

and y values. As all x variables are independent of y variables and vice versa, this

objective function can be separated into two functions with the same form. For the sake

of simplicity, we only discuss the function in the x-dimension (the function in the y-

dimension can be dealt with in a similar way): xdAxxx T
x

T 
2
1)(. This function is

strictly convex and definitely positive and, therefore, its minimum is the point where (the

gradient) 0 T
xdAx . This linear equation system can be solved efficiently by a variety

of standard techniques, including Conjugate Gradient (CG) [32][33] and Successive

Overrelaxation (SOR) [33] methods.

A major concern with the quadratic programming is that it results in a placement

with a large amount of overlap among blocks. It is reported in [16] that quadratic

methods produce placements where 85% to 98% of the blocks overlap. Thus, to legalize

the placement, researchers must apply various techniques that have the potential of

degrading the quality of the original (infeasible) placement. Kleinhans et al. [17] and

Kernighan et al. [53] use a bisection technique to recursively divide the circuit into two

partitions until each partition has only one block and one CLB. Vygen [107] uses a

quadrisection instead. Eisenmann and Johannes [22] use additional forces from higher

density regions to coerce blocks to move into lower density regions. Mo et al. [51]

introduce repulsive forces for overlapping cells and filling forces for lower density

regions. Vorwerk and Kennings [16] apply min-cut partitioning before quadratic

placement.

Another issue with quadratic programming is that the placement quality is sub-

optimal since its objective function uses squared wirelength. To improve placement

quality, subsequent refinement techniques are used after. For example, Viswanathan et al.

[25] use a cell shifting technique for local refinement; Xu et al. [104] apply low

temperature simulated annealing to improve the placement. Some other researchers use

an approximate linear objective instead of quadratic objective. In particular, Kennings et

al. [21][108][109] apply regularization techniques on linear wirelength (in the context of

CHAPTER 2: Relevant Background

 31

ASIC placement). The objective function after regularization is:

bHxxxx
ji

jiij  


:)()(2 

where xi and xj are the x-coordinates of block i and block j; H represents various linear

constraints. When 0, 



ji

jiij xxx ||)( . The regularized linear wirelength

represents a better estimate of routing length compared with quadratic distance.

 In summary, the primary advantage of analytic methods is their potential for short

run times. However, the quality of analytic techniques is typically not as good as SA-

based placers. Therefore, in this thesis we plan to develop placement algorithms, based

on analytic methods that are not only fast, but also able to produce high-quality solutions.

2.3.4 Multilevel Clustering

As FPGAs continue to increase in logic capacity and functionality, so do the designs

mapped to them. A recent approach to reducing the complexity of placing large designs

(circuits) is to employ what is known as a multilevel strategy. Multilevel strategies

construct a hierarchy of successively coarser problems from the bottom by recursive

aggregation. They employ iterative improvement at each of the resulting levels, transfer

these improvements up and down the hierarchy, and eventually terminate with a solution

at the original, finest level.

The multilevel approach is illustrated in Fig. 2.4. As discussed, the procedure is

essentially a two-step procedure – first proceeding bottom-up then top-down. The bottom-

up technique is clustering which involves grouping highly-connected blocks into clusters.

Then a top-down method is applied to largely determine the locations for all of the

clusters. The simplified problem makes the use of a traditionally time-consuming method,

like simulated annealing, more feasible. A declustering process proceeds to restore the

CHAPTER 2: Relevant Background

 32

original FPGA layout according to the previous placement result of the clusters. In this

procedure, the flattened blocks should be as close as possible to their center-of-gravity

[64][65] as possible. Finally, a localized improvement heuristic is executed to move

blocks in small regions to achieve the final placement.

Figure 2.4: Multi-level clustering

Although multilevel strategies have the potential to improve the runtime of

existing FPGA placement algorithms, only recently has the multilevel approach been

applied, and then only in a limited way [66][93][96]. To the best of our knowledge, the

first multilevel placement method described in the literature was Ultra-Fast Placement

(UFP) [66]. The aim of UFP was to significantly reduce the runtime of VPlace. (Note that

VPlace produces good results, but these results are not scalable as problem sizes increase

due to the nature of the simulated annealing optimization engine employed by VPlace.)

The approach described in [66] has the caveat that the size of the clusters at each level

must be the same. In fact, they must be powers of 2 (e.g., 4, 8, 16, 32, …) to facilitate

CHAPTER 2: Relevant Background

 33

pair-wise exchanges at each level using simulated annealing. The experimental results

reported in [66] show a smooth runtime and quality trade-off. At one extreme, UFP

achieves a 50 times speed-up over VPlace, but with 33% wire length overhead. The work

in [66] uses an extremely effective simulated-annealing based optimization engine in a

multilevel framework similar to that used by UFP. The results in [96] show that a 79%

reduction in CPU time (compared with VPlace) can be achieved, with only a slight (less

than 2%) reduction in solution quality. Recently, multilevel placement has become a very

active research topic, with several high-quality multilevel placement methods being

developed for standard cell designs [55][97][98]. It is likely that the multilevel placement

techniques in these works can also be used to further enhance the quality of the work in

[66][96]. However, we do not employ these multilevel strategies in the work in this thesis,

but rather leave it for future work.

2.3.5 Other Approaches to Placement

In recent years there have been several novel placement algorithms that employ multiple

placement techniques. For example, Mongrel [68] adopts a middle-down methodology in

which a global placement solution is obtained by placing logic cells into coarse bins.

During the placement phase, a Relaxation-Based local search methodology is applied to

generate global complex modifications to the current placement. A novel ripple move [68]

based legalization procedure is also presented. After the global placement is completed, a

detailed placement is obtained by applying the optimal interleaving [68] technique.

Dragon2000 [69] uses a top-down hierarchical approach, and integrates the partitioning-

based cut size minimization techniques and simulated-annealing-based wirelength

minimization techniques. mPL [70] and mPG [71] are based on the multi-level

framework to improve both runtime and quality of placement.

Several non-traditional approaches have also been tried for accelerating

placement. For example, techniques for parallelizing simulated annealing have been used

to accelerate VPR on expensive shared-memory machines (SGI Origin) or specialized

CHAPTER 2: Relevant Background

 34

distributed memory multiprocessors (IBM-SP2) [47]. FPGA-based computing platforms

to accelerate placement and routing have also been proposed in [48][49][50]. These

methods often reduce the runtime of placement by orders of magnitude compared with a

sequential algorithm. However, the quality of results that they produce is significantly

worse than that obtained with other methods. In [72], a placement algorithm, called NAP,

which runs in a ubiquitous network environment, is presented. The algorithm obtains

speedups of 2-3 using a small number of machines connected on a local network.

However, while readily available, this environment still requires the user to have access

to a network and multiple machines. In [51], the previous placement algorithm is

implemented using both multi-core and SIMD units resulting in speedups of 1.34

compared when implemented as a traditional serial algorithm. Although the speedups are

modest, and lag well behind those of previously reported methods, they are immediate

and more widely available. Very recently, strategies have been presented for parallelizing

move-based heuristics on processors with multiple cores [99]. The experimental results

show speed up of 1.3 times on 2 cores and 2.2 times on 4 cores.

 Given that it is hard to achieve 100% routability, especially for the earlier

generation of FPGAs (1990s), several attempts were made to combine placement and

routing, so that the placement solution is assured to be routable [100][101]. However, in

general, these approaches have not shown results that demonstrate the superiority of the

combined approach. Moreover, given that modern FPGAs have much higher logic

capacity and richer routing resources, one may question if it is feasible to compute or

even necessary to carry out simultaneous placement and routing.

2.4 Wirelength Models

As the precise wire length for a given placement can only be known after routing,

accurate and fast to compute wirelength estimates are required by FPGA placement

algorithms. The main models include minimum Steiner-tree, half-perimeter wire length,

clique, and star. A brief description of these models is given below.

CHAPTER 2: Relevant Background

 35

 Minimum Steiner Tree Model:

A minimum Steiner tree [74] is a minimum-cost tree that spans a set of terminals. In

a minimum Steiner tree net model, each input or output pin of a CLB is mapped to a

terminal. Minimizing the wirelength required by a net is equivalent to finding a

minimum Steiner tree. Figure 2.5 shows a net with three terminals. Figure 2.5(a)

shows a Steiner tree that connects the net with a total wirelength of 9. Figure 2.5(b)

shows a Steiner tree that connects the net with a total wirelength of 8. The Steiner

tree in Figure 2.5(b) is the minimal Steiner tree, and is the optimal way to route the

net. As the Steiner tree model does not consider the track capacity of each routing

channel, the sum of the costs of all the minimum Steiner trees for the nets is usually

less than the wirelength required by all the connections between CLBs. Moreover,

the minimum Steiner tree problem is NP-hard [75]. More discussion on the Steiner

tree problem and approximation algorithms for solving minimum Steiner tree

problems can be found in [75-79].

 Half-Perimeter Wirelength (HPWL)

The most commonly used wirelength model, and the one used by VPlace, is called

the Half-Perimeter Wirelength (HPWL) model. The HPWL estimates the wirelength

by half the perimeter of the smallest rectangle that surrounds all blocks in the net.

Figure 2.6 shows a net connecting three blocks A, B and C. The bounding box (the

smallest rectangle surrounding the net) shown in thin dashed lines has a perimeter of

16. The minimum rectilinear Steiner tree (shown with solid lines) has a total

wirelength of 8, which is exactly half of the perimeter of the bounding box.

Clearly, the HPWL model is exact for a net connecting two or three blocks (see

Figure 2.6), but it underestimates the wirelength of a net connecting more than three

blocks. To compensate for this underestimation, the HPWL model introduces a factor

that is 1 for nets connecting 2 or 3 blocks, and gradually increases to 2.7933 for nets

connecting 50 blocks. The formula for estimating the wirelength of net i is as

following:

)}1min(max)1min{(max)(i i i i i   bnetbbnetbbnetbbnetbknet yyxxiqCost

CHAPTER 2: Relevant Background

 36

(a) A Steiner tree (also a minimum spanning tree) with total wirelength of 9

(b) A Steiner tree with total wirelength of 8

Figure 2.5: Steiner tree example with a 3-block net.

The values bnetbbnetb yx i i max and max  are the largest coordinates in x- and y-

dimension of all the blocks connected to net i, while bnetbbnetb yx i i min and min 

are the smallest coordinates. The value ik is the cardinality of net i (the number of

A

 B

 C

1

1

1

1 1 1

1

1 1 CLBs

CLBs required to be
connected by a net

the Steiner tree for
estimating the amount of
wire required for connecting
the net

A

 B

 C

1

1
1 1 1 1 1

1

the cost of a minimum Steiner tree
equals the minimal amount of wire
required for connecting the net

CHAPTER 2: Relevant Background

 37

blocks connected to net i). Table 2.1 gives the value of q(ik) when ik is less than or

equal to 50. For a net that has more than 50 blocks, the value of q(ik) linearly

increases as follows:  5002616.07933.2)( kk iiq .

Table 2.1: Weight of net with cardinality less than or equal to 50
ik q(ik) ik q(ik) ik q(ik) ik q(ik)

1 – 3 1.0000 15 1.6899 27 2.1379 39 2.5064

4 1.0828 16 1.7304 28 2.1698 40 2.5356

5 1.1536 17 1.7709 29 2.2016 41 2.5610

6 1.2206 18 1.8114 30 2.2334 42 2.5864

7 1.2823 19 1.8519 31 2.2646 43 2.6117

8 1.3385 20 1.8924 32 2.2958 44 2.6371

9 1.3991 21 1.9288 33 2.3271 45 2.6625

10 1.4493 22 1.9652 34 2.3583 46 2.6887

11 1.4974 23 2.0015 35 2.3895 47 2.7148

12 1.5455 24 2.0379 36 2.4187 48 2.7410

13 1.5937 25 2.0743 37 2.4479 49 2.7671

14 1.6418 26 2.1061 38 2.4772 50 2.7933

Figure 2.6: HPWL model for 3-block net.

A

 B

 C

1

1
1

1 1 1 1
1

the bounding-box for estimating the
amount of the wire required for
connecting the net

CHAPTER 2: Relevant Background

 38

(a) A net connecting 4 blocks with a wirelength of 8

(b) A net connecting 4 blocks with a wirelength of 10

Figure 2.7: Two nets with the same bounding-box size.

The main advantage of HPWL model is that it can be computed very efficiently in

O(1) time on average [28]. Nevertheless, it has its weaknesses. Figure 2.7 shows a

situation where the net in Fig. 2.7(a) and the net in Fig 2.7(b) have the same

cardinality and their bounding-boxes have the same perimeter. Therefore, their

HPWL estimates will be the same, too. However, the minimal wire-segments needed

A

 D B

 C

A E

 B

 C

1

1

1 1 1 1 1 1

1

1

1 1 1 1 1

1

1

1

CHAPTER 2: Relevant Background

 39

to route the net in Fig. 2.7(a) is only 8, while the minimal wire-segments needed to

route the net in Fig. 2.7(b) is 10. We can see that the HPWL model totally ignores the

relative positions of the blocks inside the bounding-box, although these relative

positions inside also affects the number of wire-segments needed to connect the net.

Another disadvantage of the HPWL model is that it is not differentiable with respect

to the variation of the positions of blocks, and hence it cannot be easily applied to

analytic methods.

 Clique Model and Quadratic Distance

As the HPWL model is not suitable for analytic methods due to its non-

differentiability, researchers typically estimate wire length using quadratic distance.

A circuit is modeled as a hypergraph Gh(Vh, Eh) with vertices Vh = {v1, v2,…vn}

representing cells and hyperedges Eh = {e1, e2,…en} corresponding to signal nets.

Vertices are weighted by cell area while hyperedges are weighted according to

criticalities or multiplicities [21]. Vertices are either free or fixed. Cell placements in

the x and y directions are captured by placement vectors x=(x1, x2,…xn) and y=(y1,

y2,…yn).

Circuit hypergraphs are typically transformed into graphs in which each hyperedge is

represented by a set of equally weighted edges. The clique model replaces a net

connecting k blocks with a complete graph with k vertices and k(k-1)/2 edges. Each

vertex represents a block. The edge between vertices A and B is denoted as EAB. Each

edge EAB has two properties: a weight WAB and a length LAB. All of the edge weights

equal 1/k, and the length LAB equals the shortest wirelength (distance) between A

and B. The wire length of a net is estimated as 
 netedge

edgeedge LW 2 .

As in the case of analytic placement algorithms, the variations of coordinates in x-

and y-dimensions are often independent on each other. Therefore, the distances in x-

 Some timing-driven placement algorithms use criticality as the weight of the edge (see Chapter 7) but the
computation is similar.

CHAPTER 2: Relevant Background

 40

and y-dimensions are handled separately. The following example shows the x-

dimensional (horizontal) quadratic distance of the net in Fig. 2.6. The clique model is

shown in Figure 2.8. LAB is the x-dimensional distance between A and B, which

equals 5; LAC is the x-dimensional distance between A and C, which equals 3; LBC is

the x-dimensional distance between B and C, which equals 2. As this net has 3

terminals, the weight of every edge is 1/k (i.e., 1/3). The x-dimensional quadratic

distance of the net is calculated as follows:

222distance quadratic BCBCACACABABx LWLWLW 

which in this case equals   667.12235
3
1 222  . The y-dimensional quadratic

distance can be calculated in a similar way.

Figure 2.8: The clique model of the net in Figure 2.6 (x-dimension)

Clearly, quadratic distance does not directly reflect the wirelength of a net, but it can

be applied easily to analytic placement. The total quadratic distance of all the nets

can be minimized by solving linear equation systems, to which many mature

mathematical methods (like CG and SOR) can be applied. The primary problem with

Clique models is that for large hypergraphs they become prohibitively expensive due

to the quadratic edge count. Consequently, large edges are either dropped completely,

or a combination of clique and Star models (discussed below) are employed in which

cliques are used to model small hyperedges and stars are used to model large

hyperedges.

C

A

B

5

3

2

CHAPTER 2: Relevant Background

 41

 Star Model and Quadratic Distance

The star model adds a new vertex at the center of gravity and represents the original

net by edges connecting the center to previously existing vertices. The edge between

vertex A and the center is denoted as EA. Each edge EA has a length LA equal to the

distance between A and the center. The wire length of a net is estimated as 
 netedge

edgeL2 .

Like clique model, the wire length in x- and y-dimensions are handled separately.

The following example shows the x-dimensional (horizontal) quadratic distance of

the net in Fig. 2.6. The star model is shown in Figure 2.9. The x-coordinate of the

center is computed as (1+4+6)/3≈3.67. LA is the x-dimensional distance between A

and the center, which equals 3.67–1=2.67; LB is the x-dimensional distance between

B and the center, which equals 4–3.67=0.33; LC is the x-dimensional distance

between C and the center, which equals 6-3.67=2.33. The x-dimensional quadratic

distance of the net is calculated as follows:

222distance quadratic CBAx LLL 

which in this case equals 67.1233.233.067.2 222  . The y-dimensional

quadratic distance can be calculated in a similar way.

Figure 2.9: The star model of the net in Figure 2.6 (x-dimension)

A E

 B

 C

(1, 0)

(4, 3)

(6, 2)

(3.67, 1.67)

CHAPTER 2: Relevant Background

 42

 Regularization of Linear Wirelength

Pure linear wirelength is rarely used in placement algorithms, as the objective

function: 



ji

jiij xx || is neither differentiable nor very accurate. (The actual

routing length of a net is not simply the sum of the length of all the edges of the

hypergraph, but the wirelength of the corresponding Steiner tree.) However, the

regularization of linear wirelength is used in some ASIC analytic placers [21][108]

[109] due to its differentiability and more accurate estimate compared with quadratic

distance. The objective function of regularized linear wirelength is:

bHxxxx
ji

jiij  


:)()(2 

where xi and xj are the x-coordinates of block i and block j; H represents various

linear constraints. When 0, 



ji

jiij xxx ||)( . Since minimizing

regularized linear wirelength is more difficult than minimizing quadratic distance

(minimizing quadratic distance results in solving a linear equation system while

minimizing regularized linear wirelength results in solving a non-linear system),

regularization of linear wirelength is not as popular (in analytic methods) as

quadratic distance.

2.5 Summary

In summary, existing wirelength models may be too expensive to be practically used in

placement algorithms (e.g., minimum Steiner tree and minimum spanning tree model),

too inaccurate to produce high-quality results (e.g. quadratic distance), or not

differentiable so that they cannot be applied easily in analytic methods (e.g., HPWL

model). In the next Chapter, we present a novel wirelength estimate, called the Star+

model. Unlike the HPWL model, the Star+ model is differentiable, and hence suitable for

analytic methods. Another feature of the Star+ model is that the computation of C

CHAPTER 2: Relevant Background

 43

caused by the swap of two blocks always runs in O(1) time. This also makes it suitable

for use with SA-based methods, where millions of swaps may need to be evaluated

efficiently. Finally, the Star+ model is also very accurate. Our results show that when the

Star+ model replaces the HPWL model in VPlace, the Star+ model produces results that

are as good (and in some cases better) than those produced by HPWL. As well, the actual

runtime for Star+ is as fast (and in many cases slightly faster) as that of HPWL.

Based on the Star+ model, we introduce two novel analytic placement algorithms

(Chapter 4 and Chapter 6). These algorithms differ from other analytic placers in that we

do not employ quadratic distance, but a more accurate distance measure. This allows us

to produce accurate results quickly.

2.6 Benchmarks

All 20 MCNC benchmarks, shown in Table 2.2, are used to measure the performance of

all of the analytic methods developed in this thesis. We have chosen to use these

benchmarks because most researchers use them to validate the experimental results. The

suite consists of circuits ranging from a few hundred CLBs to nearly ten thousand CLBs.

CHAPTER 2: Relevant Background

 44

Table 2.2: 20 MCNC benchmarks

Circuit FPGA
matrix

Number of
CLBs

Number of
Nets

Number of
I/O pads

Maximum
Fanout

Average
Fanout

tseng 33x33 1047 1099 174 389 4.77
ex5p 33x33 1064 1072 71 324 4.73
apex4 36x36 1262 1271 28 208 4.52
misex3 38x38 1397 1411 28 186 4.52
diffeq 39x39 1497 1561 103 497 4.63
alu4 40x40 1522 1536 22 250 4.52
seq 42x42 1750 1791 76 234 4.46

apex2 44x44 1878 1916 41 148 4.49
s298 44x44 1931 1935 10 397 4.6
dsip 54x54 1370 1599 426 908 4.67

bigkey 54x54 1707 1936 426 461 4.38
frisc 60x60 3556 3576 136 887 4.82

elliptic 61x61 3604 3735 245 1471 4.68
spla 61x61 3690 3706 62 215 4.73
des 63x63 1591 1847 501 227 4.31

ex1010 68x68 4598 4608 20 303 4.49
pdc 68x68 4575 4591 56 261 4.74

s38417 81x81 6406 6435 135 1464 4.54
S38584.1 81x81 6447 6485 342 2742 4.41

clma 92x92 8383 8445 144 1170 4.61

 45

Chapter 3

The Star+ Model

As the precise wirelength for a given placement can only be known after routing,

accurate and fast approximation models for calculating the amount of wire required to

connect all of the nets are needed for placement algorithms. The accuracy of these models

directly affects the quality of the placements obtained when using these models. An

inaccurate model will certainly degrade the quality of results. Moreover, a

computationally expensive model will increase the running time of the algorithms that

use these models.

 As discussed in Section 2.4, the Half-Perimeter Wire-Length model [28] is the

most commonly used wire-estimation model, and is used today in commercial placement

tools including Altera’s Quartus CAD tools. HPWL is both accurate and fast to compute.

However, it cannot be used directly in analytic placement tools due to its non-

differentiability. In this Chapter, we present a novel wire-length estimation model, called

Star+, which is both differentiable and suitable for use in analytic placement. We use an

empirical method to evaluate the Star+ model and compare it to the HPWL model used

by VPR [28]. The comparison of the two wire-length estimation models involves using

the VPR framework to place and route benchmark circuits into realistic FPGA

CHAPTER 3: The Star+ Model

 46

architectures, first using HPWL then using Star+. The delay and wiring requirements of

each circuit implementation are computed using sophisticated models (that are already

part of VPR), and from these results we are able to compare Star+ and HPWL. The

objective of our experiments is not to show that Star+ is superior to HPWL, but to show

that Star+ is comparable to HPWL, both with respect to runtime and quality of results

produced. A direct comparison of both models to determine which, if either, is superior,

would require testing both models on thousands of problem instances, and with hundreds

or even thousands of different placement and routing parameters – something that is

unnecessary for the work proposed here. Consequently, we deliberately limit the scope

and extent of the experiments that follow.

 The remainder of this Chapter is organized as follows: In Section 3.1 we

introduce the Star+ wire-estimation model. In Section 3.2, we show that the Star+ wire

estimate can be computed in O(1) time. Then, in Section 3.3, we perform a series of

experiments comparing Star+ head-to-head with HPWL. As the Star+ model contains

parameters that affect its performance, in Section 3.4 we explain how appropriate values

for these parameters were determined. In Section 3.5 we explain some limitations of

Star+. Finally, we provide a summary of the results in Section 3.6.

3.1 Wire-estimation based on the Star+ model

Like the quadratic distance measure employed in quadratic placement tools [17][18], the

Star+ model handles the x-dimension and the y-dimension separately. Therefore, for the

sake of simplicity, only the x-dimension is discussed here. (The y-dimension is processed

similarly.)

An important concept in the Star+ model is the center-of-gravity of a net. We

define the center of gravity of a net as follows. First, for lNet , we use lk to represent the

cardinality of the net (i.e., the number of blocks connected to lNet). Let lc represent the

CHAPTER 3: The Star+ Model

 47

center of gravity of net l; we define the x-coordinate of lc as: 



lNeti

i
l

cl x
k

x 1 . The

expression lNeti simply means that iblock connects to lNet , and xi represents the x-

coordinate of iblock . The Star+ model is effectively the 2-norm of all of the distances

from iblock to the center of gravity of lNet :





lNeti

clixl xxNet  2)((Equation 3.1)

The factor , like the factor q(ik) used in the HPWL model, is used to compensate

for underestimation of the wire-length. The parameter  is a positive number, which is

used to make Equation 3.1 always differentiable. Equation 3.1 has two important features:

First, it is differentiable when  is greater than zero, and hence it is suitable for use with

analytic methods. Second, the incremental change in cost caused by swapping two blocks

(or moving a single block) can always be calculated in constant time. This feature is very

important as it allows the Star+ model to also be used in move-based methods, like

VPlace [28], where the time to calculate the incremental changes of the cost of a net

(after performing a candidate swap) directly affects the performance of the algorithm.

The graphical representation of the Star+ model is based on a star model [18][83].

Figure 3.1 shows a star model of a net with 4 blocks: A, B, C, and D. Each block has a

connection to the center of gravity of the net (represented by the bold dot). The length of

each edge 2)(cli xx  is the quadratic distance from iblock to the center of gravity clx .

However, the Star+ model is different from the traditional quadratic distance used in

analytic placement. Analytic placers, using traditional quadratic distance, minimize the

sum of all of the squared distances between any pair of blocks that connect to a common

 In linear algebra and related areas of mathematics, a norm is a function that assigns a positive length or size to all

vectors in a vector space. The most commonly used norm is Star+, which is a special case of p-norm (p  1). The p-

norm of a vector X=(x1, x2, …, xn) is presented as:
pn

i

p
ip

xX
1

1







 


.

CHAPTER 3: The Star+ Model

 48

net. The Star+ model, on the other hand, minimizes the sum of the square roots of the

sum of the quadratic distances between each block and the center of gravity of a net

(Equation 3.1). Due to the linear nature of distance, the Star+ model can, theoretically, be

more accurate than quadratic distance if the parameters  and are assigned appropriate

values. The accuracy of the Star+ model, however, comes at the expense of the

complexity of the (analytic) algorithm that employs it. To minimize quadratic distance,

only a linear equation system must be solved. To minimize the Star+ model a non-linear

equation system must be solved, which is usually much harder and hence more time-

consuming. (In Chapter 4 we introduce a special mechanism for reducing the time

required to solve the non-linear equation systems based on conjugate-gradient [32].)

Figure 3.1: A star model of a 4-pin net

3.2 Constant-time update of cost

In its current form, Equation 3.1 is not suitable for estimating wire length, as it is too

expensive to calculate each time a block moves position. Therefore, it must be

transformed into a new form that allows incremental changes in cost (resulting from

block movement) to be calculated in constant time. This can be done as follows:

A

 D B

 C

CHAPTER 3: The Star+ Model

 49





lNeti

clixl xxNet  2)(





lNeti

clclii xxxx )2(22

 
 


l llNeti Neti

cl
Neti

clii xxxx  22)(2

 
 


l llNeti Neti

cl
Neti

icli xxxx  22 2





lNeti

cllcllcli xkxkxx  22 2





lNeti

clli xkx  22

Let 



lNeti

il xU 2 and cll
Neti

il xkxV
l

 


, then we have:





lNeti

cllixl xkxNet  22

 



lNeti l

cll
i k

xkx 
2

2)(

  
l

l
l k

V
U

2

 (Equation 3.2)

Now suppose b is a block connected to lNet (i.e., lNetb) and that block b

moves from position bx to the new position new
bx . This movement causes lU , lV and

xlNet to change values. The new value of new
lU and new

lV can be calculated,

respectively, in constant time using following formulas:

22)(new

bbl
new
l xxUU  and new

bbl
new

l xxVV  . (Equation 3.3)

As a result, the new value of
xlNet can also be calculated in a constant time

CHAPTER 3: The Star+ Model

 50

using Equation 3.2.

 To incorporate the Star+ model into VPlace [28] – VPR’s placement tool – two

variables representing lT and lS for each net must be introduced, and all of the functions

that involve calculation of the cost of the nets must be changed to use the new Star+

model. In practice, the parameters  and  in Equation 3.2 are set to 1.59 and 1,

respectively. (The previous values of 1 and 1.59 were determined empirically. A

discussion of how these values were obtained is postponed to Section 3.4. However, we

note that our experimentation reveals that the value of  does not have a significant effect

on the quality of placement, while the value of  does have a significant effect on both

the quality of the placement and its routability.)

3.3 Star+ Model Evaluation

The objective of our experiments is to show that the Star+ model is accurate enough to

produce high-quality placements, and fast enough that it can be used with both analytic

methods [18][19][25] as well as move-based methods, like those in [28][29][50][54]. As

VPR [28] is the current public domain state-of-the-art place-and-route tool, we use it as a

basis of comparison. Our methodology is as follows. First, we run VPR on all 20 MCNC

[62] benchmarks using VPR’s original placement algorithm, VPlace, which uses the

HPWL wire-estimation model. Each placed circuit is then routed. Following routing,

information about the minimum number of required channels, critical path, and total wire

length is obtained for each circuit. The HPWL model in VPlace is then replaced with the

Star+ model, and the process repeated. Finally, the routing results from both models are

used to compare the speed and effectiveness of the two models head-to-head.

For the purpose of this experiment, we downloaded the VPR 4.3 source code,

architecture file, and the complete set of 20 MCNC benchmark circuits used by VPR

from [28]. We used the default architecture file as is, which assumes that each CLB

contains 4 LUTs, and each LUT has 4 inputs and is paired with one flip-flop. We first ran

CHAPTER 3: The Star+ Model

 51

the benchmarks through the entire VPR flow having first configured VPlace to use the

HPWL estimation model, and to report the minimum channel width when using its

breadth-first strategy to route the components. We then repeated the experiment, but this

time configured VPR to route the components using its timing-driven algorithm. We then

replaced the HPWL model in VPlace with the Star+ model, and repeated the previous

experiments (using both breadth-first and timing-driven timing options).

For each benchmark, each model, and each routing algorithm, VPlace was executed

with the option inner_num equal to 1 and 10, respectively. VPlace uses inner_num

to trade-off quality for speed. In particular, the number of moves attempted at each

temperature equals inner_num x (the number of blocks)4/3. The default value of

inner_num is 10. Specifying an inner_num of 1 will speed up VPlace by a factor of

10, but will typically reduce placement quality by about 10 percent. Setting inner_num

greater than 10 barely improves the quality of the placement, but does increase the

running time of VPlace.

As discussed in Section 2.3, VPlace is based on simulated annealing which is

stochastic. Therefore, running VPlace more than once with different seed values results in

different placements being produced. In order to make the experiments more accurate, for

each set of parameters, VPR is executed ten times, each time using a different (randomly

generated) seed value.

3.3.1 Routability

We begin by considering how effective the Star+ model is in producing placements that

are routable. As a measure of the quality of a routable placement, we measure the

minimum channel width (or number of tracks per channel) that VPR’s router needs to

successfully route each circuit placement. Channel width is one of the most commonly

used criterions for assessing the routability of a potential placement. The results of the

previous experiments are given in Table 3.1, Table 3.2, Table 3.3, and Table 3.4,

CHAPTER 3: The Star+ Model

 52

respectively.

Table 3.1: Channel Width and Routing (breadth_first and inner_num=1)

HPWL Star+

CW SR CW SR CW SR CW SR CW SR CW SR

alu4 9 0 10 4 11 10 9 0 10 8 11 10
apex2 11 1 12 8 13 10 11 1 12 10 13 10
apex4 12 1 13 10 14 10 12 0 13 9 14 10
Bigkey 5 0 6 1 7 10 5 0 6 9 7 10
Clma 12 3 13 10 14 10 12 4 13 9 14 10
Des 6 0 7 4 8 10 6 0 7 3 8 10
Diffeq 7 0 8 10 9 10 7 0 8 8 9 10
Dsip 5 0 6 3 7 7 5 0 6 5 7 9
Elliptic 11 0 12 9 13 10 11 3 12 10 13 10
ex1010 10 0 11 10 12 10 10 1 11 7 12 10
ex5p 13 2 14 9 15 9 13 0 14 10 15 10
Frisc 12 0 13 8 14 8 12 0 13 9 14 10
Misex3 10 0 11 8 12 10 10 0 11 4 12 10
Pdc 16 3 17 10 18 10 16 1 17 8 18 10
s298 7 0 8 9 9 10 7 1 8 9 9 10
s38417 7 0 8 8 9 9 7 0 8 4 9 9
s38584.1 8 0 9 8 10 10 8 0 9 10 10 10
Seq 11 2 12 10 13 10 11 1 12 10 13 10
Spla 13 0 14 10 15 10 13 0 14 4 15 10
Tseng 6 0 7 3 8 9 6 0 7 8 8 10

Note that when running VPR’s router, the designer must also specify the minimum

channel width (CW) that is to be used. As different placements may require different

channel widths in order to be routed, several different channel widths are tried as

indicated in table columns 2, 4, 6, 8, 10, and 12, respectively. The actual number of

placements that were successfully routed (SR) for each channel width is reported in

columns, 3, 5, 7, 9, 11, and 13, respectively. (Note: if five (or more) of the ten placements

are found to be routable for a given channel width, we consider this a “success”. We then

shade the smallest successful CW entries in each row of the table.) For example,

consider Alu4 in Table 3.4. For both the HPWL and Star+ model, when the channel width

is 9, none of the 10 placed circuits was found to be routable. However, when the channel

width was increased to 10, 4 of the 10 placements using HPWL were successfully routed,

CHAPTER 3: The Star+ Model

 53

while 8 of the 10 placements found using Star+ were successfully routed. Finally, when

the channel width was increased to 11, all 10 placements, for both HPWL and Star+, were

found to be routable. Therefore, in this case, shading is used to indicate CW=10 and

CW=11 as the smallest “successful” channel widths found by Star+ and HPWL,

respectively.

Table 3.2: Channel Width and Routing (breadth_first and inner_num=10)

HPWL Star+

CW SR CW SR CW SR CW SR CW SR CW SR

alu4 9 0 10 9 11 10 9 0 10 10 11 10
apex2 10 0 11 6 12 10 10 0 11 5 12 10
apex4 11 0 12 6 13 10 11 0 12 2 13 10
Bigkey 5 0 6 1 7 10 5 0 6 4 7 10
Clma 11 1 12 10 13 10 11 0 12 7 13 10
Des 6 0 7 2 8 10 6 0 7 8 8 10
Diffeq 6 0 7 5 8 10 6 0 7 2 8 10
Dsip 5 0 6 5 7 10 5 0 6 9 7 10
Elliptic 9 0 10 6 11 10 9 0 10 1 11 8
ex1010 9 0 10 4 11 10 9 0 10 6 11 10
ex5p 12 0 13 7 14 10 12 0 13 4 14 10
Frisc 11 0 12 6 13 10 11 0 12 0 13 9
Misex3 10 0 11 10 12 10 10 0 11 7 12 10
Pdc 15 0 16 7 17 10 15 0 16 3 17 10
S298 6 0 7 7 8 10 6 0 7 5 8 10
S38417 6 0 7 0 8 10 6 0 7 0 8 9
S38584.1 7 0 8 8 9 10 7 0 8 6 9 10
Seq 10 0 11 9 12 10 10 0 11 1 12 10
Spla 12 0 13 8 14 10 12 0 13 1 14 6
Tseng 6 0 7 10 8 10 6 0 7 10 8 10

CHAPTER 3: The Star+ Model

 54

Table 3.3: Channel Width and Routing (timing_driven and inner_num=1)

HPWL Star+

CW SR CW SR CW SR CW SR CW SR CW SR

alu4 9 0 10 1 11 7 9 0 10 0 11 9
Apex2 11 0 12 4 13 10 11 0 12 7 13 10
Apex4 12 0 13 3 14 8 12 0 13 2 14 10
bigkey 6 3 7 9 8 10 6 5 7 10 8 10
Clma 12 0 13 5 14 10 12 0 13 4 14 8
Des 6 0 7 3 8 10 6 0 7 1 8 9
Diffeq 7 0 8 2 9 10 7 0 8 7 9 10
Dsip 5 0 6 0 7 8 5 0 6 5 7 9
elliptic 11 0 12 1 13 8 11 2 12 4 13 10
ex1010 11 4 12 10 13 10 11 3 12 9 13 10
ex5p 13 0 14 5 15 10 13 0 14 0 15 9
Frisc 12 0 13 3 14 9 12 0 13 3 14 8
misex3 11 2 12 9 13 10 11 0 12 8 13 10
Pdc 17 2 18 8 19 10 17 0 18 8 19 10
s298 7 0 8 5 9 10 7 2 8 8 9 10
s38417 7 0 8 5 9 10 7 0 8 5 9 10
s38584.1 8 1 9 5 10 10 8 1 9 10 10 10
Seq 11 0 12 3 13 9 11 0 12 6 13 9
Spla 14 1 15 8 16 10 14 0 15 5 16 8
Tseng 6 0 7 0 8 10 6 0 7 2 8 10

Table 3.5 summarizes the previous experimental results. The entries in the table

indicate the smallest “successful” routable channel width. The last row of the table shows

the aggregate of the smallest “successful” routable channel widths for each situation.

Overall, it can be seen that both HPWL and Star+ performed similarly across the entire

set of benchmarks and for all situations, with Star+ slightly outperforming HPWL when

inner_num=1 (215 versus 216 using breadth first and 223 versus 226 using timing-

driven). A close look at Tables 3.1 – 3.4 reveals that the Star+ model finds a smaller

minimum “successful” routable channel width in 18% of the test cases, while the HPWL

model finds a smaller minimum “successful” routable channel width in 20% of the test

cases.

CHAPTER 3: The Star+ Model

 55

Table 3.4: Channel Width and Routing (timing_driven and inner_num=10)

HPWL Star+

CW SR CW SR CW SR CW SR CW SR CW SR

Alu4 9 0 10 3 11 9 9 0 10 7 11 10
apex2 10 0 11 4 12 10 10 0 11 4 12 10
apex4 12 0 13 6 14 10 12 0 13 4 14 10
bigkey 6 3 7 9 8 10 6 5 7 10 8 10
clma 11 0 12 6 13 10 11 0 12 3 13 10
Des 6 0 7 3 8 9 6 0 7 4 8 10
diffeq 6 0 7 4 8 10 6 0 7 3 8 10
dsip 5 0 6 3 7 10 5 0 6 5 7 10
elliptic 10 3 11 7 12 10 10 2 11 7 12 10
ex1010 10 0 11 6 12 10 10 0 11 7 12 10
ex5p 13 2 14 9 15 10 13 0 14 6 15 10
frisc 12 0 13 6 14 10 12 0 13 6 14 10
misex3 10 0 11 8 12 10 10 0 11 4 12 10
Pdc 16 0 17 3 18 10 16 0 17 2 18 9
s298 6 0 7 2 8 9 6 0 7 3 8 10
s38417 6 0 7 3 8 10 6 0 7 3 8 10
s38584.1 8 2 9 6 10 10 8 1 9 10 10 10
Seq 10 0 11 4 12 10 10 0 11 4 12 9
spla 13 0 14 2 15 10 13 0 14 2 15 10
tseng 6 1 7 8 8 10 6 1 7 8 8 10

3.3.2 Critical Path Delay

We now turn our attention to critical-path delay. Table 3.6 reports the critical-path delay

computed by VPR’s router when performing the experiments described in Section 3.3.1.

Column 1 identifies the benchmark. Column 2 gives the channel width used by the router

(Note: When providing a minimum channel width to VPR’s router for each benchmark,

we used the minimum successful channel width (from Table 3.3 and Table 3.4) plus 1.

(By using a channel width one more than the minimum, the probability of the router

finding a feasible route is effectively 1 in all cases.) Column 3 is the number of times of

successful routing out of 10. Column 4 gives the average critical-path delay for HPWL

 VPR is run 10 times on each benchmark as per the experiment in Section 3.3.1

CHAPTER 3: The Star+ Model

 56

when VPlace is run with inner_num equal to 1. Columns 5 and 6 provide similar

information for the Star+ model. Column 7 shows the p-value (see the next section,

Statistical Testing for explanation). Columns 8 – 12 give similar information as Columns

3 – 7, but for inner_num equal to 10. Note that the results presented in Table 3.6 were

obtained running VPR’s router with the timing-driven option invoked. (Results were also

obtained using the breadth-first timing option; however, these results in all cases were

consistent with, but inferior to, those found using the timing-driven option. As such, they

are not reported.)

Table 3.5: Summary of Minimum Routable Channel Widths

Breadth_first Timing_driven
inner_num 1 inner_num 10 inner_num 1 inner_num 10

HPWL Star+ HPWL Star+ HPWL Star+ HPWL Star+
alu4 11 10 10 10 11 11 11 10
apex2 12 12 11 11 13 12 12 12
apex4 13 13 12 13 14 14 13 14
Bigkey 7 6 7 7 7 6 7 6
Clma 13 13 12 12 13 14 12 13
Des 8 8 8 7 8 8 8 8
Diffeq 8 8 7 8 9 8 8 8
Dsip 7 6 6 6 7 6 7 6
Elliptic 12 12 10 11 13 13 11 11
ex1010 11 11 11 10 12 12 11 11
ex5p 14 14 13 14 14 15 14 14
Frisc 13 13 12 13 14 14 13 13
Misex3 11 12 11 11 12 12 11 12
Pdc 17 17 16 17 18 18 18 18
S298 8 8 7 7 8 8 8 8
S38417 8 9 8 8 8 8 8 8
S38584.1 9 9 8 8 9 9 9 9
Seq 12 12 11 12 13 12 12 12
Spla 14 15 13 14 15 15 15 15
Tseng 8 7 7 7 8 8 7 7
Total 216 215 200 206 226 223 215 215

CHAPTER 3: The Star+ Model

 57

Table 3.6: Critical Path Delay (unit: ns)

Inner_num 1 Inner_num 10
HPWL Star+ P-value HPWL Star+ P-value

CW

ST CPD ST CPD ST CPD ST CPD
Alu4 11 7 120.331 9 106.477 0.0006 9 113.6717 10 104.823 0.0082
Apex2 13 10 128.77 10 109.399 1E-07 10 125.1346 10 108.013 1E-06
Apex4 14 8 127.922 10 117.623 0.001 10 122.6053 10 104.512 2E-06
Bigkey 8 10 100.935 10 79.6366 4E-06 10 100.0536 10 75.9327 6E-10
Clma 14 10 264.999 8 248.781 0.0625 10 252.9958 10 254.389 0.5168
Des 8 10 123.01 9 142.761 0.0119 9 136.5118 10 142.17 0.4948
Diffeq 9 10 106.112 10 97.1525 0.0711 10 90.33062 10 88.3868 0.5933
Dsip 7 8 91.0482 9 75.7863 0.0034 10 93.37907 10 76.9176 6E-05
Elliptic 13 8 257.387 10 224.639 0.0033 10 206.6148 10 210.407 0.7445
ex1010 13 10 205.552 10 186.939 0.0182 10 202.9452 10 192.969 0.2136
ex5p 15 10 116.071 9 109.359 0.1208 10 125.2613 10 102.643 1E-06
Frisc 14 9 227.362 8 210.73 0.2222 10 189.0848 10 193.943 0.43
Misex3 13 10 108.431 10 103.505 0.1367 10 105.6976 10 104.492 0.6061
Pdc 19 10 254.422 10 234.849 0.0051 10 217.5874 10 219.941 0.7644
s298 9 10 240.983 10 215.34 0.0007 10 203.189 10 202.723 0.9335
s38417 9 10 196.969 10 159.805 9E-05 10 163.1709 10 131.942 3E-07
s38584.1 10 10 123.888 10 117.656 0.1231 10 119.709 10 110.079 0.0239
Seq 13 9 123.035 9 111.032 0.0246 10 118.0495 10 110.467 0.0663
Spla 16 10 205.085 7 185.875 0.0023 10 188.0682 10 173.829 0.0318
Tseng 8 10 81.7572 10 82.3753 0.8034 10 75.83124 10 75.2984 0.6969
Total 189 3204.07 188 2919.72 198 2949.891 200 2783.88

Our results show that when VPlace is run with inner_num equal to 1, Star+

results in a lower critical-path delay compared with HPWL for 18 of the 20 benchmarks.

Moreover, the placements found using Star+ are, on average, 9 percent faster than those

found when using HPWL. Similarly, when VPlace is run with inner_num equal to 10,

Star+ results in a lower critical-path delay compared with HPWL for 15 of the 20

benchmarks. Moreover, the placements found using Star+ are, on average, 6 percent

faster than those found using HPWL.

3.3.2.1 Statistical Testing

The previous results were somewhat unexpected. To verify whether or not the results of

the previous experiments were due to variance, we employed the Student’s t-test [84].

CHAPTER 3: The Star+ Model

 58

The Student’s t-test is a statistical tool typically used to make inferences from samples

that are relatively small in size. The motivation for using Student’s t-test for a small

sample size is that the sample’s mean and standard deviation may not reflect the true

mean and standard deviation of the entire population that was sampled. Student’s t-test

provides a probability of confidence, or P-value, for the null hypothesis that the means of

two populations are equal, given two sets of sample data - one taken from each

population. It is common for a significance level of 0.05 to be chosen as a fixed

probability of wrongly rejecting the null hypothesis, if it is true. The null hypothesis is

rejected at the 5% significance level for P-values that are less than 0.05. A caveat of

Student’s t-test is that the sample sets are assumed to be normally distributed. For cases

where the sample set data is not normal, a non-parametric, ranked t-test can be used to

relax the normality assumption. The ranked t-test assigns each sampled data instance with

a rank that is used instead of the actual data’s value for the purposes of calculating the t-

test confidence probability. The ranks are assigned by combining the sample sets together

and sorting them in descending order based on their value, after which ranks are assigned

in increasing order, starting at one and increasing by one for each rank. Once these ranks

have been assigned, the rank values are separated based on which sample set they were

originally from and the t-test is performed on these ranks instead of on the original data

values.

For the previous experiments summarized in Table 3.6, the Student’s t-test can

provide insight into whether or not the performance of HPWL and Star+ with respect to

producing routable placements is attributable to chance. Using the data in Table 3.6, the

Student’s t-test was used to test the null hypothesis that the mean value of the results

found using HPWL and Star+, respectively, are equal, implying that the differences in

results between the two models are due to “chance”. The alternative hypothesis states that

HPWL and Star+ are unique models that provide different results, not attributable to

“chance”. The corresponding t-test P-value scores for the previous four experiments are

reported in Table 3.7 (columns 4 and 7). The null hypothesis is rejected in favour of the

alternative hypothesis in cases where the P-value for a set of results is less than 0.05. This

corresponds to a significance level of 5%. For cases where the P-value is greater than

CHAPTER 3: The Star+ Model

 59

0.05, the null hypothesis is not rejected.

Table 3.7: Results of Student T-test

inner_num 1 Inner_num 10
 HPWL Star+ P-value HPWL Star+ P-value

Alu4 120.3309 106.4766 0.000564 113.6717 104.8231 0.00817
Apex2 128.7704 109.3992 1.4E-07 125.1346 108.0127 1.35E-06
Apex4 127.9216 117.6226 0.001031 122.6053 104.5116 1.9E-06
Bigkey 100.9347 79.63662 4.07E-06 100.0536 75.93271 5.51E-10
Clma 264.9987 248.7808 0.062485 252.9958 254.3889 0.516848
Des 123.0099 142.7608 0.011871 136.5118 142.1703 0.494806
Diffeq 106.112 97.15254 0.071095 90.33062 88.38679 0.593258
Dsip 91.04823 75.78627 0.003382 93.37907 76.91763 6.44E-05
Elliptic 257.3873 224.6386 0.00333 206.6148 210.4074 0.744468
ex1010 205.5515 186.9388 0.018189 202.9452 192.9694 0.213586
ex5p 116.0711 109.3591 0.120808 125.2613 102.6426 1.47E-06
Frisc 227.3616 210.7299 0.222162 189.0848 193.9425 0.430033
Misex3 108.4306 103.5046 0.136724 105.6976 104.4922 0.60606
Pdc 254.4219 234.8487 0.005147 217.5874 219.941 0.7644
S298 240.9833 215.3401 0.000691 203.189 202.7228 0.933478
S38417 196.9685 159.805 9.31E-05 163.1709 131.9415 2.61E-07
S38584.1 123.8882 117.6562 0.123138 119.709 110.0792 0.023875
Seq 123.0353 111.0318 0.024585 118.0495 110.467 0.066259
Spla 205.0847 185.875 0.002318 188.0682 173.8293 0.031827
Tseng 81.75721 82.37529 0.803405 75.83124 75.29837 0.696864
Total 3204.068 2919.718 2949.891 2783.877

 The P-values in Table 3.7 reveal that for inner_num =1 the null hypothesis is

rejected for 13 of the 20 cases; indicating that in 65% of the test cases, the difference

between the Star+ and HPWL models with respect to critical path delay is statistically

significant. Moreover, Table 3.7 reveals that for inner_num = 10 the null hypothesis

is rejected for 9 of the 20 cases. Thus, from this we can conclude that variance can

account for the difference in wirelength estimates in approximately 40% of the test cases.

For the remaining 60% of the test cases, the Star+ and HPWL models were found to be

different, with Star+ outperforming HPWL with respect to critical-path delay. However,

again we would emphasize that our goal here is not to present Star+ as a superior

wirelength estimation model to HPWL, but comparable, which these results suggest.

CHAPTER 3: The Star+ Model

 60

3.3.2.2 Insight into performance of Star+ versus HPWL

A possible insight into why Star+ outperforms the HPWL model in some cases with

respect to critical-path delay is now given. Observe that when the HPWL model is used to

perform placement, only the positions of the blocks on the four sides of the bounding box

are taken into account. If the two ends of the path with the longest delay happen to be on

the sides of the bounding box, minimizing the bounding box will move these ends inside

the current box, and hence reduce the longest path delay. Otherwise, minimizing the

bounding box only decreases the wire-length estimate and does nothing to shorten the

path(s) with the longest delay(s). Generally, the more blocks a net has, the smaller the

chance that the two ends of the longest path will lie on the sides of the bounding box.

Conversely, if the Star+ model is used in lieu of the HPWL model, we can see from

Equation 3.1 that the positions of all blocks in the net are considered. Minimizing the

Star+ distance pulls all the blocks towards the center-of-gravity of the net. Even if the two

ends of the longest path are not on the sides of the bounding box (imagine there still is a

bounding box surrounding all of the blocks in the net), they are still pulled towards the

center-of-gravity, directly reducing the wire-length between them. Furthermore, if the two

ends are farther from the center-of-gravity (i.e., closer to the sides of the bounding box),

they will be pulled “harder” towards the center due to the square effect in Equation 3.1.

Figure 3.2 shows the placement of a net (clma: 661) obtained by VPR using the

HPWL model. Figure 3.3 shows the placement of the same net by VPR using the Star+

model. In both plots, each dot represents a block, and the rectangle surrounding the dots

is the bounding box. All together, this net connects 31 blocks. It can be seen that there are

more blocks on or near the sides of the bounding box in Fig. 3.2 than in Fig. 3.3. This is

because HPWL is more likely to move blocks near the sides of the box, while the Star+

model is more likely to move blocks close to the center-of-gravity. Although one cannot

definitely state the net in Fig. 3.2 will have a longer critical path than the net in Fig. 3.3

until routing is performed, intuitively, we believe that this may be the case for the reasons

mentioned.

CHAPTER 3: The Star+ Model

 61

Figure 3.2: The placement of Net clma:661 obtained using bounding box

Figure 3.3: The placement of Net clma:661 obtained using Star+

3.3.3 CPU Running Time

CHAPTER 3: The Star+ Model

 62

One of the major reasons that the HPWL model is so popular is that calculation of a

bounding box can be performed quickly. Calculating the bounding box of a net from

scratch is linear with respect to the number of blocks in the net. However, Betz et. al. [28]

have developed a method, called incremental bounding box evaluation, which can re-

compute the bounding box in a constant amount of time on average. This is crucial for

SA-based placers, because the most computationally expensive part of evaluating a swap

is computing the change in cost that the swap would produce.

 To implement incremental bounding box evaluation, one has to store the

coordinates of the four sides of the bounding box (xmin, xmax, ymin, ymax) and the number of

blocks on these sides (Nxmin, Nxmax, Nymin, Nymax) for each net. Figure 3.4 lists the pseudo-

code used to update xmin and Nxmin values for a net.

Figure 3.4: Pseudo-code of incremental bounding box evaluation

if (xnew != xold) { // block x has moved
 if (xnew < xmin) { // block x moves outward
 xmin = xnew; // bounding box becomes larger
 Nxmin = 1;
 }

 else if (xnew = xmin) { // block x lies on the old xmin edge
 Nxmin ++;
 }

 else if (xold = xmin) { // block x moves inward
 if (Nxmin >1) { // bounding box unchanged
 Nxmin --;
 }
 else { // bounding box becomes smaller
 recompute bounding box from scratch
 }
 }
}

CHAPTER 3: The Star+ Model

 63

 The only case for which the net bounding box must be recomputed from scratch is

when the block moves inward and it is also the only block on a side of the bounding box.

In this case, the re-computation takes O(k) time, while in all other cases it is O(1). In

contrast, the re-computation of the Star+ model always takes O(1) time. To implement

the constant time re-computation of the Star+ model, one has to store 
 lNeti

il xT 2is which, ,

and 
 lNeti

il xS is which, , for each net l. Figure 3.5 lists the pseudo- code for re-computing

the Star+ model of Net l.

One immediately notices that the re-computation of the Star+ model is extremely

straightforward and very easy to implement. Most importantly, it is O(1) in all cases. It

should be noted, however, that the Star+ model uses Equation 3.2, which has a square

root operation, while the HPWL model requires multiplication and addition operations to

be performed.

Figure 3.5: Pseudo-code for re-computing the Star+ model of net l

Table 3.8 reports the average running time of VPlace when performing the

experiments described in Section 3.3.1. Column 1 identifies the benchmark. Columns 2

and 3 give the average runtime for HPWL and Star+, respectively, when VPlace is run

with inner-num equal to 1. (Running VPlace with an inner_num of 10 simply

causes the runtime to increase by a factor of 10 and, hence, is not shown.) The last row

 VPR is run 10 times on each benchmark as per the experiment in Section 3.3.1

if (xnew != xold) { // block x has moved
 delta = xnew - xold;
 S += delta;
 T += delta * (xnew + xold);
}

CHAPTER 3: The Star+ Model

 64

of Table 3.8 shows the aggregate runtime for VPR for each model. Clearly, there is very

little difference in the actual runtimes.

Table 3.8: CPU Running Time (unit: seconds)

 It should be noted, however, the runtimes reported in Table 3.8 ultimately depend

on the number of swaps performed during the optimization process. Thus, the fact that

the total time required by Star+ is slightly more than the total time required when using

HPWL does not necessarily mean that HPWL is faster to compute. On the contrary,

changes in cost can be computed faster using the Star+ model as the size of the nets

becomes larger. To illustrate this, we randomly generated nets with cardinalities (number

of blocks) of 2, 3, 5, 10, 50, 100, 500, 1000 and 2000. Each net was then randomly placed

on a 100 by 100 FPGA chip. We then performed 1 million improving swaps/moves on

each net, and calculated the average time required by Star+ and HPWL to re-compute the

HPWL Star+

alu4 2.66 2.91
apex2 3.86 4.06
apex4 2.20 2.30
Bigkey 3.83 3.70
Clma 33.30 33.22
Des 3.47 3.67
Diffeq 2.95 2.95
Dsip 2.80 2.89
Elliptic 10.11 10.09
ex1010 13.55 14.28
ex5p 1.83 1.86
Frisc 9.59 9.94
misex3 2.53 2.69
Pdc 13.24 14.33
S298 3.45 4.00
S38417 22.69 21.66
S38584.1 22.30 21.27
Seq 3.45 3.81
Spla 9.84 10.64
Tseng 1.86 1.89
Total 169.50 172.15

CHAPTER 3: The Star+ Model

 65

wirelength estimates. The results are shown below in Table 3.9, where the times recorded

in the table are given in nanoseconds. Notice that the time required by HPWL to re-

compute the wire-length estimate varies from 19 nanoseconds for a small net with just 2

blocks to 8380 nanoseconds for a large net with 2000 blocks. However, the Star+ model

requires a small re-computation time of only 53 nanoseconds for all size nets.

Table 3.9: Re-computing time for HPWL and Star+

Cardinality HPWL (ns) Star+ (ns)
2 19 53
3 26 53
5 38 53
10 50 53
50 227 53
100 431 53
500 2127 53
1000 4213 53
2000 8380 53

3.3.4 Wirelength

As a final basis of comparison, we compare the Star+ and HPWL models with respect to

the total number of wire segments required by VPR’s router to route each placement.

Table 3.10 reports the total number of wire segments required to route each placement

when performing the experiments described in Section 3.3.1. Column 1 identifies the

benchmark. Column 2 gives the channel width used by the router. Columns 3 and 4 give

the successful times (out of 10) and the average number of wire segments required to

route each placement for HPWL when VPlace is run with inner_num equal to 1.

Columns 5 and 6 provide similar information for the Star+ model. Column 7 gives the p-

value. Columns 8 – 12 provide similar information as Columns 3 – 7 when VPlace is run

with inner_num equal to 10.

 VPR is run 10 times on each benchmark as per the experiment in Section 3.3.1

CHAPTER 3: The Star+ Model

 66

Table 3.10: The number of Wire Segments Needed for Successful Routing

inner_num 1 Inner_num 10
HPWL Star+ P-value HPWL Star+ P-value

CW

ST WL ST WL ST WL ST WL
alu4 11 7 22038.4 9 21090.8 3E-05 9 21016.22 10 20542.7 0.0011
Apex2 13 10 32545.5 10 31361 8E-05 10 30637.5 10 30722.7 0.5886
Apex4 14 8 22865.1 10 22136.1 0.0002 10 21848 10 21448 0.0003
Bigkey 8 10 22395.7 10 22387.8 0.9619 10 18504.6 10 18568.3 0.6616
Clma 14 10 142509 8 138219 0.0012 10 133591.6 10 133427 0.7296
Des 8 10 29161.1 9 29488 0.19 9 24757.67 10 27118.3 6E-05
Diffeq 9 10 16263.4 10 15555.8 0.0002 10 14675.7 10 14502.7 0.0495
Dsip 7 8 17171 9 17599 0.2093 10 14581.7 10 14471.9 0.6589
Elliptic 13 8 53811.4 10 50040 1E-06 10 45912.2 10 45194.5 0.1423
ex1010 13 10 72613.2 10 71220.2 0.0041 10 70864.2 10 69777.7 0.0012
ex5p 15 10 19923.5 9 19583.1 0.084 10 18647.6 10 19067.2 0.0003
Frisc 14 9 59957.2 8 57915.5 0.0018 10 55274 10 56284.4 0.0006
Misex3 13 10 22699.7 10 21751.2 9E-06 10 21870.7 10 20924.5 5E-08
Pdc 19 10 104298 10 103669 0.3293 10 99046.3 10 100052 0.0125
s298 9 10 22703.3 10 22461.5 0.0548 10 21346 10 21688.4 0.0088
s38417 9 10 66586.4 10 66592.4 0.992 10 61764.3 10 61771.1 0.9861
s38584.1 10 10 63514.7 10 60020.6 2E-08 10 57098.7 10 55975.4 0.0042
Seq 13 9 29610.9 9 28377.4 1E-05 10 28059.3 10 27879.4 0.0672
Spla 16 10 71193.8 7 70870 0.4931 10 67361.7 10 69260.1 8E-05
Tseng 8 10 10419.7 10 9932.7 7E-05 10 9423.4 10 9363.2 0.4156
Total 189 902282 188 880271 198 836281.4 200 838039

Our results show that when VPlace is run with inner_num equal to 1, Star+

results in a lower total number of wire segments compared with HPWL for 17 of the 20

benchmarks. However, the placements found using Star+ are, on average, only 2.4

percent less than those found when using HPWL. In contrast, when VPlace is run with

inner_num equal to 10, Star+ results in a lower total number of wire segments

compared with HPWL for only 11 of the 20 benchmarks. In addition, the number of wire

segments required when using the Star+ model is, on average, 0.2 percent more than

those found when using HPWL. On closer inspection, Star+ outperforms HPWL for 28

of the 40 cases, with 12 of these cases having a P-value less than 0.05 (indicating that the

difference between the two models cannot be attributable to chance).

CHAPTER 3: The Star+ Model

 67

3.4 Parameter Tuning

The Star+ model contains two adjustable parameters:  and . As first discussed in

Section 3.1,  is responsible for compensating for the average difference between Star+

estimate and the actual number of wire segments used after routing;  is responsible for

improving the quality of the placement. In all of the previous experiments,  and  were

set to 1.59 and 1.0, respectively. We now discuss how these values were arrived at.

To determine an appropriate value for , we replaced the HPWL model in VPlace

with the Star+ model. We then ran VPlace multiple times on each of the 20 MCNC

benchmarks with the parameter  set to 0.5, 0.6, , 1.5, respectively. As VPlace is

stochastic, for each value of , VPlace was executed five times with five randomly

generated seed values. We then used VPR’s router to route the resulting placements, and

recorded the number of the times a successful routing was found and the average number

of wire segments required by the routing solution. When routing the placements, we used

the same (minimum) channel widths used in Section 3.3.

The results are shown in Table 3.11, Table 3.12 and Table 3.13. In each table,

column 1 identifies the benchmark. Column 2 lists the channel widths used by the router.

Columns 3 and 4 indicate the number of times of successful routing found (maximum is 5)

and the average number of wire segments, respectively, for a particular value of . The

remaining columns provide similar information for other values of . For example,

considering Alu4 when  equals 0.7, all 5 attempts at routing are successful, and the

average number of wire segments is 21596.

A summary of the results in Table 3.11 – Table 3.13 is given in Table 3.14. With

respect to finding placements that lead to successful routing, it can be seen that using a

value of =1 (or =1.1) results in the largest number (95) of successful routings. With

regards to producing placement solutions with the smallest number of wire segments, it

can be seen that the smaller  is, the better the placements are. Using =0.5 resulted in

CHAPTER 3: The Star+ Model

 68

the smallest number of wire segments (865799) on average. However, it also resulted in

the smallest number of successful routable placements been found (81). Given that a

placement is of no value if it cannot be routed, we chose to set =1. However, we would

note that the difference in (average) wire-length when =0.5 and =1 is very small

(approximately 1.7%).

Table 3.11: Routing Results for Different Values of  (between 0.5 and 0.7)

0.5 0.6 0.7

CW
SR Wire SR Wire SR Wire

Alu4 11 5 21216 5 21521 5 21596
apex2 13 5 30109 5 30217 5 30381
apex4 14 5 21489 4 21931 5 21978
Bigkey 8 5 22169 5 22486 5 22544
Clma 14 5 135776 5 136797 5 137084
Des 8 5 30811 5 30795 5 30727
Diffeq 9 5 15653 3 15220 3 15223
Dsip 7 5 17557 5 18356 5 18431
Elliptic 13 3 52711 3 51575 4 51641
Ex1010 13 5 64890 5 66034 5 66146
Ex5p 15 5 19867 4 19567 4 19633
Frisc 14 3 57883 2 58686 3 58985
Misex3 13 1 20697 4 21152 4 21261
Pdc 19 1 101621 4 101393 4 101943
s298 9 5 20109 5 20451 5 20570
s38417 9 3 65293 2 65203 3 65122
s38584.1 10 4 62174 5 62682 5 62799
Seq 13 5 27691 5 27695 5 27832
Spla 16 1 67620 2 67582 2 67661
Tseng 8 5 10463 5 10263 5 10291
Total 81 865799 83 869607 87 871850

CHAPTER 3: The Star+ Model

 69

Table 3.12: Routing Results for Different Values of  (between 0.8 and 1.1)

0.8 0.9 1 1.1
 SR Wire SR Wire SR Wire SR Wire
Alu4 5 21637 5 21899 5 21091 5 21631
apex2 5 30395 5 30718 5 31361 5 30519
apex4 5 22128 5 22174 5 22136 5 22374
Bigkey 5 22539 5 22626 5 22388 5 22595
Clma 5 136881 5 138275 4 138219 5 138937
Des 5 30952 5 31145 5 29488 5 31272
Diffeq 4 15365 4 15468 5 15556 4 15391
Dsip 5 18586 5 18585 5 17599 4 18710
Elliptic 4 52227 4 52148 5 50040 5 52079
Ex1010 5 66013 5 66936 5 71220 5 66621
Ex5p 4 19623 4 19506 4 19583 5 19785
Frisc 3 58534 5 59561 4 57916 4 58539
Misex3 4 21149 4 21107 5 21751 5 21584
Pdc 4 102679 4 101750 5 103669 5 102966
s298 5 20608 5 20782 5 22462 5 20677
s38417 4 65428 4 66277 5 66592 5 66916
s38584.1 5 63447 5 63498 5 60021 5 63168
Seq 5 27658 5 28090 5 28377 5 27816
Spla 3 67942 3 68273 3 70870 3 68498
Tseng 5 10294 5 10293 5 9933 5 10388
Total 90 874087 92 879111 95 880271 95 880465

With =1, we now turn our attention to finding an appropriate value for . Recall

that  does not affect solution quality directly (like ), but is used as a common multiplier

to compensate for the difference between the estimated number of wire segments and the

actual number of wire segments required after routing.

CHAPTER 3: The Star+ Model

 70

Table 3.13: Routing Results for Different Values of  (between 1.2 and 1.5)

1.2 1.3 1.4 1.5
 SR Wire SR Wire SR Wire SR Wire
Alu4 5 21981 5 21746 5 21588 5 21744
apex2 5 30653 5 30357 5 30498 5 30477
apex4 5 21867 5 22234 5 21985 4 22281
Bigkey 5 22526 5 22558 5 22695 5 22689
Clma 5 138894 5 137336 5 137728 5 139416
Des 5 31376 5 31213 5 31255 5 31173
Diffeq 4 15412 4 15351 4 15396 3 15404
Dsip 4 18433 4 18474 4 18417 4 18488
Elliptic 5 51743 5 52539 5 52001 5 52458
ex1010 5 67844 5 66706 5 66825 5 66595
ex5p 5 19750 5 19861 5 19707 5 19785
Frisc 4 59547 3 59126 3 59450 3 58880
Misex3 5 21060 5 21264 5 21423 5 21574
Pdc 4 102678 4 102324 4 102842 4 103980
s298 5 20840 5 20647 5 20890 5 20621
s38417 4 65775 4 65917 3 65214 2 66930
s38584.1 5 63970 5 63245 5 63269 5 63089
Seq 5 27921 5 28083 5 28114 5 28108
Spla 3 68685 2 68461 2 68436 1 68407
Tseng 5 10271 5 10416 5 10279 5 10329
Total 93 881230 91 877857 90 878011 86 882427

Table 3.14: Routing Results for Different Values of  (Summary)

 SR Wire
0.5 81 865799
0.6 83 869607
0.7 87 871850
0.8 90 874087
0.9 92 879111
1 95 880271

1.1 95 880465
1.2 93 881230
1.3 91 877857
1.4 90 878011
1.5 86 882427

CHAPTER 3: The Star+ Model

 71

To determine an appropriate value for , we experimented with several different

values of . Table 3.15 shows the results with  equal to 1.58, 1.59 and 1.6, respectively.

Column 1 identifies the benchmark. Column 2 gives the channel widths used by the

router. Column 3 is the average number of wire segments obtained after routing. Column

4 gives the estimated number of wire segments when  equals 1.58. Columns 5 and 6 are

the estimates when  equals 1.59 and 1.6, respectively. When  equals 1.59, the total

estimate (879712) is closest to the actual number of wire segments after routing (shown

in column 3 (880271)). (When  is less than 1.58 or greater than 1.6, the estimates will

be even farther away from the number of wire segments after routing, and hence are not

listed in the table.)

Table 3.15: Experimental Results of Different  Values

 CW Routing 1.58 1.59 1.6
Alu4 11 21091 20177 20305 20433

apex2 13 31361 30379 30571 30763
apex4 14 22136 20259 20387 20515
Bigkey 8 22388 21922 22061 22199
Clma 14 138219 146711 147640 148568
Des 8 29488 28119 28297 28475

Diffeq 9 15556 16151 16253 16355
Dsip 7 17599 18509 18626 18744

Elliptic 13 50040 50835 51157 51478
ex1010 13 71220 67680 68108 68537
Ex5p 15 19583 18029 18143 18257
Frisc 14 57916 57200 57562 57924

misex3 13 21751 20817 20949 21080
Pdc 19 103669 98639 99263 99887
s298 9 22462 21050 21183 21317

S38417 9 66592 68123 68555 68986
S38584.1 10 60021 63284 63685 64086

Seq 13 28377 27506 27681 27855
Spla 16 70870 68363 68796 69229

Tseng 8 9933 10426 10492 10558
Total 880271 874180 879712 885245

CHAPTER 3: The Star+ Model

 72

3.5 Limitations of the Star+ Model

The Star+ model is mainly developed for island-style FPGAs. As other styles of FPGAs

(e.g., row-based FPGAs and hierarchical FPGAs) have different routing architectures,

using Star+ on these types of FPGAs may provide lower estimation accuracy. For row-

based FPGAs, since x-dimension and y-dimension are asymmetric, a possible way to

improve the accuracy of Star+ is to try different values for  and  on x- and y-

dimensions.

For modern FPGA architectures, there is hard logic (e.g., multipliers, DSP blocks,

etc.) at fixed positions on the FPGA chip. If these hard logic blocks are within the area of

the Star+ model of a net (see Fig. 3.6 for an example), they affect the available routing

resources that may be used to route the net. Therefore, Star+ is not as accurate in this

scenario. Consequently, solutions obtained by using analytical methods based on Star+

may suffer a loss in quality. However, it is worthwhile to note that HPWL and quadratic

distance also suffer from the same problem.

Figure 3.6: A hard logic within the Star+ model of a net

A

 DSP or
multiplier

 D B

 C

CHAPTER 3: The Star+ Model

 73

3.6 Summary

In this chapter, we introduced a new wire-length estimation model that is suitable for use

both with move-based and analytic placement tools. VPR [28] was used to compare the

Star+ model to the traditional HPWL model with respect to routability, critical path

delay, CPU running time, and wire-length. Both models were tested using the 20 MCNC

[62] benchmarks and with various parameter settings for VPR’s placement and routing

tools. The following was observed:

 The Star+ model slightly outperforms the HPWL model when inner_num=1 in

terms of minimum channel width and total wire-length.

 The Star+ model outperforms HPWL by 6-9% in terms of critical-path delay, and

for 60% of the benchmarks the difference in performance between Star+ and

HPWL is statistically significant.

 The Star+ model is differentiable.

 Computing the change in cost resulting from swapping a pair of blocks is always

an O(1) operation. Moreover, it was shown that as the net size increases, Star+

outperforms HPWL with respect to the time required to re-compute the wire-

length estimate following an improving swap/move.

The effect of the Star+ model’s adjustable parameters,  and , was also studied.

The following was decided:

  affects both the number of placements found that are actually routable and the

wire segments required to route a placement. Overall, the best value for  is 1.

CHAPTER 3: The Star+ Model

 74

  compensates for the difference between the estimated number of wire segments

and the actual number of wire segments required after routing. When set to 1.59,

the estimate is closest to the actual number.

Therefore, we conclude that the Star+ model is indeed suitable for use with

analytic methods, which we discuss next in Chapter 4.

 75

Chapter 4

Modifying Conjugate Gradient for Placement

Most approaches to analytic placement are based on quadratic programming [17].

Quadratic placement algorithms use squared wire length as the objective function and try

to minimize it by repeatedly solving a system of linear equations. In practice, quadratic

placement algorithms are fast and hence capable of handling very large placement

problems. However, the quality of solutions produced is often inferior compared with

those found using slower, swap-based algorithms, like VPR [27]. This is a partial result

of the fact that the objective of quadratic programming is to minimize squared wire

length, not linear wire length.

To compensate, we propose using the Star+ wire-estimation model presented in

Chapter 3 as part of an analytic placement tool based on Conjugate Gradient (CG). The

CG method is one of the most popular iterative methods for solving large systems of

linear equations. It is very effective for systems of the form Ax=b, where x is an unknown

vector, b is a known vector, and A is a known, sparse, positive-definite matrix. The

essential trade-off in changing a squared wire-length objective into a “near” linear wire-

CHAPTER 4: Modifying Conjugate Gradient for Placement

 76

length objective is that the resulting equations system that must be solved is no longer

linear, and hence harder to solve. In particular, two problems arise when employing a

non-linear objective function. First, for the FPGA placement problem, the equations

system is not sparse, but dense. Second, with a traditional solver, like conjugate gradient,

the Hessian matrix (i.e., A) must be re-computed on each iteration. Both of these facts

result in a runtime for each iteration of O(n2).

In this Chapter, we show how the runtime of each iteration of conjugate gradient

can be reduced to O(n). The basic idea is to avoid computing the Hessian matrix on each

iteration by calculating a single value that indicates both the direction and distance to

move in the problem’s search space.

 The remainder of the chapter is organized as follows. In Section 4.1 we provide a

brief introduction to conjugate gradient. In Section 4.2 we show how conjugate gradient

can be applied to FPGA placement. Finally, in Section 4.3 we summarize our important

contributions.

4.1 Conjugate Gradient Method

The earliest conjugate gradient method was devised by Fletcher and Reeves [102]. If the

objective function f(x) is quadratic and is minimized exactly in each search direction, it

has the desirable feature of converging in at most n iterations because its search

directions are conjugate (or A-orthogonal) (see Section 4.1.1), where A is the Hessian

matrix of f(x). In practice, conjugate gradient methods are also powerful on general

functions. This method represents a major improvement in convergence over steepest-

descent methods [32] with only a marginal increase in computational effort compared to

the latter. It combines current information about the gradient vector with that of gradient

vectors from previous iterations (a memory feature) to obtain the new search direction.

The new search direction is computed by a linear combination of the current gradient and

 See Section 4.1

CHAPTER 4: Modifying Conjugate Gradient for Placement

 77

the previous search direction. The main advantage of this method is that it requires only a

small amount of information to be stored at each stage of calculation and thus can be

applied to very large problems.

4.1.1 Standard Conjugate Gradient Algorithm

Consider the problem of minimizing a quadratic function xcAxxxf TT 
2
1)(. If A is

symmetric and positive-definite, we can find a set of n linearly independent search

directions)1()1()0(,,, nddd  that are mutually conjugate with respect to A, i.e., all the

directions satisfy the conjugacy conditions:

njijiAdd j
T
i  and 0 , ,0)()(.

The Conjugate Gradient (CG) method is as follows. We start with an initial point)0(x and

an initial direction)0(d . We minimize)(xf along)0(d to obtain)1(x by making

0)(')1(xf , and obtain)1(d by letting 0)1()0(Add T . Then, from)1(x , we minimize

)(xf along)1(d to obtain)2(x by making 0)(')2(xf , and obtain)2(d by letting

)2()0(Add T and 0)2()1(Add T . This procedure may be repeated at most n times. Finally, we

minimize)(xf along)1(nd to obtain)(nx by making 0)(')(nxf . The point)(nx is the

minimum solution. Generally, we can terminate CG early as long as it converges. In fact,

the CG iterations can be terminated at any ith iteration ()0 ni  if)(ix is close enough

to the minimum. The CG method can also be used to optimize problems where the

objective function)(xf is not quadratic, provided it is still positive-definite. In practice,

it is usually more effective than direct methods when the equation systems are large and

sparse.

To obtain an understanding of what is meant by positive-definite, Figure 4.1

shows the graph of an arbitrary positive-definite function)(xf . Figure 4.2 gives the

CHAPTER 4: Modifying Conjugate Gradient for Placement

 78

contours of)(xf . The values of)(xf at the points on the same curve are equal. The

black dot is the point (degenerate curve) where)(xf has the minimum value.

Figure 4.1: The graph of a positive-definite function)(xf [32]

The gradient)(' xf of)(xf is a vector field that, for a given point x, points in the

direction of the greatest increase of)(xf . By Newton’s theory,)(' xf equals zero at the

point where)(xf is minimum (or maximum). Figure 4.3 illustrates the gradient vectors

for)(xf . At the bottom of the bowl shown in Figure 4.1, the gradient is zero. One can

minimize)(xf by setting)(' xf =0.

However, directly solving the equation systems)(' xf =0 is usually impractical.

An iterative way to find the point x at which)(' xf equals zero is to start at an arbitrary x

and slide down to the bottom of the bowl step-by-step. At each step we move to a new x

that makes)(' xf closer to zero, and eventually we reach a point x at which)(' xf is

close enough to zero to enable termination.

CHAPTER 4: Modifying Conjugate Gradient for Placement

 79

Figure 4.2: The contours of)(xf [32]

The question is which direction and how big a step we should take at each point x,

so that we can move to the bottom of the bowl as quickly as possible. Assume)0(x is the

initial point,)(ix is the point at the ith step,)(id is the direction we should move from

point)(ix , and)(i is the size of the move. Thus

)()()()1(iiii dxx  (Equation 4.1)

The CG method uses the following procedure to calculate the direction and how big a

step we should take. First, calculate the initial direction:

)(')0()0()0(xfrd  (Equation 4.2)

CHAPTER 4: Modifying Conjugate Gradient for Placement

 80

The residual)0(r indicates how far)(' xf is from zero at the initial point)0(x (remember:

our goal is to find the x where)(' xf =0). Then for every iteration i0, compute the

following:

)()()(

)()(
)()(" ii

T
i

i
T
i

i dxfd
rr

 (Equation 4.3)

The previous equation calculates how far to move along the direction)(id . The Hessian

)(")(ixf is an n x n matrix, in which the element at the jth row and kth column is the

second partial derivative of)(xf with respect to jx and kx at the point)(ix . (x is a

vector with n elements: 1x , 2x , … nx , where)(ix is the vector at the ith step.) Note that

)()(i
T
i rr equals the square of the 2-norm of the residual)(ir , and)()()()(" ii

T
i dxfd can be

looked at as the square of the 2-norm of the direction multiplying coefficient matrix.

Figure 4.3: The gradient)(' xf of)(xf [32]

CHAPTER 4: Modifying Conjugate Gradient for Placement

 81

)(')1()1(  ii xfr (Equation 4.4)

calculates the new residual.

)()(

)1()1(
)1(

i
T
i

i
T
i

i rr
rr 

  (Equation 4.5)

)()1()1()1(iiii drd    (Equation 4.6)

calculates the new direction. When)(xf is quadratic, any two different)(id s obtained

using above formulas will be conjugate to each other. For nonlinear CG (i.e.)(xf is not

quadratic), the less similar)(xf is to a quadratic function, and hence the more quickly

the directions lose conjugacy. Figure 4.4 suggests the procedure of finding the minimum

point using the CG method.

Figure 4.4: The Conjugate Gradient method [32]

CHAPTER 4: Modifying Conjugate Gradient for Placement

 82

 The CG method is efficient for sparse systems, in which)(")(ixf is a sparse

matrix. For dense systems, the computation of)(")(ixf is)(2nO and therefore makes

each iteration of CG to be)(2nO . In such cases, CG may be undesirable compared with

direct methods. However, for specific applications, researchers are often able to find

ways to calculate α without re-computing)(")(ixf entirely. In particular, if we can

calculate)()()()(" ii
T
i dxfd in linear time, then there is no need to spend)(2nO time

computing)(")(ixf .

 In the next section, we will discuss how to apply CG on FPGA placement and

how to keep each iteration of the CG placement algorithm linear in time.

4.2 Conjugate Gradient Placement

The optimization goal of the target CG placement algorithm is to minimize the amount of

wire segments required to connect all the nets after a circuit is placed. Since CG requires

that the gradient)(' xf and Hessian matrix)(" xf are computable, the objective function

)(xf must be built using differentiable estimation models. Hence HPWL is not

applicable for the target CG placement algorithm.

4.2.1 Objective Function)(xf

In Chapter 3, the Star+ model was compared with the HPWL model and found to be at

least as effective as HPWL with respect to wire-length and routability, and often better

for critical-path delay. However, and most importantly, the Star+ model is also

differentiable, and hence suitable for use in analytic methods. Based on the Star+ model

(see Equation 3.1), the wire-length estimate of a net after being placed can be calculated

as:

CHAPTER 4: Modifying Conjugate Gradient for Placement

 83





ll Neti

cli
Neti

clil yyxxNet  22)()(

Since the total wire-length estimate of a circuit is the sum of the wire-length

estimates of all the nets, the wire-length estimate can be expressed as follows:

  

 








































l Neti
cli

l Neti
cli

l Neti
cli

Neti
cli

ll

ll

yyxx

yyxx





22

22

)()(

)()(

 (Equation 4.7)

where xi and yi are the coordinates of Block i, and xcl and ycl are the coordinates of the

center of gravity (see Section 3.1).

Equation 4.7 consists of two parts. The first part that contains only x-coordinates

is the wire-length estimate along x-coordinate axis, and the second part that contains only

y-coordinates is the wire-length estimate along the y-coordinate axis. All of the xis are

independent of any yis, and vice-versa. Thus, minimizing Equation 4.7 is equivalent to

minimizing each part separately. For the sake of simplicity, we only discuss the wire-

length estimate along x-coordinate axis. The part that estimates the wire-length along y-

coordinate can be solved in a similar way.

Based on Equation 4.7, we define the objective function)(xf as:

  











l Neti
cli

l

xxxf  2)()((Equation 4.8)

CHAPTER 4: Modifying Conjugate Gradient for Placement

 84

4.2.2 Gradient)(' xf

To implement CG, we need to calculate the gradient of)(xf . The gradient)(' xf is

defined as:



































)(

)(

)(

)('
2

1

xf
x

xf
x

xf
x

xf

n



The)(' xf is a vector that points in the direction of the greatest increase of)(xf
at a given point T

nxxxx),,,(21  . In order to make calculation simpler, we define





lNeti

clil xxS 2)((Equation 4.9)

Therefore,  
l l

ll SSxf )()((Equation 4.10)

To calculate)(xf
x j
 , we calculate

j

l

x
S



 first. From the definition of lS , we have:





lNeti

clil xxS 2)(





lNeti

clclii xxxx )2(22

 
 


l llNeti Neti

cl
Neti

clii xxxx 22 2

 
 


l llNeti Neti

cl
Neti

icli xxxx 12 22





lNeti

lclcllcli kxxkxx 22 2

CHAPTER 4: Modifying Conjugate Gradient for Placement

 85





lNeti

cllclli xkxkx 222 2





lNeti

clli xkx 22

If lNetj , it is obvious that 0



j

l

x
S

. If lNetj , the partial derivative of lS with

respect to jx is:












lNeti
clli

jj

l xkx
xx

S
22

)(
2

1 22

22 
 










l

l

Neti
clli

j
Neti

clli

xkx
xxkx

















 


2

)()(

2

)()(

2

2
1

cll
jiNeti

i
jiNeti

i
jl

xkxx
xS

ll




























 



j

cll
jjiNeti

i
jjiNeti

i
jl x

xk
x

x
x

x
xS

ll

2

)()(

2

)()(

2

2
1




























 



j

cl
j

lj
jjiNeti

i
jl x

x
x

kx
x

x
xS

l

22

)()(

2

2
1





























 
 jj

cl
cll

j

j
j

jiNeti j

i
i

l xx
x

xk
x
x

x
x
x

x
S

l

222
2
1

)()(

Because 0



j

i

x
x (when ji ), 1




j

j

x
x

,
lj

cl

kx
x 1



 and 0




jx
 , the above equation can

be simplified as follows:












 



0121202
2
1

)()(l
cllj

jiNeti
i

lj

l

k
xkxx

Sx
S

l

 clj
l

xx
S

22
2
1



CHAPTER 4: Modifying Conjugate Gradient for Placement

 86

l

clj

S
xx 



In general,
















l

l
l

clj

j

l

Netj

Netj
S

xx

x
S

 if ,0

 if , (Equation 4.11)

Based on Equation 4.10 and 4.11, the partial derivative of)(xf with respect to jx is:














 

l
l

jj

S
x

xf
x

)((From Equation 4.10)















 
l j

l

x
S





















 
 ll Netjl j

l

Netjl j

l

x
S

x
S

::













 

 ll NetjlNetjl l

clj

S
xx

::
0 (From Equation 4.11)







lNetjl l

clj

S
xx

:
 (Equation 4.12)

Recall that these values are the (jth) components of vector)(' xf , the gradient of)(xf .

4.2.3 Hessian Matrix)(" xf

CG requires computing Hessian matrix. Each element of the Hessian matrix)(" xf is a

second-order partial derivative of)(xf , which can be calculated using following

procedures.

CHAPTER 4: Modifying Conjugate Gradient for Placement

 87

The diagonal elements (at jth row and jth column) are:








 






 

 lNetjl l

clj

jj S
xx

x
xf

x :
2

2

)( (From Equation 4.12)













 





lNetjl l

clj

j S
xx

x:
























lNetjl lj

cljclj
jl Sx

xxxx
xS:

1)()(1



















lNetjl j

l

l
clj

ll x
S

S
xx

kS:
2

1)()11(1



















lNetjl j

l

l

clj

lll x
S

S
xx

SkS:

1)11(1



















lNetjl j

l

l

clj

ll x
S

S
xx

kS:
)11(1


 


























lNetjl j

l

ll x
S

kS:

2)(111 (From Equation 4.11)

Each off-diagonal element at kth row and jth column is (kj ):








 






 

 lNetjl l

clj

kjk S
xx

x
xf

xx :

2

)( (From Equation 4.12)








 




 
 lNetjl l

clj

k S
xx

x:





















lNetjl lk

cljclj
kl Sx

xxxx
xS:

1)()(1





















lNetjl k

l

l
clj

k

cl

l x
S

S
xx

x
x

S:
2

1)()0(1
 (0 , When 





k

j

x
x

kj)

CHAPTER 4: Modifying Conjugate Gradient for Placement

 88




















lNetjl k

l

l

clj

lk

cl

l x
S

S
xx

Sx
x

S:

11





















lNetjl k

l

l

clj

k

cl

l x
S

S
xx

x
x

S:
)(1




























lNetjl k

l

j

l

k

cl

l x
S

x
S

x
x

S:
)(1 (From Equation 4.11)






















































 
 llll NetkNetjl k

l

j

l

k

cl

lNetkNetjl k

l

j

l

k

cl

l x
S

x
S

x
x

Sx
S

x
S

x
x

S ::

)(1)(1


































 


0)(1
: ll NetkNetjl k

l

j

l

k

cl

l x
S

x
S

x
x

S
 (0 , When 









k

cl

k

l
l x

x
x
SNetk)






















lNetkjl k

l

j

l

ll x
S

x
S

kS,:
)1(1

To summarize, we have the elements of Hessian matrix)(" xf :









































































kj
x
S

x
S

kS

kj
x
S

kS
xx
xf

l

l

Netkjl k

l

j

l

ll

Netjl j

l

ll

kj if ,)1(1

 if ,)(111
)(

,:

:

2
2




 (Equation 4.13)

The computation of)(" xf is O(n2), which is too long for iterative methods. Since

)(" xf is only used in Equation 4.2, if we can calculate dxfd T)(" directly in a shorter

time we do not have to calculate)(" xf especially. Fortunately, the following method

computes dxfd T)(" in linear time. The direction vector is T
ndddd),,,(21  . The

product dxfd T)(" is a single real number. By the definition of the product of a vector

and a matrix, we have:

CHAPTER 4: Modifying Conjugate Gradient for Placement

 89

 



j k

k
kj

j
T d

xx
xfddxfd)()("

2

 (Equation 4.14)

 
 








j jk

k
kj

j
jk

k
kj

j d
xx
xfdd

xx
xfd))()((

22

   
























































  j jk

k
Netkjl k

l

j

l

ll
j

jk
k

Netjl j

l

ll
j d

x
S

x
S

kS
dd

x
S

kS
d

ll ,::

2)1(1)(111


(From Equation 4.13)

    
























































   j jk

k
Netkjl k

l

j

l

ll
j

jk
k

Netjl j

l

ll
j

jk
k

Netjl l
j d

x
S

x
S

kS
dd

x
S

kS
dd

S
d

lll ,::

2

:
)1(1)(111



   






























 j k

k
Netkjl k

l

j

l

ll
j

jk
k

Netjl l
j d

x
S

x
S

kS
dd

S
d

ll ,::
)1(11






























   
j j k

k
Netkjl

j
k

l

j

l

ll
j

Netjl
j

l

dd
x
S

x
S

kS
dd

S
ll ,::

)1(11






























    
   l l Netj

k
Netk

j
k

l

j

l

ll
j

Netj
j

l l ll

dd
x
S

x
S

kS
dd

S
)1(11

  
   





























l Netj

k
Netk

j
k

l

j

l

ll
j

Netj
j

l l ll

dd
x
S

x
S

kS
dd

S
)1(11

  
   





























l Netj

k
Netk

j
k

l

j

l

l
j

Netj
j

l l ll

dd
x
S

x
S

k
dd

S
11

   
    


















l Netj

k
Netk

j
k

l

j

l

Netj
k

Netk
j

l
j

Netj
j

l l ll ll

dd
x
S

x
Sdd

k
dd

S
11

   
    


















l Netj

k
Netk k

l
j

j

l

Netj
k

Netk
j

l
j

Netj
j

l l ll ll

d
x
Sd

x
Sdd

k
dd

S
11

   
    


















l Netj

k
Netk k

l
j

j

l

Netj Netk
kj

lNetj
j

l l ll ll

d
x
Sd

x
Sdd

k
d

S
)()(11 2

CHAPTER 4: Modifying Conjugate Gradient for Placement

 90

We know that 
 lNetk

kd and k
Netk k

l d
x
S

l


 


 are independent of j. We also have





ll Netk

k
Netj

j dd and k
Netk k

l
j

Netj j

l d
x
S

d
x
S

ll


 







. Therefore, the above equation

(Equation 4.14) can be simplified to:

   
    


















l Netj

k
Netk k

l
j

j

l

Netj Netk
kj

lNetj
j

l

T

l ll ll

d
x
Sd

x
Sdd

k
d

S
dxfd))(())((11)(" 2

 
  















l Netj

j
j

l

Netj
j

lNetj
j

l lll

d
x
Sd

k
d

S
222)()(11 (Equation 4.15)

Although using Equations 4.14 and 4.15 will give the same result, the time

complexities to calculate these two equations are significantly different. The complexity

of Equation 4.14 is O(n2), as the Hessian matrix has n2 elements. In contrast, the

complexity of Equation 4.15 is O(n). We will clarify this in the next paragraph.

We know computing xcl and lS are both O(kl). From Equation 4.11, calculating

j

l

x
S



 is O(1) if we already know xcl and lN . In Equation 4.15, the entire calculation in

the curved brackets is O(kl) (i.e., linear to the cardinality of Net l). Therefore, the time

complexity of Equation 4.15 is linear to the sum of the cardinalities of all the nets. As the

sum of the cardinalities of all the nets equals the sum of the fan in/outs of all the blocks,

the complexity is also linear to the sum of the fan in/outs of all the blocks. Due to the

physical limit of FPGA architecture, each block can only connect to a certain number of

nets. That means the sum of the fan in/outs of all the blocks is O(n) (n is the number of

blocks). As a result, the time complexity of Equation 4.15 is O(n). (For example, our

experimentation shows that for a benchmark with 1500 blocks and 1500 nets, the CG

placement that calculates)(" xf each iteration is about 70 times slower compared with

the CG placement that uses Equation 4.15 to calculate dxfd T)(" directly. Since

CHAPTER 4: Modifying Conjugate Gradient for Placement

 91

calculating)(" xf is in O(n2), it will be even slower when the size of benchmark is

larger.)

Up to now, we have introduced all the basic theory of the CG placement

algorithm. Figure 4.5 gives the pseudo code as a summary of the whole procedures. The

first six lines initialize all x-coordinates, and calculate the initial residue 0r and search

direction 0d . Within the while loop, each iteration successively calculates α

=)
)("

(
dxfd

rr
T

T

, updates x, calculates new residue newr, β =)(
rr
newrnewr

T

T

 and search

direction d. The iterations are terminated when i reaches the maximum number of

iterations.

4.3 Conclusion

In this chapter, we presented an analytic placement algorithm that uses conjugate gradient

method and the Star+ net model. An important feature of the algorithm is that the

computation complexity of each iteration is O(n) even though the target system is not

sparse. In the next chapter, we will present a pre-placement algorithm that initializes the

coordinates of the blocks and will describe a bi-partitioning method that legalizes the

solutions obtained from the CG placement algorithm. These additional algorithms are

needed to make CG practical for obtaining good placements.

CHAPTER 4: Modifying Conjugate Gradient for Placement

 92

Figure 4.5: Pseudo-code of CG placement algorithm

Initialize all xi s
For each net l
{

 



lNeti

i
l

cl x
k

x 1

 



lNeti

clil xxS 1)(2

 For each block lNetj ,
l

clj

j

l

S
xx

x
S 





}

For each block j, 
 








lNetjl j

l

j
jj x

Sxf
x

rd
:

)(

i = 0

While i < n
{

  
  















l Netj

j
j

l

Netj
j

lNetj
j

l

T

lll

d
x
Sd

k
d

S
dxfd 222)()(11)("

d
dxfd

rrxx T

T

)
)("

( //update all x coordinates

For each net l
{

 



lNeti

i
l

cl x
k

x 1

 



lNeti

clil xxS 1)(2

 For each block lNetj ,
l

clj

j

l

S
xx

x
S 





}

For each block j, 
 








lNetjl j

l

j
j x

Sxf
x

newr
:

)(

d
rr
newrnewrnewrd T

T

)(

newrr 
1 ii

} //end of while

 93

Chapter 5

Pre-Placement and Legalization Methods

In Chapter 4, we introduced the theoretical background of our conjugate-gradient

placement paradigm. In this Chapter, we introduce the essential components of our

conjugate-gradient placement prototype. More specifically, in Section 5.1 we introduce a

new algorithm for temporarily pre-placing I/O pads on to the FPGA. Without pre-

assigning I/O pads, minimizing wire length would be vacuous, as collapsing all moveable

blocks onto one point (CLB) would yield the best possible objective function value of

f’(x) = 0. In Section 5.2, we briefly describe the recursive partitioning approach [86] that

is employed to realize legal placements. As discussed in Chapter 4, because the Star+

wirelength is separable into horizontal and vertical components, numerical optimization

can be applied independently in both directions to obtain (x,y) coordinates for each

moveable block. In practice, however, blocks tend to overlap and concentrate in the

center of the FPGA. Consequently, a legalization step is required to map the “global

placement” (actually, a “continuous solution obtained using a non-linear objective”) back

to the original discrete problem. In Section 5.3, we provide an overall description of the

Conjugate Gradient (CG) placement algorithm. In Section 5.4, we discuss the

CHAPTER 5: Pre-Placement and Legalization Methods

 94

convergence of CG placement algorithm. In Section 5.5, we present the experimental

results of Shrubbery and CGH. Finally, in Section 5.6 we provide a summary of the main

contributions of this Chapter.

5.1 I/O Pad Pre-placement

In general, pre-placement is a procedure that temporarily assigns some I/O pads and/or

logic blocks to certain locations on the FPGA. It is an essential step of any analytic

placement method; without pre-placement, only trivial solutions will be obtained when

solving the equation system)(' xf =0. For example, the solution where all of the xis are

zero will make)(' xf =0.

To avoid obtaining trivial solutions, we choose to pre-place all of the I/O pads.

The reason that we choose to pre-place I/O pads rather than the logic blocks is because

I/O-pad placement is an easier, one-dimensional problem to solve. We use a novel graph-

based pre-placement algorithm, which we call Shrubbery, to achieve a pre-placement of

I/O pads with reasonable quality, prior to placing logic blocks. This pre-placement is not

the final placement of I/O pads, but helps with the placement of logic blocks later on as

some of the logic blocks share connections with the various I/O blocks.

The goal of the pre-placement is to place the I/O pads in such a way that those

with higher connectivity are placed closer together than the I/O pads with lower

connectivity. Also, this pre-placement provisionally locates components on the periphery

of the FPGA, which causes other components to be distributed throughout the chip.

Figure 5.1(a) shows a simple example with three I/O pads L, M and N, three logic blocks

a, b and c, and five nets Net 1: L-a, Net 2: a-b, Net 3: b-M, Net 4: b-c, and Net 5: N-c.

The connection between I/O pads L and M involves three nets Net 1: L-a, Net 2: a-b, and

Net 3: b-M, while the connection between I/O pads L and N involves four nets Net 1: L-

a, Net 2: a-b, Net 4: b-c, and Net 5: N-c.

CHAPTER 5: Pre-Placement and Legalization Methods

 95

(a) A poor placement

(b) The optimum

Figure 5.1: The pre-placement of I/O blocks

In this case, the quality of placement in Figure 5.1(a) is poor. This is partially

~ b M

I/O pads

CLBs

Net 1: L-a

Net 3: b-M

~

c

N

a

L

~

~

Net 2: a-b
~

~

~

~

~

Net 4: b-c

Net 5: N-c

~

c

N

Net 1: L-a

Net 3: b-M

~

b

M

a

L

~

~
Net 2: a-b

~

~

~

~

~

Net 4: b-c

Net 5: N-c

CHAPTER 5: Pre-Placement and Legalization Methods

 96

caused by I/O pad M being placed too far away from I/O pads L and N. Moving logic

block b towards logic blocks a and c improves the placement, but this movement

increases the amount of wire needed to connect b and M. However, if we move I/O pad

M beside I/O pads L and N, as shown in Fig. 5.1(b), we will use the least amount of wire

to connect the blocks. This is what the I/O pad pre-placement technique presented in the

next section intends to do.

5.1.1 Terminology

Throughout the remainder of this section, we use the following definitions and

terminology when describing Shrubbery.

The following symbols index scalar objects or sets of scalar objects: i and j are used

to index vertices; a and b are used to index root vertices of shrubs, making them shrub,

grove, or hedge identifiers. An edge (eij) in a graph is identified by the pair of vertices vi

and vj it connects. The cost or weight of an edge eij in a graph is identified by wij. We also

make use of the following definitions (see Fig. 5.2 for assistance):

Definition 5.1: A shrub
aS consists of a set of edges e

aS and a set of vertices v
aS where

av is the unique terminal (root) in v
aS . The edges in e

aS form a tree rooted at av , meeting all

vertices of v
aS , and all e

aij Se  have end vertices v
aji Svv , . Shrubs will “grow” to

encompass more vertices as the algorithm proceeds.

Once an edge or a vertex is included in a shrub, its shrub membership)(ivs does not

change. The function undefinedvs i )(, if vertex iv does not belong to any shrub. Otherwise,

avs i )(, the identifying root of the containing shrub. Note that a vertex can belong to at

most one shrub.

Definition 5.2: A Path ijP is a sequence of distinct edges connecting vertices iv and jv .

Two paths ikP and kjP with no common vertices except for vertex jv can be concatenated

CHAPTER 5: Pre-Placement and Legalization Methods

 97

to form a single, longer path; that is,
kjik PP || is the union of distinct edges and vertices in

ikP and kjP . A path aiP entirely within a shrub represents the unique path, by which vertex

iv was reached from root vertex av during shrub growth. The function)(aiPN returns a list

of all vertices in the path aiP . The function)(aiPE returns a list of all edges in the path aiP .

Figure 5.2: Illustration of shrub, hedge, and grove

Definition 5.3: A Steiner Tree is a tree connecting a subset of vertices, called terminals,

in an undirected, weighted graph. In the context of placement, a minimum weight Steiner

tree is a measure of placement quality (wirelength) and represents the optimal way to

connect a net (set of pins that must be connected together).

Definition 5.4: A grove aG is a union of shrubs
bMb

S

 where M is an index set of member

shrubs and }{min Mka
k

 . More specifically, e
bMb

e
a SG


 and n

bMb

n
a SG


 .

Definition 5.5 (Hedge) A hedge aH is the partial Steiner tree that connects the terminals

of grove aG . aH consists of two sets e
a

e
a GH  and n

a
n
a GH  , its edges and vertices,

respectively.

Sb: Shrub

Ga: grove a Ha: hedge rooted
at a

Gd: grove d
Hd: hedge
rooted at d

a
b

c

d

e

CHAPTER 5: Pre-Placement and Legalization Methods

 98

Definition 5.6 (Root-distance) Every vertex kv within a shrub Sa has a root-distance

a
kd , which is the cost of the path by which vertex kv was reached from root of Sa (vertex

av), during shrub growth; that is, 



akij Pe

ij
a
k wd , where ijw is the cost of edge ije .

Every vertex within a shrub except the root vertex has a parent (the previous

vertex on the path from root of Sa). Let’s suppose vertex iv is vertex jv ’s parent, the

following relationship exists: ij
a
i

a
j wdd  , where ijw is the cost of edge ije .

Definition 5.7: A Candidate edge eij for shrub aS is an edge that can possibly be chosen

by aS for the next shrub expansion, where vertex iv is in aS , vertex jv is not in aS , and

vertices iv and jv do not belong to the same grove.

Definition 5.8: A Candidate edge set of shrub aS is denoted as c
aS , which contains all

candidate edges of aS for the next step of shrub expansion.

Definition 5.9: An elected edge of Shrub aS is an edge, which has been chosen from the

candidate edge set of Shrub aS for the next step of shrub expansion. There is only one

elected edge for each shrub at any step of shrub expansion

Definition 5.10: An Elected edge set (denoted as EE) contains the elected edges of all

the shrubs.

5.1.2 Shrubbery Example

To place the I/O pads, we first transform the original circuit into a graph G = (V, E).

Each logic block corresponds to a vertex V. I/O pads are treated as special vertices,

which we call terminals (T). A net with k blocks or I/O pads is transformed into a k-clique

with equally weighted edges; i.e., each edge in the clique has a weight of
1

1
k

. If there

CHAPTER 5: Pre-Placement and Legalization Methods

 99

is more than one edge between a pair of vertices, all of these edges are merged into a

single edge with a new edge weight equal to the sum of all of the original edge weights.

After the graph is transformed into a simple graph, each edge weight is changed to its

reciprocal. We use this edge weight as a measure of the connectivity. Figure 5.3 shows

an arbitrary circuit, while Fig. 5.4 shows the circuit’s corresponding graph representation.

(Note: for simplicity, all of the nets contain at most 3 blocks. Therefore, all resulting

cliques contain at most 3 edges.)

Net 1: J-e Net 5: N-a Net 9: a-b-d Net 13: g-i
Net 2: K-a Net 6: O-d Net 10: d-g
Net 3: L-f Net 7: b-e Net 11: d-h
Net 4: M-c Net 8: b-c Net 12: f-h-I

Figure 5.3 An arbitrary circuit.

e b c

a

d

f

g h i

L

K

J M

N

O

I/O pads

CLBs

Net 1

Net 2

Net 3

Net 4

Net 5

Net 6

Net 7 Net 8

Net 9

Net 10

Net 11
Net 12

Net 13

CHAPTER 5: Pre-Placement and Legalization Methods

 100

Figure 5.4 The corresponding graph

After the transformation is complete, the Shrubbery algorithm computes the

relative order of the I/O pads. It starts by simultaneously growing individual shortest-path

trees rooted at every terminal vertex. We refer to these trees as “shrubs”. Shrubs grow

using a modified version of Dijkstra’s shortest-path algorithm [85]. Initially, each shrub

consists of a single terminal vertex, its root. Then, shrubs are extended by adding one

edge and vertex to one shrub at each step of the algorithm. At every step, each shrub has

one nearest adjacent vertex not belonging to the same shrub and having the minimum

cost path to its root. The shrub with the (globally) nearest adjacent vertex will grow and

expand to include its nearest vertex. That shrub will then determine its next nearest

vertex and become a candidate with the remaining shrubs, as Shrubbery selects another

edge and vertex. Eventually all the interior vertices will belong to one of the shrubs. Each

shrub will then contain only vertices that are at least as close to its terminal (i.e., I/O pad)

as to any other terminals. More detailed information of the algorithm can be found in

Section 5.1.3.

Figures 5.5 - 5.7 show the procedure of applying Shrubbery on the graph given in

Figure 5.4. In these figures, there are six shrubs corresponding to six I/O pads. Each

L

f

a

b c

d

e

g

h

i

J

K

M

N

O

2 2

2

2

2 2

1

1

1

1

1

1

1

1 1 1 1

CHAPTER 5: Pre-Placement and Legalization Methods

 101

shrub is shown using dashed lines and grows from its terminal I/O pad “inward” toward

other shrubs.

Figure 5.5 The shrubs when distance is 1

Figure 5.6 The shrubs when distance is 2

L

f

a

b c

d

e

g

h

i

J

K

M

N

O

2 2

2

2

2 2

1

1

1

1

1

1

1

1 1 1 1

L

f

a

b c

d

e

g

h

i

J

K

M

N

O

2

2

2

2

2

2

1

1

1

1

1

1

1

1

1

1

1

CHAPTER 5: Pre-Placement and Legalization Methods

 102

At a distance of 1, shrub J includes vertex (block) e; shrub K includes vertex a;

shrub L includes f; shrub M includes c; and shrub O includes d. Whether vertex a joins

shrub K or shrub N is arbitrary (Fig. 5.5). At a distance of 2, shrub M adds vertex b;

shrub O includes vertices g and h. Again, whether vertex b joins shrub M or shrub J is

arbitrary (Fig. 5.6). At a distance of 3, shrub L includes vertex I, and all shrubs meet (Fig.

5.7).

Figure 5.7 The shrubs when distance is 3

 Each shrub starts with an association tree. During the growth of shrubs, when two

shrubs meet the first time, their association trees combine into one tree (more than one

shrub can refer to one association tree). For example, in Figure 5.4, shrub n and shrub k

meet first. Their association trees combine to kn. Then shrubs m and j meet, and their

trees combine to jm. Then l and o meet, and their trees combine to lo. Then k and m meet.

The trees kn and jm combine to form jmkn (if there is more than one way to join two

strings, choose the combination with the fewest letters between m and k). Then k and o

L

f

a

b c

d

e

g

h

i

J

K

M

N

O

2 2

2

2

2

2

1

1

1

1

1

1

1

1

1

1

1

CHAPTER 5: Pre-Placement and Legalization Methods

 103

meet, and their association trees jmkn and lo combine to jmknol (Please note: this time k

and o cannot be adjacent to each other. There are two ways to join the two strings:

jmknol (lonkmj) and jmknlo (olnkmj). There is only one letter (n) between k and o in

jmknol, while there are two letters (nl) between k and o in jmknlo. Therefore, jmknol is

chosen.) At this moment, all shrubs are attached, and the final tree jmknol implies the

degree of association between shrubs and thus between their terminals. Since the

terminals represent I/O pads, this implies the degree of association between I/O pads and

suggests an initial relative (ordering) placement of I/O pads. In the previous example, j is

adjacent m; m is adjacent to k; and so on. Figure 5.8 gives the final tree. (Note: The I/O

pads can now be assigned to actual positions (locations) on the FPGA (see Section 5.1.3).

Again, we stress that this assignment may change later after the logic blocks have been

placed.)

Figure 5.8 The final tree

5.1.3 Shrubbery Algorithm

A formal description of the Shrubbery algorithm is presented in Fig. 5.9. The algorithm

begins (line 0) with a search for the edge eij from the elected edge set E whose weight wij

extends any shrub, say Sa, by the smallest root-distance. Once determined, if the vertex

that edge eij meets (xj) does not already belong to a shrub, the original shrub (Sa) expands

jmknol

jmkn

lo

kn

jm

l

o

k

n

m

j

CHAPTER 5: Pre-Placement and Legalization Methods

 104

to include both the new edge and new vertex. Moreover, the unique path from the root of

the shrub (xa) to vertex xj is recorded (line3), and vertex xj is made an official member of

the shrub Sa (line 4). Observe (line 5) that the root-distance of vertex xj is simply the root-

distance from the root of the shrub to vertex xi (aid) plus the weight (wij) of the new edge.

Figure 5.9 Shrubbery algorithm

If, however, the vertex “closest” to Sa, xj, was found to be part of another shrub Sb

(line 6), both groves will merge to form a single grove (lines 7 and 8), and their

respective hedges will be connected by a new hedge segment. Specifically, eij will

connect Pia and Pjb to form a new hedge segment Pab. The new hedge will consist of the

union of all of the nodes (line 9) and edges (line 10) involved. Once the new hedge (Ha)

and grove (Ga) are formed, the two corresponding strings in which each letter represents

the root of a shrub (i.e. a terminal or an I/O pad) join into one string (line 11). If two

[0] do
[1] Let ije satisfy Eeij  and
  ajaiijaiji

SxSxwdT  ,:min,
,

[2] if TbSx bj  , add
jx and ije to as

[3]
ijaiaj PPP 

[4] axs j )(
[5]

ijaiaj wdd 
[6] else if bj Sx 
[7] n

v
n
a

n
a GGG 

[8] }{ ij
e
v

e
a

e
a eGGG 

[9])()(bjai
n
b

n
a

n
a PNPNHHH 

[10] }{)()(ijbjai
e
b

e
a

e
a ePEPEHHH 

[11] Join two strings including ix and jx
 respectively, in a way that the number of
 letters between them is minimum.
[12] discard

bG and bH
[13] until aG contains all m terminals
[14] after m-1 merges, we get a string representing the
 relative position of all I/O pads.

CHAPTER 5: Pre-Placement and Legalization Methods

 105

letters are adjacent to each other within the new string, the corresponding I/O pads should

be placed next to each other. Line 12 just discards
bG and bH that are no longer useful.

These steps repeat until all terminals (I/O pads) are included in one grove (line

13). At last, we get one string that is formed after m-1 merges. This string implies the

relative position of all I/O pads. Two I/O pads should be placed beside each other if their

corresponding letters are next to each other in the final string. If there are fewer number

of I/O pads (m) than I/O blocks around the perimeter of the FPGA (p), the I/O pads are

evenly distributed around the perimeter of the FPGA. More specifically, if there are m I/O

pads that must be pre-assigned locations around the perimeter of an FPGA chip with a

perimeter p, any two adjacent I/O pads will be placed d = p / m away from each other.

The first I/O pad is always placed at the top left corner; then the second I/O pad is placed

at a distance d away from the first I/O pad, travelling in a clock-wise direction. In

general, the ith I/O pad is placed at a distance (i-1)d away from the first I/O pad, again

travelling in a clock-wise direction around the perimeter of the FPGA. For example,

Figure 5.10 gives the placement of the I/O pads (jmknol) shown in Figure 5.8 on a 3  3

FPGA chip. In this case, the perimeter p is 12, and there are 6 I/O pads, thus the distance

d between any two adjacent I/O pads is 2. (Note: d does not have to be an integer, since

we do not require a legal I/O pad placement at this stage.)

Figure 5.10 Placement of I/O pads shown in Fig 5.8

j

m

k

n
 o

l

2

1

2

1

CHAPTER 5: Pre-Placement and Legalization Methods

 106

5.1.4 Implementation and Time Complexity

To achieve an efficient implementation for Shrubbery, all edges and vertices are stored in

separate Fibonacci heaps. We also make use of the well-known union-find data structure

when determining whether a newly encountered vertex (during shrub growth) belongs to

a different grove or simply (another) part of the existing grove.

 In Fig. 5.11, the operations in lines 3-9 and 15 take O(1) time. Therefore, the time

complexity of the algorithm is dominated by the time spent performing the operations in

lines 1, 2, and 10-14. Since the time for finding an element with the smallest key value

from a heap is O(log n), a single execution of line 2 takes O(log|V|) time. Using union-

find to perform the operations in lines 11-14, the resulting operations each take O(log|V|)

time. The most expensive step in the algorithm is the first (line 1), which requires at most

|E| iterations. As each iteration of the do-until loop takes O(log|V|) time, we can see that

shrubbery has a time complexity of O(|E|log|V|).

5.2 Legalizing Solutions using Recursive Bi-partitioning

By pre-assigning I/O pads to temporary locations, we add constants to the equation

system)(' xf =0 and effectively avoid producing trivial solutions. In this section, we will

discuss how to deal with infeasible solutions obtained by solving)(' xf =0. Specifically,

we will show how to convert an infeasible solution due to block overlap into a feasible

solution (placement).

Due to the physical characteristics of the FPGA architecture, the coordinates of

the blocks must obey two basic rules:

1. All the coordinates must be integers.

2. Each position (CLB) on the FPGA chip can only be occupied by at most one

block.

CHAPTER 5: Pre-Placement and Legalization Methods

 107

However, the solutions obtained by solving the equation system)(' xf =0 are

usually non-integers. Moreover, the positions of the blocks tend to locate in the center of

the placement area (the so-called overlap problem). To deal with these problems, a

bisection technique [17] is used recursively to divide the blocks into smaller regions until

each region only contains one configurable logic block.

At first, the entire FPGA chip is vertically split into two partitions by putting half

of the blocks with smaller x-coordinates in the left partition and the other half blocks with

larger x-coordinates in the right one. Then, each of the two partitions is divided

horizontally into two sub-partitions by putting half of the blocks with smaller y-

coordinates in the bottom sub-partition and the half with larger y-coordinates into the top

partition. This type of bi-partitioning is alternatively performed vertically and

horizontally until the FPGA is divided into partitions where each partition contains only

one block. Once a partition contains only one block, the x- and y-coordinates of the block

are assigned to the integer values closest to the coordinates of the center of the partition.

Figure 5.11 shows the pseudo-code of the Bi-partitioning algorithm (a partition of

an FPGA is a part of the FPGA chip that contains at least one CLB or I/O pad). More

information can be found in [17].

5.3 The CG Placement Algorithm

It is time to put all of the parts together to build the whole CG placement algorithm. A

pseudo-code description on the algorithm is given below in Fig. 5.12. Initially, Shrubbery

is used to pre-place all of the I/O pads in order to prevent CG from producing trivial

solutions. The main body of the algorithm consists of two nested loops: the inner loop

runs CG for number_CG iterations. Due to block overlap, the solution produced is

usually infeasible and, therefore, passed to the Bi-partitioning algorithm [17] to be

converted into a feasible solution. The outer loop runs both CG and Bi-partitioning

CHAPTER 5: Pre-Placement and Legalization Methods

 108

methods, while each iteration reduces the number of CG iterations (number_CG) by .

(Throughout the remainder of this thesis, we set  to 0.1; that is, after each iteration of

the while loop, we reduce the number of iterations that CG subsequently performs by 10

percent. Empirical justification for setting  equal to 0.1 is given later in Section 5.5.)

The exit criterion for terminating the outer loop is when number_CG reaches a value less

than or equal to 1.

Figure 5.11: Pseudo-code of bi-partitioning algorithm

if a partition has more than one CLB{
if (the x-side length of the partition > y-side length) {
 sort all blocks assigned to the partition according to their x-coordinates;
 divide the partition to two partitions A and B along x-dimension;
 divide all the blocks into two groups:

group A has all the smaller x-coordinates;
group B has all the larger x-coordinate;

}

else {

sort all blocks assigned to the partition according to their y-coordinates;
 divide the partition to two partitions A and B along y-dimension;
 divide all the blocks into two groups:

group A has all the smaller y-coordinates;
group B has all the larger y-coordinate;

}

if the number of blocks in group A is greater than 0{

assign blocks in group A to partition A;
bi-partition partition A;

}

if the number of blocks in group B is greater than 0{

assign blocks in group B to partition B;
bi-partition partition B;

}

}
else{
 legalize the x- and y-coordinates of the only block in the partition;
}

CHAPTER 5: Pre-Placement and Legalization Methods

 109

Use Shrubbery to pre-place I/O pads; // the positions of I/O pads may
 // change later when running CG.

number_CG = max (x-size of FPGA, y-size of FPGA);

while(number_CG > 1)
{

run CG for number_CG iterations;
recursively bi-partition the placement solution obtained from CG;
number_CG = number_CG  (1 - )

}

Figure 5.12: Entire CG placement algorithm

In practice, the CG does not consider the physical positions of the CLBs and I/O

pads on the FPGA. When CG converges, the blocks will move towards the center of the

FPGA. The blocks will not be assigned to CLBs and will often overlap on another. If CG

were to be run again, the blocks will be focused even further into the center of the FPGA.

Therefore, it is crucial to perform the legalization step after each iteration of CG. The

legalization step will transform the infeasible placement solution produced by CG into a

feasible placement solution. CG can then be re-started from the feasible solution. By

running partitioning after CG on each iteration, the algorithm can gradually converge

towards a feasible high-quality placement.

5.4 Convergence of CG

In Section 5.3, we reported that the decision was made to reduce the number of iterations

CG is performed by 10 percent (i.e.,  = 0.1) after each iteration of the outer while loop.

We now provide some empirical evidence for this decision. Figure 5.13 shows the quality

of placements for the 20 MCNC benchmarks when  is set to 10%, 20%, …, 90%. For

each value of , the total estimated number of wire segments for all 20 benchmarks is

shown. When  is set to 10%, the estimated total number of wire segments is 942435. As

the value of  increases, the number of wire segments required for successful routing also

CHAPTER 5: Pre-Placement and Legalization Methods

 110

increases. When  reaches 90%, the number of wire segments needed increases by 19.1%

(1122351) compared with when  is 10%.

Wire-length

942435
954018

966598 976041
987034

1006454
1030527

1062416

1122351

850000

900000

950000

1000000

1050000

1100000

1150000

10% 20% 30% 40% 50% 60% 70% 80% 90%

Figure 5.13: Wirelength with different reduction rates of the iteration number

Figure 5.14 gives the total CPU running time for all 20 MCNC benchmarks. For

each value of , the total CPU running time is shown (in seconds). When  equals 10%,

the total CPU running time is 38.11 seconds. As  increases, the total CPU running time

reduces, as expected. However, when  is increased to 90%, the total CPU running time

reduces to 6.72 seconds.

These experiments show that the parameter  is an adjustable parameter that

allows the user to trade-off runtime versus solution quality (much like the parameter

inner_num used in VPR [28]). If the user wants better quality solutions, a smaller value

of  should be used. If the user wants a faster placement, a larger value of  can be used.

It should be noted that regardless of the value of , the proposed conjugate gradient

placement method is very fast. Therefore, throughout the remainder of this thesis we

leverage this speed and choose to set  to 0.1 in an attempt to find high-quality solutions.

CHAPTER 5: Pre-Placement and Legalization Methods

 111

CPU Running Time

38.11

21.23

15.52
12.40

10.70
8.75 7.92 7.61 6.72

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

10% 20% 30% 40% 50% 60% 70% 80% 90%

se
co

nd
s

Figure 5.14: CPU running time with different reduce rates of the iteration number

5.5 Experimental Results

In this section, we first run a few tests to determine the effectiveness of Shrubbery. Then,

we compare CG placement with VPR with respect to runtime, critical-path delay, and

wirelength following routing.

5.5.1 Shrubbery versus Random Pre-Placement

To determine the overall effectiveness of Shrubbery, we ran the conjugate-gradient

placement method described in the previous section two different ways, and then

compared the results head-to-head. The first approach involved running Shrubbery once

to pre-place the I/O pads followed by CG placement (as shown in Fig. 5.12). The second

approach involved randomly pre-placing the I/O block around the perimeter of the FPGA

CHAPTER 5: Pre-Placement and Legalization Methods

 112

followed by CG placement. The random pre-placement approach initializes the x- and y-

coordinates of each I/O block with random values. In particular, assuming that the size of

the FPGA is nx x ny, the x-coordinate of an I/O block is set to a random integer between

0 and nx, while the y-coordinate of the block is set to a random integer between 0 and ny.

Table 5.1 shows the comparison between Shrubbery pre-placement and random

pre-placement. The first column identifies the benchmark. The second column contains

the Star+ wirelength estimates of the placement solutions obtained after using Shrubbery

to perform pre-placement. Columns 3 and 4 show the CPU running times (in seconds) of

Shrubbery (pre-placement) and the CG placement algorithm including Shrubbery,

respectively. Column 5 gives the percentage of total CPU time required by Shrubbery to

perform pre-placement. As Shrubbery is a deterministic algorithm it need only be run

once. When performing random placement, however, ten separate runs were performed.

Column 6 indicates the average Star+ wirelength estimates of the placement solutions

obtained when starting with 10 random pre-placements, while Column 7 indicates the

total CPU running time (in seconds) required to place each benchmark ten times.

With regards to estimated wirelength, the results in Table 5.1 show that Shrubbery

never finds a “bad” placement; that is, it never finds a placement appreciably worse than

that found using a random pre-placement strategy. Moreover, a closer inspection of Table

5.1 reveals that Shrubbery pre-placement outperformed random pre-placement on 14 out

of 20 benchmarks (70%). In the best case (s38417) Shrubbery outperformed the average

random pre-placement strategy by almost 10 percent, while the performance of

Shrubbery over all 20 benchmarks is 1.2% better than that of the random pre-placement

strategy.

Shrubbery’s main advantage over the random pre-placement strategy, however, is

its speed. Recall that Shrubbery is deterministic. Thus, it needs to be run only once

followed by conjugate-gradient. According to Column 5, the time required to perform

conjugate gradient accounts for approximately 91% to 97% of the total run time. Now, in

the case of the random pre-placement strategy, individual random placements may be

CHAPTER 5: Pre-Placement and Legalization Methods

 113

quite poor requiring a “pool” of solutions (e.g., 10) to be created and evaluated. Note that

each random trial requires conjugate-gradient to be run. If we assume that each random

pre-placement is instantaneous, the time required to run CG multiple times versus

running CG once (when using Shrubbery) is significant. For example, it can be clearly

seen from Table 5.1 that running Shrubbery and conjugate gradient once is approximately

9 times faster than running conjugate gradient ten times to generate a pool of 10 (random)

pre-placements.

Table 5.1: Shrubbery pre-placement vs. random pre-placement.

Shrubbery Random

Wire-
length

Pre-
placement

time

Total
CPU time Percentage Wire-

length CPU time

Tseng 11288 0.03125 0.34375 9.09% 11706 3.125
Ex5p 18875 0.03125 0.34375 9.09% 19121 3.125
Apex4 21484 0.03125 0.4375 7.14% 21500 4.0625
Misex3 22033 0.03125 0.5 6.25% 22140 4.6875
Diffeq 17339 0.03125 0.5625 5.56% 18025 5.3125
alu4 20990 0.03125 0.5625 5.56% 21437 5.3125
Seq 28485 0.046875 0.6875 6.82% 29021 6.40625

Apex2 31771 0.03125 0.765625 4.08% 32010 7.34375
s298 22161 0.03125 0.765625 4.08% 21696 7.34375
Dsip 21929 0.03125 0.828125 3.77% 23304 7.96875

Bigkey 25264 0.046875 0.953125 4.92% 26301 9.0625
Frisc 61315 0.078125 2.078125 3.76% 60168 20

Elliptic 53487 0.078125 2.0625 3.79% 56499 19.84375
Spla 73681 0.078125 2.171875 3.60% 71793 20.9375
Des 32974 0.046875 1.109375 4.23% 32332 10.625

ex1010 74126 0.09375 2.921875 3.21% 73943 28.28125
Pdc 103418 0.109375 3.03125 3.61% 103253 29.21875

S38417 72645 0.171875 4.859375 3.54% 78680 46.875
S38584.1 72761 0.140625 4.90625 2.87% 73785 47.65625

Clma 156409 0.25 8.21875 3.04% 157064 79.6875
Total 942435 1.421875 38.10938 3.73% 953772 366.875

5.5.2 CG versus VPR

We now compare CG to VPR [28] – the state-of-the-art academic place and route tool.

Table 5.2 compares the running time (in seconds) of CG placement with that of VPR with

CHAPTER 5: Pre-Placement and Legalization Methods

 114

inner_num set to 1 and 10, respectively. Both placement tools were tested using all 20

MCNC benchmarks. The last row of the table shows the total running time to place all

20 benchmarks. The total runtime for CG is 264.5 seconds compared with 169.5 seconds

for VPR when run in its fastest mode with inner_num =1. This means that CG is 56%

slower than VPR when run in its fastest mode of operation. However, CG is more than 5

times faster than VPR when VPR is run with inner_num =10.

Table 5.2: Running time of CG and VPR in Seconds

VPR

CG
inner_num=1 inner_num=10

Tseng 1.41 1.86 18.6
Ex5p 1.31 1.83 18.3
Apex4 1.72 2.2 22
Misex3 2.06 2.53 25.3
Diffeq 2.42 2.95 29.5
alu4 2.41 2.66 26.6
Seq 3.08 3.45 34.5

Apex2 3.53 3.86 38.6
s298 3.53 3.45 34.5
Dsip 4.78 2.8 28

bigkey 5.25 3.83 38.3
Frisc 11.52 9.59 95.9

Elliptic 12.42 10.11 101.1
Spla 12.34 9.84 98.4
Des 7.48 3.47 34.7

ex1010 18.11 13.55 135.5
Pdc 18.63 13.24 132.4

S38417 38.17 22.69 226.9
S38584.1 41.02 22.3 223

Clma 73.33 33.3 333
Total 264.52 169.51 1695.1

We now turn our attention to solution quality as measured by critical-path delay.

Recall that CG and VPR use two different net models for estimating wirelength: Star+

and HPWL, respectively. Consequently, any comparison between CG and VPR, with

regards to solution quality, must be performed after routing. When using VPR’s router,

the router is configured to perform timing-driven routing which attempts to improve

circuit speed by reducing critical-path delay.

CHAPTER 5: Pre-Placement and Legalization Methods

 115

Table 5.3 compares the critical-path delays found when using CG and VPR with

inner_num=1 and inner_num=10, respectively. (Note: the results presented for

VPR are the average of 10 independent runs.) The results show that when VPR is run

with inner_num=1 (fastest option), CG finds lower critical-path delays for 11 of the 20

cases. The average reduction for these 11 cases is 13 percent. In the 9 cases that CG fails

to find a lower critical-path delay, the average increase in delay is 6.6 percent. Overall,

CG finds a 2 percent reduction in critical-path delay compared with VPR.

Table 5.3: Critical-path delays (CG vs. VPR)

VPR
 CW CG inner_num=1 inner_num=10

Alu4 12 99.01 120.331 113.6717
Apex2 13 108.37 128.77 125.1346
Apex4 15 128.23 127.922 122.6053
bigkey 9 60.77 100.935 100.0536
Clma 16 285.18 264.999 252.9958
Des 12 121.15 123.01 136.5118

Diffeq 9 112.16 106.112 90.33062
Dsip 9 75.07 91.0482 93.37907

elliptic 13 259.96 257.387 206.6148
Ex1010 14 238.75 205.552 202.9452
Ex5p 16 124.98 116.071 125.2613
Frisc 14 249.61 227.362 189.0848

Misex3 14 99.92 108.431 105.6976
Pdc 21 222.77 254.422 217.5874

S298 9 234.20 240.983 203.189
S38417 10 213.06 196.969 163.1709

S38584.1 10 115.30 123.888 119.709
Seq 14 104.22 123.035 118.0495
Spla 16 213.07 205.085 188.0682

Tseng 8 78.01 81.7572 75.83124
Total 3144 3204 2950

Not surprisingly, when VPR is run with inner_num=10, VPR performs much

better with respect to critical-path delay. CG finds a better solution for 9 of the 20 cases.

The overall average increase in critical-path delay is 6.6%.

 We now turn our attention to wirelength. Table 5.4 compares the placements

produced by CG and VPR (with inner_num=1 and inner_num=10, respectively)

CHAPTER 5: Pre-Placement and Legalization Methods

 116

with respect to wirelength following routing. For this comparison, the router uses a

breadth-first strategy. The reason for using a breadth-first strategy is because a breadth-

first routing strategy seeks to find a successful routing by minimizing the number of

required wire segments to make all connections.

Table 5.4 Wirelength (CG vs. VPR)

VPR
 CW CG inner_num=1 inner_num=10

Alu4 11 20854 22038 21016
Apex2 13 32629 32546 30638
Apex4 14 23082 22865 21848
bigkey 8 25596 22396 18505
Clma 15 152826 142509 133592
Des 12 34297 29161 24758

Diffeq 9 16861 16263 14676
Dsip 9 25547 17171 14582

elliptic 13 49536 53811 45912
Ex1010 13 75553 72613 70864
Ex5p 15 21142 19924 18648
Frisc 14 60668 59957 55274

Misex3 13 24255 22700 21871
Pdc 19 106503 104298 99046

S298 9 21388 22703 21346
S38417 10 72340 66586 61764

S38584.1 10 64958 63515 57099
Seq 13 30061 29611 28059
Spla 16 72155 71194 67362

Tseng 8 9880 10420 9423
Total 940131 902282 836281

In Table 5.4, Column 1 identifies the benchmark by name. Column 2 indicates the

channel width used by the router. The third column shows the actual wirelength required

when using CG. The fourth and fifth columns show the total wirelength required by VPR

(with inner_num=1 and inner_num=10, respectively). All data for VPR is the

average of 10 independent runs.

The results show that when VPR is run with inner_num=1, CG uses 4.2 percent

more wirelength on average. When inner_num=10, the overall improvement of VPR

over CG in terms of wirelength is 12 percent.

CHAPTER 5: Pre-Placement and Legalization Methods

 117

In short, CG is more than 5 times faster than VPR (inner_num=10) but 56%

slower than VPR (inner_num=1). When VPR is run with inner_num=1, CG gets

solutions with 2% less delay while using 4.2% more wire segments. When VPR is run

with inner_num=10, CG gets solutions with 6.6% more delay and uses 12% more wire

segments.

5.6 Summary

In this chapter, we developed a pre-placement algorithm, called Shrubbery, to pre-place

I/O blocks. This guarantees that the CG placement algorithm produces non-trivial

placements. We demonstrated that Shrubbery is able to outperform a random pre-

placement strategy that seeks to find the best (initial) placement by generating a pool of

random placements, both with respect to solution quality and runtime. Unlike the random

pre-placement strategy, Shrubbery only requires a single application of CG, which is

much faster than the multiple applications of CG that are required to create a pool of

random pre-placements. Most importantly, we were able to show, both theoretically and

empirically, that the running time of Shrubbery is extremely small. Finally, to avoid

illegal placements we employed an existing bi-partitioning algorithm [17] that legalizes

the solutions obtained from CG placement.

From the experimental results, we conclude that CG is competitive with VPR in

its fast mode (inner_num=1), but produces slightly lower quality solutions than VPR

when inner_num=10. Also, by reducing the runtime of each iteration from O(n2) to

O(n), we have improved the speed of CG significantly and made it about 5 times faster

than VPR when inner_num=10. The speed of CG can be further improved by 80% if

we increase the value of  from 0.1 to 0.2 at the cost of only 1.2% increase in wirelength

estimate. However, as an effective “linear search” algorithm CG converges much more

slowly when used to solve a nonlinear equation system. The convergence of CG depends

CHAPTER 5: Pre-Placement and Legalization Methods

 118

on how close the objective function approximates “quadratic”. With a constant quadratic

objective function for n variables and an exact line search, CG will converge in n or

fewer iterations. However, as our objective function is based on a near-linear model, CG

loses conjugacy quickly (This is a typical issue when using CG for solving nonlinear

equation systems [32].)

In the next Chapter, we present another analytical method based on Successive

Over-Relaxation (SOR), which does not require the objective function to be “quadratic”

and actually converges much faster than the CG method when used to solve the

placement problem based on Star+.

 119

Chapter 6

Successive Over-Relaxation Placement

In Chapter 4, a placement method based on Conjugate Gradient was introduced.

Conjugate gradient is classified as an iterative method. In general, an iterative method

starts with an initial solution (or guess). It then incorporates the solution into a recurrence

formula from which another approximate solution is generated. This process repeats until

a final solution is found. Ideally, the sequence of solutions produced should eventually

converge to the exact solution; that is, a placement with minimum total wire length

should be found. There is, however, an important caveat that must be considered. In order

to converge to an exact solution, the sequence of approximate solutions generated should

increasingly resemble the exact solution. When minimizing quadratic functions, an exact

solution can be found in at most n iterations (Section 4.1). However, for non-linear

problems (like the one considered in this thesis), the search directions on each iteration

can quickly lose conjugacy [32]. As a result, slower progress towards the exact solution

is made.

CHAPTER 6: Successive Over Relaxation Placement

 120

In this chapter, we present a second analytic placement algorithm based on

Successive Over-Relaxation (SOR) [33]. Like conjugate gradient, SOR is also an iterative

method. However, unlike conjugate gradient, SOR does not require search directions to

be conjugate to each other. As a result, SOR can often converge to a final solution

extremely quickly.

The remainder of this chapter is organized as follows. Section 6.1 provides all of

the necessary background for understanding the SOR method. In Section 6.2 we show

how SOR can be used to implement a placement algorithm based on the Star+ model

presented in Chapter 3. Section 6.3 presents ordering heuristics and relaxation techniques

for improving the performance of SOR placement. In Section 6.4, VPR [28], SOR and

CG are applied to the 20 MCNC benchmarks and compared with respect to solution

quality and run time. In Section 6.5, we compare the convergence of SOR and VPR. In

Section 6.6, we present a hybrid approach by combining SOR and VPR. Finally, in

Section 6.7 we provide a summary of the contributions of this Chapter.

6.1 Background

Successive Over-Relaxation is a numerical method for improving the convergence speed

of the Gauss-Seidel method [33] for solving systems of linear equations. The Gauss-

Seidel method, in turn, is an improved version of the Jacobi method [33] for solving

systems of linear equations. Therefore, to prepare the reader for the Successive Over-

relaxation method, we begin with a brief overview of the Jacobi and Gauss-Seidel

methods.

6.1.1 Jacobi Method

The Jacobi method is an algorithm for solving linear equation systems of the form Ax =

b. The algorithm is always guaranteed to converge when the coefficient matrix A is

CHAPTER 6: Successive Over Relaxation Placement

 121

diagonally dominant. (A matrix is said to be diagonally dominant if for every row of the

matrix the magnitude of the diagonal element is greater than the magnitude of all other

(non-diagonal) entries in that row.) The matrix A can be looked at as the sum of three

matrices: A = D + (L + U), where D, L and U represent the diagonal, lower triangular

and upper triangular parts of A. Using simple substitution, the original equations system

can be re-written as follows:

bxULDx )(

xULbDx)(

xULDbDx)(11   (Equation 6.1)

Note that as D is diagonal, therefore it is easy to invert. Equation 6.1 can now be

converted into an iterative search method as shown below:

)(11)1()(kk xULDbDx  

where k is the iteration count. When implementing the Jacobi iteration, an element-based

formula is used:

.,,2,1,11)()1(nixa
a

b
a

x
ij

k
jij

ii
i

ii

k
i  



 (Equation 6.2)

Notice that to compute)1(k
ix the values for)(k

ix must be retained from one iteration to

the next. A summary of the Jacobi method is provided below in Fig. 6.1.

6.1.2 Gauss-Seidel Method

The Gauss-Seidel method is an improved version of the Jacobi method. The main

difference between the two methods is that unlike the Jacobi iteration that retains the

CHAPTER 6: Successive Over Relaxation Placement

 122

updated values until the next iteration, the Gauss-Seidel iteration uses the newest values

immediately. More specifically, the Jacobi iteration (Equation 6.2) can be rewritten as:

.,,2,1,111)()()1(nixa
a

xa
a

b
a

x
ij

k
jij

iiij

k
jij

ii
i

ii

k
i  





Figure 6.1: Jacobi method

Notice that once we calculate)1(k
ix , we have calculated all)1(k

jx s where ij  (assuming

we calculate all the ix s in order starting from 1x to nx in each iteration). Therefore, we

can use 




ij

k
jij

ii

xa
a

)1(1 instead of 
ij

k
jij

ii

xa
a

)(1 in above equation, and speed up the

convergence. An element-based formula of Gauss-Seidel can be expressed as follows:

 .,,2,1,111)()1()1(nixa
a

xa
a

b
a

x
ij

k
jij

iiij

k
jij

ii
i

ii

k
i  



 (Equation 6.3)

The Gauss-Seidel method can also be expressed in matrix form. As with the Jacobi

method, the matrix A can be expressed as the sum of three matrices: A = D + L + U,

where D, L and U denote the diagonal, strictly lower triangular, and strictly upper

triangular parts of A, respectively. Through simple substitution, this leads to:

for k = 1 step 1 until convergence
{
 for i = 1 to n
 {
 0s
 for j = 1 to n
 {
 if (j != i))1( k

jij xass
 }

ii

ik
i a

sbx 
)(

 }
}

CHAPTER 6: Successive Over Relaxation Placement

 123

bUxxLD )(

UxbxLD )(

)()(1 UxbLDx  

Therefore, the matrix form of Gauss-Seidel can be expressed as:

)()()(1)1(kk UxbLDx  

Note that Gauss-Seidel is guaranteed to converge if the matrix A is either diagonally

dominant or symmetric and positive definite. Figure 6.2 gives the pseudo code of the

Gauss-Seidel method.

Figure 6.2: Gauss-Seidel method

Although Equation 6.3 looks more complicated than Equation 6.2, the implementation of

Gauss-Seidel is actually easier than the Jacobi method. Since the computation of)1(k
ix

uses only the elements of)1(kx that have already been computed and the elements of)(kx

that have yet to be advanced to iteration k+1, there is no need to store both vectors)1(kx

for k = 1 step 1 until convergence
{
 for i = 1 to n
 {
 ;0s
 for j = 1 to n
 {
 if (j != i) jij xass 
 }

ii

i
i a

sbx 


 }
}

CHAPTER 6: Successive Over Relaxation Placement

 124

and)(kx at the same time. The computation can be done in place by replacing)(kx with
)1(kx .

6.1.3 Successive Over-Relaxation

Having described both the Jacobi and Gauss-Seidel methods, we now turn our attention

to the Successive Over-Relaxation method (which we use throughout the remainder of

this Chapter). Successive Over-Relaxation was devised by Young and Frankel in 1950

[34] as a technique to speed up convergence of the Gauss-Seidel method. Given a linear

equation system of the form Ax = b, we let A = D + L + U, where D, L and U denote the

diagonal, strictly lower triangular, and strictly upper triangular parts of A. The Successive

Over-Relaxation iteration is then defined by the following recurrence relation:

 )(1)1()()(kk xUDDbLDx   

where ω is a relaxation factor. If matrix A is symmetric and positive-definite, Successive

Over-Relaxation iteration always converges when 0 < ω < 2. When ω =1, SOR iteration

reduces to Gauss-Seidel method.

 Like the Gauss-Seidel method, the computation of SOR can also be performed in

place. The actual implementation of SOR uses the following element-based iteration

formula:

.,,2,1,)1()()()()1(nixaxab
a

xx
ij

k
jij

ij

k
jiji

ii

k
i

k
i 








 



  (Equation 6.3)

Figure 6.3 gives the pseudo code of the SOR method.

CHAPTER 6: Successive Over Relaxation Placement

 125

6.2 SOR Placement

In this section, we explain how the SOR method can be used to implement a placement

algorithm based on the Star+ model presented in Chapter 3. To implement SOR

placement, it is necessary to begin by finding the recurrence relation between)1(k
ix and

)(k
ix . When)(xf is positive definite, we can minimize)(xf by solving)(' xf =0.

Recall from Section 4.2.2 that)(' xf is a vector that points in the direction of greatest

increase of f(x) at a given point x=(x1,x2,…xn)T and is defined as follows:



































)(

)(

)(

)('
2

1

xf
x

xf
x

xf
x

xf

n


.

Figure 6.3: Successive Over-Relaxation method

for k = 1 step 1 until convergence
{
 for i = 1 to n
 {
 ;0s
 for j = 1 to n
 {
 if (j != i) jij xass 
 }

)()1(sb
a

xx i
ii

ii 


 }
}

CHAPTER 6: Successive Over Relaxation Placement

 126

In Equation 4.12 (see Section 4.2.2) it was shown that for the Star+ model, the partial

derivative of f(x) with respect to xj is 








lNetjl l

clj

j S
xx

xf
x :

)( . By making



)(xf
x j

0, we obtain the equation:

0
:





 lNetjl l

clj

S
xx



0
::

 
 ll Netjl l

cl

Netjl l

j

S
x

S
x

0
::

 
 ll Netjl l

cl

Netjl l

j

S
x

S
x





ll Netjl l

cl

Netjl l
j S

x
S

x
::

1

 



l

l

Netjl l

cl

Netjl l

j S
x

S
x

:
:

1
1

In the previous equation, 



lNeti

i
l

cl x
k

x 1 and 



lNeti

cllil xkxS 122 . Now, by putting

the iteration number into these equations we obtain the Jacobi iteration for the placement

problem:

)()(1 k

Neti
i

l

k
cl

l

x
k

x 








lNeti

k
cll

k
i

k
l xkxS 1)()(2)(2)()(

 


 
l

l

Netjl
k

l

k
cl

Netjl
k

l

k
j S

x

S
x

:
)(

)(

:
)(

)1(

1
1

To implement the Gauss-Seidel iteration, we need to update clx and lS immediately after

jx moves from)(k
jx to)1(k

jx . Fortunately, both clx and lS can be updated in a constant

time (Section 3.2). This feature makes it possible to build a time-efficient Gauss-Seidel

method for FPGA placement problem based on the Star+ model. For the sake of

CHAPTER 6: Successive Over Relaxation Placement

 127

simplicity, we introduce two new variables lU and lV , and let 



lNeti

il xU 2 and





lNeti

il xV . The Gauss-Seidel iteration for the placement problem is defined as:

2)0()(



lNeti

il xU

)0(



lNeti

il xV

l
l

cl V
k

x 1


12
 cllll xkUS

 


 
l

l

Netjl l

cl

Netjl l

k
j S

x

S
x

:
:

)1(

1
1 (Equation 6.4)

2)(2)1()()(k
j

k
jll xxUU  

)()1(k
j

k
jll xxVV  

To advance to the SOR iteration from the Gauss-Seidel iteration, we introduce a

relaxation factor ω into Equation 6.4. The SOR iteration for placement is summarized as

follows:

2)0()(




lNeti

il xU

)0(



lNeti

il xV

l
l

cl V
k

x 1


12
 cllll xkUS

 


 
l

l

Netjl l

cl

Netjl l

k
j

k
j S

x

S
xx

:
:

)()1(

1)1(

2)(2)1()()(k
j

k
jll xxUU  

)()1(k
j

k
jll xxVV  

CHAPTER 6: Successive Over Relaxation Placement

 128

6.3 Improving SOR for FPGA Placement

In practice, the performance of SOR may be affected by the order in which the xi

variables are calculated. This is illustrated in the following example.

Assume a simple equation system with only three variables and three equations:

2
2
1

0
2
1

2
1

0
2
1

23

312

21







xx

xxx

xx

Prepare to calculate the first SOR iteration (assuming, for the sake of simplicity, ω=1):

2
2
1

2
1

2
1
2
1

23

312

21







xx

xxx

xx

Now suppose that we start from (initial guess) 0,0,0)0(
3

)0(
2

)0(
1  xxx , and then perform

several SOR iterations to solve the equation system. We have:

2,0,0)1(
3

)1(
2

)1(
1  xxx

5.2,1,0)2(
3

)2(
2

)2(
1  xxx

75.2,5.1,5.0)3(
3

)3(
2

)3(
1  xxx



However, if we change the order of calculating 321 and , xxx as shown below:

CHAPTER 6: Successive Over Relaxation Placement

 129

21

312

23

2
1

2
1

2
1

2
2
1

xx

xxx

xx







And assuming we still start from (with the same initial guess) 0,0,0)0(
3

)0(
2

)0(
1  xxx ,

and perform several SOR iterations, we get:

5.0,1,2)1(
1

)1(
2

)1(
3  xxx

75.0,5.1,5.2)2(
1

)2(
2

)2(
3  xxx

875.0,75.1,75.2)3(
1

)3(
2

)3(
3  xxx

We can now see that the latter sequence results in faster convergence than the former

sequence. In fact, for a given starting point the difference can be as big as n-1 iterations,

where n is the number of blocks. The time required to perform n-1 iterations of SOR is

O(n2). In order to try and speed up the rate of convergence, we employ a novel heuristic

to pre-determine (sort) the sequence (order) in which the xi variables should be processed.

This heuristic is described next.

6.3.1 Ordering Heuristic

Recall that prior to performing placement, the Shrubbery algorithm (described in Chapter

5) is used pre-place all of the I/O pads. (It is necessary to perform this pre-placement to

avoid trivial solutions being found (i.e., f(x) =0).) The proposed ordering heuristic is

based on the idea that the position of blocks that have more connectivity with I/O pads

should be determined ahead of blocks that have less connectivity with I/O pads.

To determine (sort) the sequence for calculating each block’s x-coordinates xi, we

use a modified version of Dijkstra’s algorithm. First, a graph with n vertices is built in a

CHAPTER 6: Successive Over Relaxation Placement

 130

way similar to that used when pre-placing I/O pads (see Chapter 5). Each vertex

represents a block. Each edge represents a connection with an edge weight, which is the

“closeness” of the connection. The closeness is computed as the reciprocal of the

cardinality of the corresponding net.

For example, using the graph in Fig 5.4 as a starting point, we obtain the

“closeness” graph shown in Fig 6.4, which has the same vertices and edges, but each new

edge weight is now the reciprocal of the original edge weight (also the reciprocal the

cardinality of the corresponding net). All blocks that have been pre-placed using

Shrubbery (see Chapter 5) are put into the source pool. In this case, I/O pads J, K, L, M,

N and O are in the source pool. Any other vertex, which is not in the source pool but has

an edge (or edges) connecting to any vertex (or vertices) in the source pool, is associated

to the source with a “closeness” that equals the sum of all the edge weights. For example,

in Fig 5.4, block e has only one edge connecting it to J (a vertex in the source pool);

therefore the “closeness” of e is the edge weight, 1; block a has two edges connecting to

K and N, respectively, and hence its “closeness” is 2 (the sum of the two edge weights).

For those blocks that have no edge connecting to the source pool, their “closeness” is 0

and will not be considered (sorted) at this time. The blocks with nonzero closeness are

sorted in descending order of their closeness: a(2), e(1), c(1), d(1), f(1), and are also put

into the source pool. (Note: the numbers inside the brackets denotes the closeness of a

block. Blocks that have the same closeness value are randomly ordered.) All of the blocks

that are sorted in order are put into the source pool, and closeness of vertices not in the

source pool is re-calculated (see Fig 6.5). This time, the closeness of all the vertices that

have edges connecting to the source pool are: b(3), h(1.5), g(1), i(0.5). Finally, by

connecting sequence a, e, c, d, f and b, h, g, i, we get the entire sequence a, e, c, d, f, b, h,

g, i. This sequence defines the order of calculating the coordinates of the blocks.

CHAPTER 6: Successive Over Relaxation Placement

 131

Figure 6.4 The corresponding graph

Figure 6.5 The graph after a, e, c, d, f are in the source pool

L

f

a

b c

d

e

g

h

i

J

K

M

N

O

0.5 0.5

0.5

0.5

0.5 0.5

1

1

1

1

1

1

1

1 1 1 1

L

f

a

b c

d

e

g

h

i

J

K

M

N

O

0.5 0.5

0.5

0.5

0.5 0.5

1

1

1

1

1

1

1

1 1 1 1

Source pool

Source pool

CHAPTER 6: Successive Over Relaxation Placement

 132

Figure 6.6 shows a simple circuit:

Three logic blocks with x-coordinates 21 , xx and 3x respectively;

Two I/O pads b1 and b2 that are pre-placed at the positions of 0 and 4 (x-

coordinates);

And four nets: b1- 1x , 21 xx  , 32 xx  , and 3x -b2.

Since each of the nets connects two blocks (including I/O pads), the closeness of each

corresponding connection is the inverse of two (i.e., 0.5).

x-coordinates: 0 1 2 3 4

Figure 6.6 Sort the equations

The corresponding equation system is:

21

312

23

2
1

2
1

2
1

2
2
1

xx

xxx

xx







Initially, 21 , xx and 3x are set to zero, which is the position of b1. The source pool

has only one vertex b2. Then, we select a vertex that is outside the source pool and has the

largest “closeness” connecting all vertices in the source pool. At this time, 3x is picked

and put into the source pool. Then the next vertex that has the largest closeness is 2x and

2x is put into the source pool. Eventually, 1x is picked and put into the source pool.

After all blocks have been put into the source pool, we obtain the sequence of calculating

x2 x3 x1

e
b1 b2

0.5 0.5 0.5 0.5

CHAPTER 6: Successive Over Relaxation Placement

 133

the variables, which is actually the exact sequence of the corresponding blocks being put

into the source pool. A formal description of the ordering heuristic is presented in Fig.

6.7.

Figure 6.7: Ordering heuristic

Figure 6.8 gives the pseudo code of the entire SOR placement method. The first

step initializes all x-coordinates using Shrubbery pre-placement. Step 2 uses the

aforementioned ordering heuristic to determine the order that will be used to update all of

the xis. Steps 3-9 initialize the middle variables lU and lV , the center of gravity clx , and

compute the Star+ estimate lS for each net l. Within the while loop (steps 11-25), each

iteration calculates a new x, and updates lU , lV , clx and lS for each affected net l. The

iterations repeat number_SOR times. (The value of number_SOR is determined in a

similar way to how number_CG is determined. See Sections 5.3 and 5.5 regarding how to

compute number_CG.)

[1] convert the circuit into a graph:
 a block  a vertex
 a net  a clique
[2] for any edge ije , calculate ijw as the reciprocal of the

cardinality of the corresponding net
[3] set the “closeness” ic of block i to 0
[4] Source_pool = {}
[5] for each I/O pad i
[6] }{__ ipoolSourcepoolSource 
[7] ijjjij wccpoolSourceje  ,_:
[8] do
[9] Let poolSourcei _ and has the max closeness ic
[10] }{__ ipoolSourcepoolSource 
[11] ijjjij wccpoolSourceje  ,_:
[12] until Source_pool contains all m terminals
[13] The sequence of blocks being put into Source_pool is the

sequence of calculating the positions of the blocks.

CHAPTER 6: Successive Over Relaxation Placement

 134

Figure 6.8: Pseudo-code of SOR placement algorithm

[1] Initialize all xi
[2] Sort the order of calculating all the xis
[3] For each net l
[4] {
[5] 2)0()(




lNeti

il xU

[6])0(



lNeti

il xV

[7] l
l

cl V
k

x 1


[8] 12
 cllll xkUS

[9] }
[10] i = 0

[11] While i < number_SOR
[12] {

[13] For each block j
[14] {

[15]  


 
l

l

Netjl l

cl

Netjl l

k
j

k
j S

x

S
xx

:
:

)()1(

1)1(

[16] For each net l that lj
[17] {
[18] 2)(2)1()()(k

j
k

jll xxUU  

[19])()1(k
j

k
jll xxVV  

[20] l
l

cl V
k

x 1


[21] 12
 cllll xkUS

[22] }
[23] }
[24] i = i + 1
[25] } //end of while

CHAPTER 6: Successive Over Relaxation Placement

 135

The time complexity of each iteration (steps 13-23) in the SOR placement

algorithm is O(n), where n is the number of blocks. Because of the physical limit of the

FPGA architecture, each block can only connect to a certain number of nets. This number

is a constant in the algorithm implementation. That means in the algorithm described in

Figure 6.8, the runtime for step 15 and steps 16-22 is also constant. Therefore, the

runtime for the inner loop (steps 13-23) is linear to the number of blocks, which is O(n).

6.3.2 Effect of Ordering Heuristic

In this subsection, we examine the overall effectiveness of the ordering-heuristic

proposed in Section 6.3. Table 6.1 compares the quality of the placements obtained when

using SOR with and without variable ordering. Column 1 identifies each benchmark by

name. Columns 2 and 3 indicate the wirelength and runtime of SOR with variable

ordering, while columns 4 and 5 give the same information but this time without variable

ordering.

For 14 of the 20 benchmarks, using variable ordering results in a lower wirelength

estimate. The average improvement in these thirteen cases is 3.8 percent. In the 6 cases

where variable ordering does not help, it does not hurt either. The average difference in

solution quality for these 6 cases is only 0.5 percent. Overall, the results in Table 6.1

show that ordering heuristics improves the quality by 2.7% on average, while requiring

only 0.4% additional runtime. Given these facts, it is clear that there is a definite benefit

to employing variable ordering when using the SOR-based placement method.

CHAPTER 6: Successive Over Relaxation Placement

 136

Table 6.1: With ordering vs. without ordering
With Ordering Without Ordering

 Star+ Time Star+ Time
Tseng 11288 0.34375 11884 0.342
Ex5p 18875 0.34375 19982 0.34275
Apex4 21484 0.4375 22012 0.4375
Misex3 22033 0.5 22057 0.4965
Diffeq 17339 0.5625 18595 0.5585
alu4 20990 0.5625 21252 0.55775
Seq 28485 0.6875 28627 0.68725

Apex2 31771 0.765625 31686 0.7585
S298 22161 0.765625 23553 0.75875
Dsip 21929 0.828125 21602 0.82175

Bigkey 25264 0.953125 26348 0.9475
Frisc 61315 2.078125 64210 2.0745

Elliptic 53487 2.0625 54540 2.0515
Spla 73681 2.171875 73421 2.155
Des 32974 1.109375 32838 1.1065

Ex1010 74126 2.921875 79055 2.9215
Pdc 103418 3.03125 103384 3.00125

S38417 72645 4.859375 75675 4.83125
S38584.1 72761 4.90625 72320 4.893

Clma 156409 8.21875 165531 8.19975
Total 942435 38.10938 968572 37.943

6.3.3 Choosing the Value of Relaxation Factor ω

In Section 6.2, we mentioned that, in general, the relaxation factor (ω) affects the

convergence properties of SOR. For example, if ω=1, the SOR method simplifies to the

Gauss-Seidel method. Moreover, Kahan’s theorem [112] shows that SOR does not

guarantee convergence if ω is not between 0 and 2. Typically, values of ω>1 are used to

speedup convergence, while values of ω<1 are often used to establish convergence of a

diverging iterative process. Generally, it is not possible to compute a priori the value of ω

that is optimal with respect to the rate of convergence of SOR [33]. Even when it is

possible to compute the optimal value of ω, the expense of such computation is usually

prohibitive [33]. In this subsection, we perform a series of experiments to explore the

effect of ω on the convergence of our SOR-based placement method.

CHAPTER 6: Successive Over Relaxation Placement

 137

In the experiments that follow, SOR was run on all 20 MCNC benchmarks, while

the value of ω was varied from 0.2 to 2. For each benchmark and each value of ω, SOR

was executed for the exact same number of iterations as the Conjugate Gradient

Placement algorithm (see Section 5.3 and Section 5.5 about how to determine the number

of iterations in CG placement). The experimental results are summarized in Figure 6.9.

The x-axis shows the value of ω from 0.2 to 2 with an incremental step of 0.2. The y-axis

gives the total wirelength estimate of the placement solutions obtained by running SOR

on 20 MCNC benchmarks, with the corresponding value of ω. Clearly, there is an

obvious trend showing that as ω increases the total number of estimated wire segments

decreases. In particular, when ω=2 the total estimated number of wire segments is

smallest (942435). Based upon these results, we choose to set ω=2 in our implementation.

However, it is worthwhile to note that using the smallest ω value (ω=0.2) results in a

wirelength estimate only (approximately) 1% worse than when using ω=2 (952746 versus

942435). Thus, the proposed SOR method is quite stable and robust, regardless of what

value of ω is used (i.e., 0.2 to 2).

Wire-­length with different values of ω

952746
950663

949246 948298 948529
946677

945055
943342 943072 942435

930000

935000

940000

945000

950000

955000

960000

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Relaxation factor ω

W
ire

-le
ng

th

Figure 6.9: Wirelength with different values of ω

CHAPTER 6: Successive Over Relaxation Placement

 138

6.4 Experimental Results

Having verified that the ordering heuristic is effective, and having determined an

appropriate value for the relaxation factor, we now turn our attention to the overall

effectiveness of the SOR method compared with the CG method presented in Chapter 4,

and the state-of-the-art academic place and route tool, VPR. More specifically, in

Section 6.4.1, we compare the SOR-placement head-to-head with the CG-placement with

respect to both runtime and estimated wirelength quality. Then, in Section 6.4.2, we

compare SOR placement with VPR, this time with respect to runtime, critical-path delay,

and wirelength following routing.

6.4.1 SOR versus CG

We begin with a head-to-head comparison of the two new analytic placement methods

proposed in this thesis: Conjugate Gradient placement and Successive Over-Relaxation

placement. As both of these analytical methods employ the Star+ net model described in

Chapter 3, and later adapted for use in analytical methods (Chapter 4) both algorithms are

compared on the basis of estimated wirelength (i.e., no actual routing is performed at this

point).

Table 6.2 shows the results of the comparison. Column 1 identifies the

benchmarks by name. Columns 2 and 3 show the estimated wirelength and run time for

SOR placement, while Columns 4 and 5 show similar information for CG placement. The

total wirelength and average runtime for both analytic methods is given in the last row of

the table.

The results show that with regards to estimated wirelength, for 15 of the 20

benchmarks, SOR is able to find a placement with lower estimated wirelength. The

biggest improvement SOR obtains over CG is for the DSIP benchmark where SOR

obtains a wirelength estimate that is 10% lower compared with CG. However, it should

CHAPTER 6: Successive Over Relaxation Placement

 139

be noted that, overall, SOR obtains a 2.6 percent improvement in estimated wirelength

compared with CG. Thus, both analytic algorithms perform similarly with respect to

solution quality. With regards to runtime, however, there is a significant difference

between the two algorithms. For every benchmark, SOR is always faster than CG.

Moreover, on average, SOR is approximately 7x faster than CG. The reason why SOR is

so much faster than CG can be explained by the fact that the target equation system is

non-linear. When using CG to solve a non-linear problem, the search directions on each

iteration can quickly lose conjugacy [32], and hence are not as helpful to the convergence

of the algorithm. However, calculating conjugate directions is computationally expensive.

Therefore, for this specific type of non-linear system, SOR outperforms CG in terms of

runtime.

Table 6.2: Comparisons between SOR and CG

SOR CG
 Wirelength Time (s) Wirelength Time (s)

alu4 20990 0.5625 21702 2.40625
apex2 31771 0.765625 31744 3.53125
apex4 21484 0.4375 22498 1.71875
Bigkey 25264 0.953125 25703 5.25
Clma 156409 8.21875 151243 73.32813
Des 32974 1.109375 35345 7.484375

Diffeq 17339 0.5625 18410 2.421875
Dsip 21929 0.828125 24160 4.78125

Elliptic 53487 2.0625 55286 12.42188
Ex1010 74126 2.921875 74718 18.10938
Ex5p 18875 0.34375 19629 1.3125
Frisc 61315 2.078125 64443 11.51563

misex3 22033 0.5 22782 2.0625
Pdc 103418 3.03125 104615 18.625

S298 22161 0.765625 21811 3.53125
S38417 72645 4.859375 77707 38.17188

S38584.1 72761 4.90625 73415 41.01563
Seq 28485 0.6875 29966 3.078125
Spla 73681 2.171875 71575 12.34375

Tseng 11288 0.34375 11156 1.40625
Total 942435 38.10938 957908 264.5156

CHAPTER 6: Successive Over Relaxation Placement

 140

6.4.2 SOR versus VPR

Having established that SOR placement is superior to CG placement, both with respect to

solution quality and runtime, we now compare SOR to VPR [28] – the state-of-the-art

academic place and route tool.

Table 6.3 compares the running time (in seconds) of SOR placement with that of

VPR with inner_num set to 1 and 10, respectively. Both placement tools were tested

using all 20 MCNC benchmarks. The last row of the table shows the total running time

to place all 20 benchmarks. The results show that regardless of the value of

inner_num, SOR always finds a solution faster than VPR for all 20 benchmarks.

Moreover, the total runtime for SOR is 38 seconds compared with 169.5 seconds for VPR

when run in its fastest mode with inner_num =1. This means that SOR is 4x faster than

VPR when run in its fastest mode of operation. Moreover, SOR is 40 times faster than

VPR when VPR is run with inner_num =10. Thus, we can see that SOR is significantly

faster than VPR, even when VPR is run in its fastest mode.

We now turn our attention to solution quality as measured by critical-path delay.

Recall that SOR and VPR use two different net models for estimating wirelength: Star+

and HPWL, respectively. Consequently, any comparison between SOR and VPR, with

regards to solution quality, must be performed after routing. When using VPR’s router,

the router is configured to perform timing-driven routing which attempts to improve

circuit speed by reducing critical-path delay.

Table 6.4 compares the critical-path delays found when using SOR and VPR with

inner_num=1 and inner_num=10, respectively. (Note: the results presented for

VPR are the average of 10 independent runs.) The results show that when VPR is run

with inner_num=1 (fastest option), SOR finds lower critical-path delays for 15 of the 20

cases. The average reduction for these 15 cases is 14 percent. In the 5 cases that SOR

fails to find a lower critical-path delay, the average increase in delay is 7.8 percent.

CHAPTER 6: Successive Over Relaxation Placement

 141

Overall, SOR finds an 8.8 percent reduction in critical-path delay compared with VPR,

and does so typically 4x faster than VPR.

Table 6.3: Running time of SOR and VPR in Seconds

VPR

SOR
inner_num=1 inner_num=10

Tseng 0.34375 1.86 18.6
Ex5p 0.34375 1.83 18.3
Apex4 0.4375 2.2 22
Misex3 0.5 2.53 25.3
Diffeq 0.5625 2.95 29.5
alu4 0.5625 2.66 26.6
Seq 0.6875 3.45 34.5

Apex2 0.765625 3.86 38.6
s298 0.765625 3.45 34.5
Dsip 0.828125 2.8 28

bigkey 0.953125 3.83 38.3
Frisc 2.078125 9.59 95.9

Elliptic 2.0625 10.11 101.1
Spla 2.171875 9.84 98.4
Des 1.109375 3.47 34.7

ex1010 2.921875 13.55 135.5
Pdc 3.03125 13.24 132.4

S38417 4.859375 22.69 226.9
S38584.1 4.90625 22.3 223

Clma 8.21875 33.3 333
Total 38.11 169.51 1695.1

Not surprisingly, when VPR is run with inner_num=10, VPR performs much

better with respect to critical-path delay. SOR finds a better solution for 11 of the 20

cases. Moreover, the overall average improvement in critical-path delay is reduced to

0.9%. However, it is important to remember that VPR now requires 40x as much runtime

as SOR, and even then, SOR finds solutions with lower-critical path delay, on average.

CHAPTER 6: Successive Over Relaxation Placement

 142

Table 6.4: Critical path delays (SOR vs. VPR)

VPR CW SOR
inner_num=1 inner_num=10

Alu4 11 106.857 120.331 113.6717
Apex2 13 116.394 128.77 125.1346
Apex4 14 122.411 127.922 122.6053
bigkey 8 73.6277 100.935 100.0536
Clma 15 268.531 264.999 252.9958
Des 12 124.301 123.01 136.5118

Diffeq 9 97.553 106.112 90.33062
Dsip 8 64.4369 91.0482 93.37907

elliptic 13 180.584 257.387 206.6148
Ex1010 13 191.122 205.552 202.9452
Ex5p 15 102.372 116.071 125.2613
Frisc 15 203.948 227.362 189.0848

Misex3 13 115.636 108.431 105.6976
Pdc 21 236.667 254.422 217.5874

S298 9 203.804 240.983 203.189
S38417 9 159.145 196.969 163.1709

S38584.1 10 140.828 123.888 119.709
Seq 13 96.3664 123.035 118.0495
Spla 18 238.615 205.085 188.0682

Tseng 8 80.6322 81.7572 75.83124
Total 2924 3204 2950

 We now turn our attention to wirelength. Table 6.5 compares the placements

produced by SOR and VPR (with inner_num=1 and inner_num=10, respectively)

with respect to wirelength following routing. For this comparison, the router is told to use

a breadth-first strategy. The reason for using a breadth-first strategy is because a breadth-

first routing strategy seeks to find a successful routing by minimizing the number of

required wire segments to make all connections.

In Table 6.5, Column 1 identifies the benchmark by name. Column 2 indicates the

channel width used by the router. The third column shows the actual wirelength required

when using SOR. The fourth and fifth columns show the total wirelength required by

VPR (with inner_num=1 and inner_num=10, respectively). All data for VPR is the

average of 10 independent runs.

CHAPTER 6: Successive Over Relaxation Placement

 143

Table 6.5 Wirelength (SOR vs. VPR)

VPR CW SOR
inner_num=1 inner_num=10

alu4 11 21652 22038 21016
Apex2 13 31969 32546 30638
Apex4 14 21666 22865 21848
bigkey 8 24029 22396 18505
Clma 15 150305 142509 133592
Des 12 33778 29161 24758

Diffeq 9 15990 16263 14676
Dsip 7 20468 17171 14582

elliptic 13 50419 53811 45912
Ex1010 13 74397 72613 70864
Ex5p 15 20239 19924 18648
Frisc 14 59043 59957 55274

Misex3 13 22417 22700 21871
Pdc 19 105148 104298 99046

S298 9 19960 22703 21346
S38417 9 66750 66586 61764

S38584.1 10 64567 63515 57099
Seq 13 28186 29611 28059
Spla 16 72060 71194 67362

Tseng 8 9835 10420 9423
Total 912878 902282 836281

The results show that when VPR is run with inner_num=1, SOR uses less

wirelength for 10 of the 20 cases; for these 10 cases, the average improvement of SOR

over VPR is 4.2%; for the 10 cases where VPR gets a better result, the average

improvement of VPR over SOR is 4.4%; the overall improvement of VPR over SOR in

terms of wire-length is 1.1%. When inner_num=10, SOR only outperforms VPR in 2

of the 20 benchmarks; for these two cases, the average improvement of SOR over VPR is

3.7%; for the 18 cases where VPR gets a better result, the average improvement of VPR

over SOR is 11%; the overall improvement of VPR over SOR in terms of wirelength is

9.1%. It should be emphasized, however, that as all of the circuits are routable, the

primary objective is not minimizing wirelength, but maximizing the speed of the final

circuit. Although SOR does not perform as well as VPR with respect to wirelength, SOR

does find solutions with 1-9 percent less critical-path delay.

CHAPTER 6: Successive Over Relaxation Placement

 144

To summarize, SOR is more efficient than VPR. When VPR is run with

inner_num=1, SOR is 4x faster and gets solutions with 8.8% less delay while using

only 1% more wire segments. When VPR is run with inner_num=10, SOR is about

40x faster and gets solutions with 0.9% less delay while using 9% more wire segments.

6.5 Convergence of SOR

It is clear that SOR’s primary advantage over VPR is its speed. Figure 6.10 shows the

convergence properties of SOR and VPR for the CLMA benchmark (the largest

benchmark among MCNC20). In Figure 6.10, the x-axis is the time (in seconds) that has

passed since the algorithms started, while the y-axis is the number of wire segments. The

blue solid line is the convergence curve of VPR with inner_num = 1 (the convergence

of VPR with inner_num=10 has a similar pattern but is much slower), and the red dash

line is the convergence curve of SOR. It shows that SOR converges much faster at the

beginning of the search than VPR. This feature shows how SOR is able to achieve high-

quality solutions much faster that VPR. (Note: Although Fig. 6.10 is only for a specific

benchmark, the behaviour it illustrates is typical of that found when using other

benchmarks.)

A close look at Figure 6.10 shows that convergence curve of VPR is divided into

three phases. The first phase (roughly from 0 to the 11th second in this case) is the period

that VPR (based on simulated annealing) is running at high temperature. During this

period, the quality of the placement is improved very slowly since a large portion of non-

improvement moves are accepted. During the second phase (from the 11th second to the

25th second in this case), most of the improvement in solution quality is made as the

temperature goes lower and VPR accepts fewer non-improving moves. During the third

phase (after the 25th second in this case), solution quality only improves slightly, since

only a few improving moves can be found due to the low temperature of simulated

annealing.

CHAPTER 6: Successive Over Relaxation Placement

 145

Convergence

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

0 5 10 15 20 25 30 35

Time in seconds

W
ire

-L
en

gt
h

VPR

SOR

Figure 6.10: Convergence of SOR and VPR

In contrast, the convergence curve for SOR has only two phases. SOR improves

the quality drastically during the first phase (from 0 to the 6th second in this case). During

the second phase (after the 6th second in this case), the solution quality is still improved

but very slowly, and finally the curve flattens out where little further improvement is

made. The ability to improve quality at an early stage in the search is essential when a

fast solution is required. In this respect, SOR may be more attractive to users, since VPR

first spends two thirds of its runtime at high and low temperatures where solution quality

improves slowly. SOR, on the other hand, rapidly improves the quality finding a high-

quality solution in small amounts of actual runtime.

6.6 Hybrid Approach

Given that SOR is able to find high-quality solutions quickly, in this section we consider

the effect of combining both SOR and VPR in the context of a hybrid placement strategy.

The basic idea is to first run SOR to quickly find a high-quality solution, and then run

VPR to further improve the quality of the solution. Two hybrid strategies are considered:

CHAPTER 6: Successive Over Relaxation Placement

 146

one where VPR uses the Star+ model (and hence is consistent with SOR) and one where

VPR uses the traditional HPWL model.

Table 6.6 shows the critical-path delays for both hybrid approaches based upon

using a timing-driven routing option. The first column identifies the benchmark by name.

The second column shows the channel width used by the router. The third column gives

the critical-path delay when using SOR by itself. The fourth and fifth columns give the

critical-path delays of VPR (when run by itself) with inner_num=1 and

inner_num=10, respectively. (All of the data for VPR are the average of 10 runs.)

Columns 6 gives the critical-path delays when SOR is run first, followed by VPR using

the Star+ model and inner_num=1 (which we denote: SOR+VPR(Star+)). Column 7

provides similar information, but for the case where inner_num=10. Columns 8 and 9

give the similar information when VPR is run after SOR but using the traditional HPWL

model (which we denote: SOR+VPR(HPWL)).

The following observations can be made. First, running SOR followed by VPR

using the Star+ model and inner_num=1 results in a reduction in critical-path delay for 11

(of 20) benchmarks compared with running SOR by itself. The average improvement

among these 11 cases is 16.5 percent. In the 9 cases that did not result in an improvement,

the average increase in critical-path delay is 13.6 percent. The main reason, that the

hybrid approach made the original solution provided by SOR worse, is that VPR, which

is based on SA, allows for a high-number of non-improving moves during the early part

of the search when a high-temperature is allowed. This can cause a good initial solution

to be made substantially worse. When inner_num=1, there may not be enough

optimization time to find an equivalent or better solution. Not surprisingly, when

inner_num=10, and more time is allowed for optimization, the hybrid strategy results in a

better solution being found for 15 of 20 benchmarks. Overall, the hybrid strategy

SOR+VPR (Star+) is able to improve on the critical-path delay by 3.2 – 6.7 percent over

SOR alone. Moreover, the same hybrid strategy is able to improve on critical-path delay

by 7.5 – 11.6 percent over VPR alone.

CHAPTER 6: Successive Over Relaxation Placement

 147

Table 6.6 Critical path delays (hybrid)

VPR SOR + VPR (Star+) SOR + VPR (HPWL) CW SOR
inner_num=1 inner_num=10 inner_num=1 inner_num=10 inner_num=1 inner_num=10

Alu4 11 106.857 120.331 113.6717 102.287 95.223 118.73 109.308
Apex2 13 116.394 128.77 125.1346 108.733 103.591 127.654 126.604
Apex4 14 122.411 127.922 122.6053 108.733 98.1068 119.912 117.003
bigkey 8 73.6277 100.935 100.0536 92.9461 76.8831 104.838 103.601
Clma 15 268.531 264.999 252.9958 230.864 246.03 243.582 250.261
Des 12 124.301 123.01 136.5118 156.97 117.784 124.977 127.872

Diffeq 9 97.553 106.112 90.33062 98.9624 82.1605 126.119 77.6612
Dsip 8 64.4369 91.0482 93.37907 75.1003 74.5031 77.404 79.1104

elliptic 13 180.584 257.387 206.6148 256.487 204.424 237.39 175.422
Ex1010 13 191.122 205.552 202.9452 190.389 186.379 208.988 196.069
Ex5p 15 102.372 116.071 125.2613 108.519 96.2305 119.34 127.493
Frisc 15 203.948 227.362 189.0848 207.03 185.652 219.742 185.216

Misex3 13 115.636 108.431 105.6976 110.304 102.782 101.673 105.818
Pdc 21 236.667 254.422 217.5874 225.43 225.133 270.005 222.744

S298 9 203.804 240.983 203.189 193.695 216.344 212.701 182.025
S38417 9 159.145 196.969 163.1709 161.73 142.167 194.709 152.599

S38584.1 10 140.828 123.888 119.709 116.485 124.675 123.172 141.023
Seq 13 96.3664 123.035 118.0495 96.6295 111.082 133.099 109.401
Spla 18 238.615 205.085 188.0682 184.265 170.39 203.353 177.867

Tseng 8 80.6322 81.7572 75.83124 7.875 70.0942 97.7821 78.6372
Total 2924 3204 2950 2833 2730 3165 2846

Perhaps not surprisingly, the second hybrid strategy that employs SOR followed

by VPR using HPWL does not perform as well. When run with inner_num=1, the hybrid

strategy only finds a lower critical-path delay for 5 of the 20 benchmarks compared with

SOR by itself. Overall, this hybrid strategy increases the critical-path delay by 8.2

percent. The primary reason for the failure of this second hybrid approach is that SOR

and VPR use different objective functions based on Star+ and HPWL, respectively, and

their optimization effects counteract with each other.

When inner_num=10 is used, and a longer optimization is performed, the hybrid

strategy finds a lower critical-path delay compared with SOR for 11 of the 20

benchmarks. Overall, the hybrid strategy reduces the critical-path delay by 2.7 percent

compared with SOR.

CHAPTER 6: Successive Over Relaxation Placement

 148

Table 6.7 shows the wirelength for both hybrid approaches based upon using a

breadth-first routing option. The first column identifies the benchmark by name. The

second column shows the channel width used by the router. The third column gives the

wirelength when using SOR by itself. The fourth and fifth columns give the wirelength of

VPR with inner_num=1 and inner_num=10, respectively. (All of the data for VPR

are the average of 10 runs.) Columns 6 gives the wirelength when SOR is run first,

followed by VPR using the Star+ model and inner_num=1. Column 7 provides similar

information, but for the case where inner_num=10. Columns 8 and 9 give the similar

information when VPR is run after SOR but using the traditional HPWL.

Table 6.7 Wirelength (hybrid)

VPR SOR + VPR (Star+) SOR + VPR (HPWL) CW SOR
inner_num=1 inner_num=10 inner_num=1 inner_num=10 inner_num=1 inner_num=10

alu4 11 21652 22038 21016 21639 21058 22684 21315
apex2 13 31969 32546 30638 30622 30004 31816 31501
apex4 14 21666 22865 21848 22278 21984 22471 21770
bigkey 8 24029 22396 18505 22921 20048 21714 17562
clma 15 150305 142509 133592 148859 140725 146427 141009
des 12 33778 29161 24758 35343 29471 29119 25774

diffeq 9 15990 16263 14676 15412 14379 15839 15281
dsip 7 20468 17171 14582 18236 14090 16947 13416

elliptic 13 50419 53811 45912 52704 46629 58153 47273
Ex1010 13 74397 72613 70864 68554 66683 72087 71667
Ex5p 15 20239 19924 18648 20402 19632 20042 18971
frisc 14 59043 59957 55274 59894 56885 60402 55763

misex3 13 22417 22700 21871 21916 21689 22467 22974
pdc 19 105148 104298 99046 104078 101859 107686 104080

S298 9 19960 22703 21346 20961 21053 21424 20623
S38417 9 66750 66586 61764 67447 64067 67931 62438

S38584.1 10 64567 63515 57099 63077 56885 64386 57048
seq 13 28186 29611 28059 28153 26980 29121 28682
spla 16 72060 71194 67362 71050 70169 74162 69143

tseng 8 9835 10420 9423 10274 9530 11120 9000
Total 912878 902282 836281 903820 853820 915998 855290

The following observations can be made. Running SOR followed by VPR using

the Star+ model and inner_num=1 results in a reduction in wirelength for 12 (of 20)

benchmarks compared with running SOR by itself. The average improvement among

CHAPTER 6: Successive Over Relaxation Placement

 149

these 12 cases is 3.3 percent. In the 8 cases that did not result in an improvement, the

average increase in wirelength is 3.1 percent. When inner_num=10, and more time is

allowed for optimization, the hybrid strategy results in a better solution being found for

18 of 20 benchmarks. Overall, the hybrid strategy SOR+VPR (Star+) is able to improve

on wirelength by 1 – 6.5 percent over SOR alone.

The second hybrid strategy employs SOR followed by VPR using HPWL. When

run with inner_num=1, the hybrid strategy finds shorter wirelength for 9 of the 20

benchmarks compared with SOR by itself. Overall, this hybrid strategy increases the

wirelength by 0.3 percent. When inner_num=10 is used, the hybrid strategy is able to find

less wirelength compared with SOR for 16 of the 20 benchmarks. Overall, the hybrid

strategy reduces the wirelength by 6.3 percent compared with SOR.

In summary, using a hybrid strategy based on Star+ always helps. Using a hybrid

strategy based on HPWL may result in even worse solutions unless a long-enough time

(inner_num=10) is allowed for optimization. However, even then, there is no guarantee

that an improved solution will be found.

6.7 Conclusion

In this chapter, we presented an analytic placement algorithm based on Successive Over-

Relaxation (SOR). We began by introducing the necessary background for understanding

SOR and showed that SOR was a logical extension of the Gauss-Seidel method. We then

showed how an SOR placement method could be developed based on the Star+

wirelength model first introduced in Chapter 3.

We then showed how the performance of the SOR-placement method could be

improved by employing a novel heuristic to pre-determine the order in which variables

appearing in the non-linear equation system should be processed. Our results showed that

on average a 2.7% improvement in solution quality (wirelength) could be obtained at the

CHAPTER 6: Successive Over Relaxation Placement

 150

cost of a 0.4% increase in runtime. We also showed that using a relaxation factor 2 causes

the algorithm to converge slightly faster compared with other, smaller relaxation values.

Both SOR placement and CG placement were compared head-to-head using all 20

MCNC benchmarks. The results revealed that although both analytic methods find

solutions with similar quality, SOR finds solutions, on average, 7x faster. The superior

performance of SOR is attributable to the fact that when CG is used to solve a non-linear

system, the search directions quickly loose conjugacy [32], thus slowing the convergence

rate of the algorithm.

Due to its superior run-time performance, SOR was compared head-to-head with

VPR, the state-of-the-art academic placement and routing tool, using all 20 MCNC

benchmarks. The results showed that SOR is approximately 4x-40x faster than VPR,

while obtaining solutions with approximately 1-8.8 percent less critical-path delay.

However, the solutions found by SOR required approximately 1-8.8 percent more wire

segments to implement.

 Due to the excellent convergence properties of SOR placement, we also

considered a hybrid approach where SOR was used to quickly find a fast initial

placement, and then VPR was used to improve the quality of the placement. Our results

showed that the hybrid approach was able to further improve critical-path delay by

approximately 3-7 percent and wirelength by 1-7 percent, compared with SOR alone, at a

cost of 4-40x more runtime.

 151

Chapter 7

Conclusions and Future Work

7.1 Contributions

This work has contributed two analytic methods based on a new net model for FPGA

placement. The new net model and the placement methods developed in this research are

briefly summarized in Table 7.1.

 In Chapter 3, we presented a novel model, called Star+, for estimating wirelength

during FPGA placement. Unlike the traditional HPWL model [30][31], employed by

many FPGA placement tools including VPR [27][28], the Star+ model is continuously

differentiable and hence suitable for use with analytic methods. However, as was shown

in Chapter 3, the Star+ model can also be employed effectively in iterative-improvement

placement methods, like those based on Simulated Annealing [54].

CHAPTER 7: Conclusions and Future Work

 152

Table 7.1: Summary of contributions

Contributions Features

Star+ model
 Differentiable
 Outperforms HPWL 6-9% in terms of critical-path delay
 Constant updating time

Shrubbery pre-placement  Outperforms random pre-placement by 1.2%
 Time complexity O(|E|log|V|)

CG placement method  O(n) computation time of each iteration
 Similar quality compared with VPR

SOR placement method  4 – 40x faster than VPR
 Improves critical-path delay by 1 – 8.8% over VPR

Hybrid placement
method

 Improves critical-path delay by 3.2 – 6.7% over SOR
 Improves wire-length by 1 – 6.5% over SOR
 Costs 4 – 40x extra runtime.

Timing-Driven
placement method based
on SOR

 Optimizes wirelength and critical-path delay

To establish the effectiveness of the Star+ model, an empirical comparison of

Star+ and HPWL [30][31] was made by first incorporating both wirelength estimation

models into VPR [27][28] – the state-of-the-art academic placement and routing tool

based on simulated annealing – then using VPR to place and route all 20 MCNC

benchmarks [62]. Overall, the results showed that VPR has similar and, in some

instances, superior performance when using Star+ compared with HPWL. More

specifically, the results show that the Star+ model achieves a 6-9% reduction in critical-

path delay compared with HPWL, while producing similar quality results with respect to

routability (measured in terms of channel width) and total number of wire segments.

 An important characteristic of the Star+ model is that the time to calculate

incremental changes in cost from moving/swapping blocks can always be computed in

O(1) time. Moreover, it was shown that as the size (cardinality) of a net increases, Star+

significantly outperforms HPWL with respect to the time required to re-compute the

wirelength estimate following an improving move or swap.

CHAPTER 7: Conclusions and Future Work

 153

 In Chapter 4, we presented an analytic placement algorithm based upon the

conjugate gradient (CG) method. Unlike previous analytic placement methods that try to

optimize an objective function based on quadratic distance, the CG-based placement

algorithm seeks to minimize an objective function based on the (near-linear) Star+ model.

Due to the linear nature of distance, the Star+ model is theoretically more accurate than

quadratic distance. The accuracy of the Star+ model, however, comes at the expense of

the complexity of the analytic algorithm that employs it. To minimize quadratic distance,

only a linear equation system must be solved. To minimize the Star+ model a non-linear

equation system must be solved, which is usually much harder and hence more time-

consuming. Another important feature of the algorithm is that the computation

complexity of each iteration is O(n) even though the target system is not sparse. Due to

the high performance and accuracy of the Star+ model, our method is able to produce

placements with similar quality compared with VPR [27].

In Chapter 5, we developed a pre-placement algorithm, called Shrubbery, to

guarantee that the algorithm produces non-trivial placements. The goal of the pre-

placement is to place the I/O pads in such a way that the I/O pads with higher

connectivity are placed closer together than the I/O pads with lower connectivity. Also,

this pre-placement provisionally locates components on the periphery of the FPGA,

which causes other components to be distributed throughout the chip. We demonstrated

that Shrubbery is able to outperform a random pre-placement strategy that seeks to find

the best (initial) placement by generating a pool of random placements, both with respect

to solution quality and runtime. Unlike the random pre-placement strategy, Shrubbery

only requires a single application of CG, which is much faster than the multiple

applications of CG that are required to create a pool of random pre-placements. Most

importantly, we were able to show, both theoretically and empirically, that the running

time of Shrubbery is extremely small. In Chapter 5, We also showed that CG conclude

that CG is competitive with VPR in its fast mode (inner_num=1), but produces slightly

lower quality solutions than VPR when inner_num=10. By reducing the runtime of

each iteration from O(n2) to O(n), we have improved the speed of CG significantly and

made it about 5 times faster than VPR when inner_num=10.

CHAPTER 7: Conclusions and Future Work

 154

In Chapter 6, we introduced an analytic placement algorithm that uses Successive

Over-Relaxation (SOR) method and the Star+ model. An advantage of using the Star+

model is that the wire-length estimate change of a net caused by moving a single block

can always be calculated in a constant time. Since moving a block is the mostly used

operation in SOR method, the time for re-computing the cost after a movement counts a

major part of the total running time. Therefore, constant time for updating the net wire-

length estimate is critical to build a time-efficient SOR placement method. We

demonstrated that SOR method based on the Star+ model is 4 – 40 times faster than VPR,

and outperforms VPR by 1 – 8.8% with respect to critical-path delay. Due to the excellent

convergence properties of SOR placement, we also considered a hybrid approach where

SOR was used to quickly find a fast initial placement, and then VPR was used to improve

the quality of the placement. Our results showed that the hybrid approach was able to

further improve critical-path delay by approximately 3-7 percent and wirelength by 1-7

percent, compared with SOR alone, at a cost of 4-40x more runtime.

7.2 Future Work

There are five ways to enhance this work: 1) applying analytic placement in a multilevel

optimization context to further improve the performance and solution quality; 2)

designing a router based on Steiner heuristics to improve routing results; 3) acceleration

via multi-core and/or re-configurable computing; 4) extending the model to include

timing and congestion; and 5) extending the model to handle modern FPGA architectures.

7.2.1 Multilevel Optimization

As FPGAs continue to increase in logic capacity and functionality, so do the designs

mapped to them. Multilevel methods are able to reduce problem complexity. These

methods construct a hierarchy of successively coarser problems from the bottom up by

recursive aggregation. They employ iterative improvement at each of the resulting levels,

CHAPTER 7: Conclusions and Future Work

 155

transfer these improvements up and down the hierarchy, and eventually terminate with a

solution at the original, finest level. Although multilevel placement has become a very

active research topic, with several high-quality placers developed for standard cell-based

designs, little work has been done on multilevel placement for FPGAs. Recently, Areibi

et. al. [44] have shown the benefit of multilevel optimization by applying multilevel to

FPGA placement. However, it is likely that many of the multilevel placement techniques

developed for standard cells can be applied to further enhance the quality of the work

proposed in this thesis. An important concept in multilevel is to use different placement

algorithms at different levels of the hierarchy. At the higher level of the hierarchy, we can

use the proposed analytic method to quickly achieve a globally good placement of

clusters, and use other techniques (e.g., local improvement and simulated annealing) at

the low level of the hierarchy to fine-tune the solution quality.

7.2.2 FPGA Routing

Routing is a time-consuming step that determines the actual interconnects (wire-length,

congestion, delay) and plays a critical role in the overall FPGA system performance.

Given the similarity between FPGA and standard-cell global routing, many FPGA routers

are based on algorithms developed for routing ASICs, including VPR. The basic

framework of current FPGA router is based on iterative routing, where on each iteration,

the routing of each net is based on maze expansion of a multi-pin net in the routing graph.

Instead of maze expansion one may use graph-based Steiner heuristics to construct a

near-optimal Steiner tree in the graph. However, to the best of my knowledge, no one has

tried replacing the maze expansion engine in VPR with a graph-Steiner-based algorithm.

We proposed two graph-based Steiner heuristics, Shrubbery and Pole-Center, in [111].

The experiments done in [111] suggest that using these algorithms to replace maze

expansion in VPR may drastically improve the routing runtime, while maintaining the

solution quality.

CHAPTER 7: Conclusions and Future Work

 156

7.2.3 Algorithm Acceleration via Multi-Core and/or Re-configurable

Computing

An important means to achieve highly scalable placement and routing algorithms is to

make the best use of multi-core computing systems and hardware acceleration available

through re-configurable computing. These approaches can be investigated in three

aspects: 1) implement the algorithm directly in hardware using an FPGA; 2) employ a

hardware/software co-design approach where time-critical bottlenecks within the

algorithm are implemented directly in hardware, with the remainder of the algorithm

implemented in software running on a soft core; and 3) develop an Application Specific

Instruction Set Processor (ASIP) to run the algorithm.

7.2.4 Timing and Congestion

Today, it is important to perform timing [13][23], congestion [71], and even low-power

[11] optimization when performing placement. In Appendix A, we provide a timing-

driven model that carries out timing optimization by including an additional timing cost

term to the objective function. The timing cost is the summation of the delay times and

the timing criticality over all connections in the design, where the critically of a

connection depends on its timing slack. Two important issues resulting from this model

will need to be considered: 1) When to update the slacks and 2) how to optimize two very

different objectives. With regards to the former issue, it is suggested that slack values be

evaluated after every iteration, thus leading to shorter runtime and more effective

optimization. With regards to the latter issue, optimizing two objectives will require

careful scaling to ensure that the relative importance of both wirelength and timing are

independent of their actual values.

CHAPTER 7: Conclusions and Future Work

 157

7.2.5 Modern FPGA Architectures

Today’s modern FPGA architectures contain a variety of features including hardwired

macro blocks such as embedded memories, multipliers, DSP blocks, just to name a few.

An important consideration will be how best to extend an analytical method to handle

blocks of different types. Given the ease with which simulated annealing can swap

blocks (or groups of blocks representing more complex structures), it may be beneficial

to consider using a hybrid analytic/simulated-annealing based algorithm for these types of

architectures.

 158

Appendix A

Timing-Driven Placement

In Chapters 4 – 6, we introduced analytic methods based on the Star+ model that

minimize wirelength. In this appendix, we will show that the Star+ model can also be

used in analytic timing-driven placement algorithms, by presenting an SOR timing-driven

placement algorithm that is based on the Star+ model. This appendix is organized as

follows. Section A.1 gives some background of timing analysis. Section A.2 illustrates

the timing-driven placement algorithm.

A.1 Background

The objective of timing-driven placement is to place logic blocks that are on the critical

path into CLBs that are close to each other and therefore to minimize the amount of wire

segments and interconnects that the critical signals must travel.

APPENDIX A: Timing-Driven Placement

 159

Timing-driven placement algorithms can be roughly divided into two categories:

path-based and net-based. A path-based algorithm computes the delays of all paths and

directly minimizes the maximum delay (critical path delay). In contrast, a net-based

algorithm uses static timing analysis to assign each net a criticality weight; higher

weights are assigned to nets that are more timing critical. A path-based algorithm usually

gives a more accurate timing inspection. However, this type of algorithm suffers high

computation complexity due to the exponential number of paths that have to be

simultaneously considered.

A.1.1 Timing Analysis

To perform timing analysis, a circuit is first converted into a directed graph G(V, E). Each

wire and each logic block pin becomes a node in the graph, where a pin comes from a

look-up table (LUT), a register, or an I/O pad. A node is a source if the original pin is an

input pad or a register output. A node is a sink if the original pin is an output pad or a

register input. Each switch becomes a directed edge connecting two corresponding nodes.

Each edge is assigned a weight that represents the physical delay between the nodes.

Figure A.1 gives an example of a circuit and the corresponding timing analysis graph. A

path starts at a source and ends at a sink. Give a node j, the arrival time,)(jTarrival is the

time at which the signal at node j settles to its final value. The signal at node j becomes

stable a delay time after when the signal at all input nodes to node j settle to the final

value. To determine the arrival time of all the nodes, a breadth first traversal is performed

on the graph, which starts from the sources. The arrival time Tarrival of each node j can

iteratively calculated with the following equation:









),(,)},()({max

 ,0
)(

)(EjijidelayiT
sourcesj

jT
arrivaljfanini

arrival

where delay(i,j) is the delay value of the edge connecting the node i to node j. The

maximum arrival time of all the nodes determines the delay of the circuit and is labeled

as Dmax, and is calculated as:

 jjTD arrival)},(max{max sinks

APPENDIX A: Timing-Driven Placement

 160

Figure A.1: Timing analysis graph

Our goal is to minimize Dmax. However, simply re-placing the blocks on the path

from the source to the node with the largest Tarrival for the purpose of reducing Dmax just

does not work, since reducing the delay on one path will inevitably add delays to the

connections on some other paths that may become critical thereafter. Accordingly, it is

useful to find out how much delay can be added to each connection before the

corresponding path becomes critical. This amount of delay is called the slack.

APPENDIX A: Timing-Driven Placement

 161

 To determine the slack of each connection, it is necessary to know the maximum

required arrival time of every node with the condition that Dmax is not increased.

Obviously, the maximum required arrival time of all output pads and register inputs is

Dmax. The maximum required arrival time of other nodes is computed as:

)},()({min)()(jidelayjTiT requiredifanoutjrequired  

where i is the source of a net; j is a sink of the net; and the delay(i,j) is the delay value of

the connection from node i to node j. The slack of connection (i,j) is defined as:

),()()(),(jidelayiTjTjislack arrivalrequired 

A.1.2 Criticality and Cost

The criticality of the connection from the source i to a sink j is defined as:

max

),(1),(
D

jislackjicrit 

As),(jislack is always between 0 and maxD . The value of),(jicrit is therefore between

0 and 1. The slack of the connections on a critical path is always 0 and the criticality is

always 1.

In VPR, the time cost of a connection is calculated as:
ExpoenetCritjicritjidelayjiCostTime _),(),(),(_ 

And the total time cost of a circuit equals the sum of the time cost of all its connections:





circuitji

jiCostTimeCostTime
,

),(__

VPR uses a trade-off variable λ to determine the weight of time cost and wirelength cost.

The change in the combined cost is calculated using the following formula:

wirelengthprevious
wirelength

CostTimeprevious
CostTimeC

_
)1(

__
_ 




 

Nevertheless, the above formula does not work for analytic methods, since

analytic methods need a clearly defined objective function like Equation 4.8. For this

APPENDIX A: Timing-Driven Placement

 162

purpose, we present the Star+ time-cost model of net l in a format similar to the Star+

wirelength model:





)(

2)])(,([
lfanouti

slil xxislcritT (Equation A.1)

where sl is the source (or driver) of net l, and slx is the x-coordinate of sl. The crit(sl,i) is

the criticality of connection (sl,i).

By introducing time cost factor into Equation 4.8, we get the total combined cost

of wirelength and time for the circuit as:

 
  























circuitl
l

Neti
cli Txx

l

)1()(2 (Equation A.2)

where λ is the trade-off parameter. Since 



lNeti

clil xxS 2)((Equation 4.9), the

total combined cost of a circuit (Equation A.2) can be rewritten as:

  



circuitl

ll TS )1((Equation A.3)

where  lS is the wirelength cost of net l, and (lT) represents the time cost. As α

appears in both parts, minimizing Equation A.3 is equivalent to minimizing the following

equations obtained by removing α:

 



circuitl

ll TSxf)1()( (Equation A.4)

The above equation is used as the objective function of the presented analytic timing-

driven placement. In the next section, we will introduce how to obtain the recurrence

relation of SOR iteration from Equation A.4.

A.2 SOR Timing-driven Placement

As)(xf is positive-definite, it can be minimized by solving the equation system

)(' xf =0. The gradient)(' xf of)(xf is defined as follows:

APPENDIX A: Timing-Driven Placement

 163



































)(

)(

)(

)('
2

1

xf
x

xf
x

xf
x

xf

n


,

where the jth element of)(' xf is the partial derivative of)(xf with respect to jx :

 










circuitl
ll

jj

TS
x

xf
x

)1()(

 







lNetjl

ll
j

TS
x :

)1(


 



















lNetjl j

l

j

l

x
T

x
S

:

)1( (Equation A.5)

From Equation 4.11, we have
l

clj

j

l

S
xx

x
S 



 when lNetj .

From Equation A.1, we have:












)(

2)])(,([
lfanouti

sli
jj

l xxislcrit
xx

T














 

 



)(

2

)(

2
)])(,([

)])(,([2
1

lfanouti
sli

j
lfanouti

sli

xxislcrit
xxxislcrit


















 

 



)(

2

)(

2
)])(,([

)])(,([2
1

lfanouti
sli

j
lfanouti

sli

xxislcrit
xxxislcrit




















 
 



)(

2

)(

2
)]()(),([2

)])(,([2
1

lfanouti
sli

j
sli

lfanouti
sli

xx
x

xxislcrit
xxislcrit























 
 



)(

2

)(

2
)])((),([

)])(,([
1

lfanouti j

sl

j

i
sli

lfanouti
sli

x
x

x
xxxislcrit

xxislcrit

APPENDIX A: Timing-Driven Placement

 164




















 
)(

2)])((),([1
lfanouti j

sl

j

i
sli

l x
x

x
xxxislcrit

T
 (From Equation A.1)

When j is a sink of net l (i.e., slj  or)(lfanoutj), we have 0



j

i

x
x (when ji ),

1



j

j

x
x

 and 0



j

sl

x
x . The above equation can be simplified as:



















 

)(

2)]0)((),([1
lfanouti j

i
sli

lj

l

x
xxxislcrit

Tx
T




















 
 jilfanouti j

i
sli

ji j

i
sli

l x
xxxislcrit

x
xxxislcrit

T)(

22])(),([])(),([1

















 
 jilfanouti

sli
j

j
slj

l

xxislcrit
x
x

xxjslcrit
T)(

22]0)(),([])(),([1

l

slj

T
xxjslcrit)(),(2 



When j is the source (or driver) of net l (i.e., slj  or)(lfaninj), we have 1



j

sl

x
x

and all other 0



j

i

x
x (because)(lfanouti and hence ji ). The

j

l

x
T

 then can be

simplified as:











 

)(

2)]10)((),([1
lfanouti

sli
lj

l xxislcrit
Tx

T









 
)(

2)](),([1
lfanouti

isl
l

xxislcrit
T









 
)(

2)](),([1
lfanouti

ij
l

xxijcrit
T

APPENDIX A: Timing-Driven Placement

 165

To summarize,



























 



)(if ,
)(),(

)(if ,)](),([1

2
)(

2

lfanoutj
T

xxjslcrit

lfaninjxxijcrit
T

x
T

l

slj

lfanouti
ij

l

j

l (Equation A.6)

By replacing Equation 4.11 and Equation A.6 in Equation A.5, we have:


 






















lNetjl j

l

j

l

j x
T

x
Sxf

x :

)1()(


 































ll Netjl j

l

Netjl j

l

x
T

x
S

::

)1(


 















































)(:)(::

)1()1(
lfanoutjl j

l

lfaninjl j

l

Netjl j

l

x
T

x
T

x
S

l





 



 







 


















 



)(:

2

)(:)(

2

:

)(),(
)1(

)](),([1)1(

lfanoutjl l

slj

lfaninjl lfanouti
ij

lNetjl l

clj

T
xxjslcrit

xxijcrit
TS

xx

l





By making 

)(xf
x j

0, we get the equation:

0
)(),(

)1(

)](),([1)1(

)(:

2

)(:)(

2

:








 


















 





 



 

lfanoutjl l

slj

lfaninjl lfanouti
ij

lNetjl l

clj

T
xxjslcrit

xxijcrit
TS

xx

l





APPENDIX A: Timing-Driven Placement

 166

0),()1(

),(
)1(]),([1)1(

]),([1)1(

)(:

2

)(:

2

)(:)(

2

)(:)(

2

::





























































 

 



 

 

lfanoutjl l

sl

lfanoutjl l

j

lfaninjl lfanouti
i

l

lfaninjl lfanouti
j

lNetjl l

cl

Netjl l

j

T
xjslcrit

T
xjslcrit

xijcrit
T

xijcrit
TS

x
S
x

ll







  0),(1),(1

),(1),(1

)(:

2

)(:)(

2

:

)(:

2

)(:)(

2

:








 








 









 








 


 

 

 

 

lfanoutjl
sl

llfaninjl lfanouti
i

lNetjl l

cl

lfanoutjl l
j

lfaninjl lfanoutil
j

Netjl l
j

xjslcrit
T

xijcrit
TS

x

jslcrit
T

xijcrit
T

x
S

x

l

l





   

 

 

 








 








 






















 








 


)(:

2

)(:)(

2

:

)(:)(:

2

)(

2

:

),(1),(1

),(1),(1

lfanoutjl
sl

llfaninjl lfanouti
i

lNetjl l

cl

lfaninjl lfanoutjl llfanoutilNetjl l
j

xjslcrit
T

xijcrit
TS

x

jslcrit
T

ijcrit
TS

x

l

l





 



















 








 





















 








 


 

 

 



 

)(:

2

)(:)(

2

:

1

)(:)(:

2

)(

2

:

),(1),(1

),(1),(1

lfanoutjl
sl

llfaninjl lfanouti
i

lNetjl l

cl

lfaninjl lfanoutjl llfanoutilNetjl l
j

xjslcrit
T

xijcrit
TS

x

jslcrit
T

ijcrit
TS

x

l

l





In above equation, 



lNeti

i
l

cl x
k

x 1 , 



lNeti

cllil xkxS 122 and





)(

2)])(,([
lfanouti

slil xxislcritT . Now, by putting the iteration number into these

equations we get the Jacobi iteration for placement:

)()(1 k

Neti
i

l

k
cl

l

x
k

x 








lNeti

k
cll

k
i

k
l xkxS 1)()(2)(2)()(





)(

2)()()()])(,([
lfanouti

k
sl

k
i

k
l xxislcritT

APPENDIX A: Timing-Driven Placement

 167

 



















 








 





















 








 


 

 

 



 



)(:

)(2
)(

)(:)(

)(2
)(

:
)(

)(

1

)(:)(:

2
)(

)(

2
)(

:
)(

)1(

),(1),(1

),(1),(1

lfanoutjl

k
slk

llfaninjl lfanouti

k
ik

lNetjl
k

l

k
cl

lfaninjl lfanoutjl
k

llfanouti
k

lNetjl
k

l

k
j

xjslcrit
T

xijcrit
TS

x

jslcrit
T

ijcrit
TS

x

l

l





To implement the Gauss-Seidel iteration, we need to update clx , lS and lT immediately

after jx moves from)(k
jx to)1(k

jx . From Section 3.2 in Chapter 3, we know clx and lS

can be updated in a constant time. Fortunately, lT can also be updated in a constant time.

This feature makes it possible to build a time-efficient Gauss-Seidel method for SOR

timing-driven placement. For the sake of simplicity, we introduce five new variables lU ,

lV , lP , lQ and lR , and let 



lNeti

il xU 2 , 



lNeti

il xV , 



)(

22),(
lfanouti

il xislcritP ,





)(

2),(
lfanouti

il xislcritQ and 



)(

2),(
lfanouti

l islcritR . Then, Equation A.1 can be

transformed into:





)(

2)])(,([
lfanouti

slil xxislcritT





)(

22222]),(),(2),([
lfanouti

slslii xislcritxxislcritxislcrit





)(

22

)(

2

)(

22),(),(2),(
lfanouti

sl
lfanouti

sli
lfanouti

i xislcritxxislcritxislcrit





)(

22

)(

2

)(

22),(),(2),(
lfanouti

sl
lfanouti

isl
lfanouti

i islcritxxislcritxxislcrit

lsllsll RxQxP 22  (By the definition of lP , lQ and lR)

Therefore, the Gauss-Seidel iteration for placement is defined as:
2)0()(




lNeti

il xU

)0(



lNeti

il xV





)(

2)0(2)(),(
lfanouti

il xislcritP

APPENDIX A: Timing-Driven Placement

 168

)0(

)(

2),(



lfanouti

il xislcritQ





)(

2),(
lfanouti

l islcritR

l
l

cl V
k

x 1


12
 cllll xkUS

lsllslll RxQxPT 22 

 



















 








 





















 








 


 

 

 



 



)(:

2

)(:)(

2

:

1

)(:)(:

2

)(

2

:

)1(

),(1),(1

),(1),(1

lfanoutjl
sl

llfaninjl lfanouti
i

lNetjl l

cl

lfaninjl lfanoutjl llfanoutilNetjl l

k
j

xjslcrit
T

xijcrit
TS

x

jslcrit
T

ijcrit
TS

x

l

l





(Equation A.7)

2)(2)1()()(k
j

k
jll xxUU  

)()1(k
j

k
jll xxVV  

 2)(2)1(2)()(),(k
j

k
jll xxjslcritPP   ()(: lfanoutjl )

 )()(),()()1(2 k
j

k
jll xxjslcritQQ   ()(: lfanoutjl )

To advance to SOR iteration from the Gauss-Seidel iteration, we introduce a relaxation

factor ω into Equation A.7. The SOR iteration for placement is summarized as following:
2)0()(




lNeti

il xU

)0(



lNeti

il xV





)(

2)0(2)(),(
lfanouti

il xislcritP

)0(

)(

2),(



lfanouti

il xislcritQ





)(

2),(
lfanouti

l islcritR

l
l

cl V
k

x 1


12
 cllll xkUS

APPENDIX A: Timing-Driven Placement

 169

lsllslll RxQxPT 22 

  























 








 





















 








 


 

 

 



 



)(:

2

)(:)(

2

:

1

)(:)(:

2

)(

2

:

)()1(

),(1),(1

),(1),(1)1(

lfanoutjl
sl

llfaninjl lfanouti
i

lNetjl l

cl

lfaninjl lfanoutjl llfanoutilNetjl l

k
j

k
j

xjslcrit
T

xijcrit
TS

x

jslcrit
T

ijcrit
TS

xx

l

l

2)(2)1()()(k

j
k

jll xxUU  

)()1(k
j

k
jll xxVV  

 2)(2)1(2)()(),(k
j

k
jll xxjslcritPP   ()(: lfanoutjl )

 )()(),()()1(2 k
j

k
jll xxjslcritQQ   ()(: lfanoutjl )

Figure A.2 gives the pseudo code of SOR timing-driven placement as a summary

of the whole procedure. The first line initializes the x-coordinates. The second line sorts

the order that will be used to calculate all the xis. The next four lines initialize the middle

variables lU , lV , lP , lQ , lR , the center of gravity clx , the Star+ estimate lS , and time

cost lT for each net l. Within the while loop, each iteration computes new x, and updates

lU , lV , lP , lQ , clx , lS and lT for each affected net l. The iterations terminate when i

reaches the maximum number of iterations.

APPENDIX A: Timing-Driven Placement

 170

Figure A.2: The pseudo-code of SOR timing-driven placement

Initialize all xi
Sort the order of calculating all the xis
For each net l {
 2)0()(




lNeti

il xU ,)0(



lNeti

il xV , 



)(

2)0(2)(),(
lfanouti

il xislcritP

)0(

)(

2),(



lfanouti

il xislcritQ , 



)(

2),(
lfanouti

l islcritR

l
l

cl V
k

x 1
 , 12

 cllll xkUS , lsllslll RxQxPT 22 

}
i = 0

While i < max {

For each block j {

  























 








 





















 








 


 

 

 



 



)(:

2

)(:)(

2

:

1

)(:)(:

2

)(

2

:

)()1(

),(1),(1

),(1),(1)1(

lfanoutjl
sl

llfaninjl lfanouti
i

lNetjl l

cl

lfaninjl lfanoutjl llfanoutilNetjl l

k
j

k
j

xjslcrit
T

xijcrit
TS

x

jslcrit
T

ijcrit
TS

xx

l

l

For each net l that lj {

 2)(2)1()()(k
j

k
jll xxUU  

)()1(k
j

k
jll xxVV  

If)(lfanoutj {
  2)(2)1(2)()(),(k

j
k

jll xxjslcritPP  

  )()(),()()1(2 k
j

k
jll xxjslcritQQ  

}

l
l

cl V
k

x 1


 12
 cllll xkUS

lsllslll RxQxPT 22 
 }

}
} //end of while

 171

Bibliography

[1] C. Dick, “FPGAs for Digital Communications,” DSP World Conference Proceedings,

April 2000.

[2] J. Huie, P. D’Antonio, R. Pelt and B. Jentz, “Synthesizing FPGA Cores for Software

Defined Radio,” Software Defined Radio Technical Conference and Product

Exposition, Orlando, Florida, November 2003.

[3] L. Puker, “Paving Paths to Software Radio Design,” Spectrum Signal Processing,

online document http://www.spectrumsignal.com/publications/csd.asp.

[4] R. Andraka and A. Berkun, “FPGAs Make a Radar Signal Processor on a Chip a

Reality”, Proceedings of the 33rd Asilomar Conference on Signals, Systems and

Computers, Monterey, CA, October 24-27, 1999.

[5] J. Hammes, A.P.W. Bohm, C. Ross, M. Chawathe, B. Draper and W. Najjar, “High

Performance Image Processing on FPGAs,” Los Alamos Computer Science Institute

Symposium, Santa Fe, NM, 2001.

[6] D. Dalton, V. Bessler, J. Griffiths, A. McCarthy, A. Vadher, R. O'Kane, R. Quigley

and D. O'Connor, “APPLES: A Full Gate-Timing FPGA-Based Hardware Simulator,”

book chapter in “Field-Programmable Logic and Applications,” Publisher: Springer

Berlin / Heidelberg, ISBN 978-3-540-40822-2, pp. 1162-1165, September 2003.

[7] SF. Magruder, “Progress in understanding and using over–the–counter

pharmaceuticals for syndromic surveillance of public health,” in Syndromic

Surveillance, Reports from a National Conf., 2003.

[8] T. Wollinger, J. Guajardo and C. Paar, “Security on FPGAs: State-of-the-art

implementations and attacks,” ACM Trans. Embedded Comput. Syst. 3(3): 534-574,

2004.

[9] M. Bednara, M. Daldrup, J. Teich, J. von zur Gathen and J. Shokrollahi, “Tradeoff

analysis of FPGA based elliptic curve cryptography,” IEEE International Symposium

Bibliography

 172

on Circuits and Systems, 2002.

[10] K. Shahookar and P. Mazumder, “Vlsi cell placement techniques,” in ACM

Computing Surveys (CSUR), Volume 23 Issue 2, June 1991.

[11] J. Anderson and F. Najm, “Low-Power Programmable Routing Circuitry for

FPGAs,” in IEEE International Conference on Computer-Aided Design, pp. 602–609,

November 2004.

[12] J. Rabaey, A. Chandrakasan, and B. Nikolic, “DIGITAL INTEGRATED

CIRCUITS,” Pearson Education Publishing Company, Inc, 2003.

[13] M. Hutton, K. Adibsamii, and A. Leaver, “Timing-Driven Placement for Hierarchical

Programmable Logic Devices,” Proc. of The 9th ACM/SIGDA Intl. Symposium on

FPGAs, pp. 3–11, 2001.

[14] D. Huang and A. Kahng, “Partitioning-Based Standard-Cell Global Placement with

an Exact Objective,” ACM symp. on Phsyical Design, pp. 18–25, 1997.

[15] X. Bao and S. Areibi, “Constructive and Local Search Heuristic Techniques for

FPGA Placement,” in CCECE. Niagra Falls, Canada:IEEE, May 2004, pp. 505–508.

[16] K. Vorwerk and A. Kennings, “An Improved Multi-Level Framework for

Force-Directed Placement,” DATE: 902-907, 2005.

[17] J. Kleinhans, G. Sigl, F. Johannes, and K. Antreigh, “Gordian: VLSI Placement by

Quadratic Programming and Slicing Optimization,” IEEE Trans. on CAD, pp.

356-365, March 1991.

[18] G. Sigl, K. Doll, and F. Johannes, “Analytic Placement: A Linear or a Quadratic

Function?” DAC, pp. 427-432, 1991.

[19] S. Adya and I. Markov, “Improving Min-cut Placement for VLSI Using Analytical

Techniques,” Proc. IBM ACAS Conference, IBM ARL, 55-62, February 2003.

[20] C. Albert, T. Chan, D. Huang, A. Kahng, I. Markov, P. Mulet, and K. Yan, “Faster

Minimization of Linear Wirelength for Global Placement,” ACM Symp. on Physical

Design, pp. 4-11, 1997.

Bibliography

 173

[21] A. Kennings and I. Markov, “Analytical minimization of half-perimeter wirelength,”

ASP-DAC: 179-184, 2000.

[22] H. Eisenmann and F. Johannes, “Generic Global Placement and Floorplanning,”

DAC: 269-274, 1998.

[23] B. Riess and G. Ettelt, “Speed: Fast and Efficient Timing Driven Placement,” IEEE

Int. Symp. on Circuits and Systems, pp. 377-380, 1995.

[24] A. Srinivasan, “An Algorithm for Performance-Driven Initial Placement of Small

Cell Ics,” DAC, pp. 636-639, 1991.

[25] N. Viswanathan and C. Chu, “FastPlace: Efficient Analytical Placement using Cell

Shifting, Iterative Local Refinement and a Hybrid Net Model,” ISPD: 26-33, 2004.

[26] Q. Wang, D. Jariwala, J. Lillis, “A study of tighter lower bounds in LP relaxation

based placement.,” ACM Great Lakes Symposium on VLSI: 498-502, 2005.

[27] V. Betz and J. Rose, “VPR: A New Packing, Placement and Routing Tool for FPGA

Research,” Proc. Intel. Workshop on Field Programmable Logic and Applications, pp.

213-222, 1997.

[28] V. Betz, J. Rose, and A. Marquardt, “Architecture and CAD for Deep-Submicron

FPGAs,” Kluwer Academic Publishers, ISBN 0-7923-8460-1, February 1999.

[29] S. Kirkpatrick, C. Gelatt, and M. Vecchi, “Optimization by Simulated Annealing,”

Science, pp.671-680, May 1983.

[30] K. Shahookar and P. Mazumder, "VLSI Cell Placement Techniques," ACM

Computing Surveys, vol. 23, no. 2, pp. 143-220, June 1991.

[31] C. E. Cheng, “RISA: Accurate and Efficient Placement Routability Modeling,” DAC,

pp. 690 – 695, 1994.

[32] J. Shewchuk, “An Introduction to the Conjugate Gradient Method Without the

Agonizing Pain,” Technical Report, UMI Order Number: CS-94-125, Carnegie

Mellon University, 1994.

[33] R. Barrett, M. Berry, T. Chan, J. Demmel, J. Dongarra, V. Eijkhout, R. Pozo, C.

Bibliography

 174

Romine, and H. Van der Vorst, “Templates for the Solution of Linear Systems:

Building Blocks for Iterative Methods,” SIAM, Philadelphia, PA, 1994.

[34] http://en.wikipedia.org/wiki/Successive_over-relaxation, “Successive

over-relaxation”

[35] G. Grewal and M. Xu, “An Efficient Graph-Based Steiner Tree Heuristic for the

Global Routing of Macro Cells,” IEEE Canadian Journal of Electrical and Computer

Engineering, Vol. 31, No. 4, 2006.

[36] P. Douglas, “VHDL,” McGraw-Hill Professional, eISBN: 0071409548, May 2002.

[37] D. Thomas and P. Moorby, “The Verilog Hardware Description Language,” Springer,

ISBN 1402070896, 2002.

[38] A. Sangiovanni-Vincentelli, A. El Gamal, and J. Rose, “Synthesis Methods for

Field-Programmable Gate Arrays,” Proceedings of the IEEE, pp. 1057 – 1083, July

1993.

[39] R. Brayton, G. Hachtel, and A. Sangiovanni-Vincentelli, “Multilevel Logic

Synthesis,” Proceedings of the IEEE, pp. 264 – 300, Feb. 1990.

[40] A. Dunlop and B. Kernighan, “A Procedure for Placement of Standard-Cell VLSI

Circuits,” IEEE Trans. on CAD, pp. 92 – 98, Jan. 1985.

[41] J. Rose, W. Snelgrove, and Z. Vranesic, “ALTOR: An Automatic Standard Cell

Layout Problem,” Canadian Conf. on VLSI, pp. 169-173, 1985.

[42] W. Sun and C. Sechen, “Efficient and Effective Placement for Very Large Circuits,”

IEEE Trans. on CAD, pp. 349-359, March 1995.

[43] W. Swartz and C. Sechen, “Timing Driven Placement for Large Standard Cell

Circuits,” DAC, pp. 211-215, 1995.

[44] P. Du, G. Grewal, S. Areibi, and D. K. Banerji, “A Fast Hierarchical Approach to

FPGA Placement,” ESA/VLSI, pp. 497-503, 2004.

[45] C. Alpert, J. Huang, and A. Kahng, “Multilevel circuit partitioning,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, pp. 655

Bibliography

 175

– 667, 1998.

[46] M. Romesis and J. Cong, "Performance-Driven Multi-Level Clustering with

Application to Hierarchical FPGA Mapping," DAC, pp. 389-394, 2001.

[47] M. Haldar, A. Nayak, A. Choudhary, and P. Banerjee, “Parallel algorithms for FPGA

placement,” in the Great-Lakes Symposium on VLSI, (Chicago), March 2000.

[48] C. Fobel, G. Grewal, A. Morton, “A Comparison of Hardware-Accelerated Local

Search Methods for FPGA Placement,” IEEE International Midwest Symposium on

Circuits and Systems, August 5-8, 2007.

[49] C. Fobel, G. Grewal, and A. Morton, “A Hardware Accelerated Search Algorithm for

FPGA Placement,” IEEE Canadian Conference on Electrical and Computer

Engineering, Vancouver, April 11-16, 2007.

[50] Michael G. Wrighton and Andr´e M. Dehon. Hardware-assisted simulated annealing

with application for fast FPGA placement. In FPGA ’03: Proceedings of the 2003

ACM/SIGDA eleventh international symposium on Field programmable gate arrays,

pages 33–42, New York, NY, USA, 2003. ACM Press.

[51] Pak K. Chan and M. D. F. Schlag, “Parallel FPGA Placement with Symmetric

Multiprocessors (SMPs) and Vector Functional Units,

http://www.soe.ucsc.edu/~pak/chanschlagsmp.pdf.

[52] C. Fiduccia and R. Mattheyses, “A Linear Time Heuristic for Improving Network

Partitions,” Design Automation Conf., pp. 175-181, 1984.

[53] B. Kernighan and S. Lin, “An Efficient Heuristic Procedure for Partitioning Graphs,”

The Bell System Technical Journal, pp. 49(2): 291-307, 1970.

[54] C. Sechen, “VLSI Placement and Global Routing Using Simulated Annealing,”

Kluwer Academic Publishers, New York, 1988.

[55] J. Cong and J. Shinnerl, “Multilevel Optimization in VLSICAD,” Kluwer Academic

Publishers, 2003.

[56] D. Mitra, R. Romeo, and A. Sangiovanni-Vincentelli, “Convergence and Finite-Time

Bibliography

 176

Behavior of Simulated Annealing,” Advances in Applied Probability, vol 18, No3, pp.

747-771, 1986.

[57] C. Sechen and A. Sangiovanni-Vincentelli, “The TimberWolf Placement and Routing

Package,” IEEE Journal of Solid-State Circuits, vol. 20, No. 2, pp. 510-522, April

1985.

[58] M. Huang, F. Romeo, and A. Sangiovanni-Vincetelli, “An Efficient General Cooling

Schedule for Simulated Annealing, “ICCAD, pp. 381-384, 1986.

[59] W. Swartz and C. Sechen, “New Algorithms for the Placement and Routing of Macro

Cells,” ICCAD, pp. 336-339, 1990.

[60] J. Lam, J. Delsome, and C. Sechen, “Performance of a New Annealing Schedule,,”

Proc. 25th DAC conference, pp. 306-311, 1988.

[61] V. Betz, “Architecture and CAD for Speed and Area Optimization of FPGAs,” PhD

Dissertation, University of Toronto, 1998.

[62] http://www.eecg.toronton.edu/~vaughn/challenge/challenge.html, “The FPGA

Place-and-Route Challenge”

[63] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel Hypergraph

Partition: Applications in VLSI Domain,” Proc. ACM/IEEE Design Automation

Conference, pp. 526-529, 1997.

[64] S. Areibi, M. Thompson, and A.Vannelli, “A Clustering Utility Based Approach for

ASIC Design, “ 14th Annual IEEE International ASIC/SOC Conference, Washington,

DC, pp. 12-15, September, 2001.

[65] W. Sun and C. Sechen, “Efficient and Effective Placement for Very Large Circuits,”

IEEE Transactions on Computer-Aided Design Automation Conference, 14(3):

349-359, March 1995.

[66] Y. Sankar and J. Rose, “Trading Quality for Compile Time: Ultra-Fast Placement for

FPGAs, “ Proc. of the 7th ACM/SIGDA International Symposium on FPGAs, pp.

157-166, 1999.

Bibliography

 177

[67] C. J. Aplert, J. H. Juang, and A. B. Kahng, “Multilevel Circuit Partitioning,” Proc.

ACD/IEEE Design Automation Conference, pp. 530-533, 1997.

[68] S. Hur and J. Lillis, “Mongrel: Hybrid Techniques for Standard Cell Placement,”

IEEE/ACM International Conference on Computer-Aided Design, pp. 165-170, 2000.

[69] M. Wnag, X. Yang, and M. Sarrafzadeh, “Dragon2000: Standard-Cell Placement

Tool for Large Indsutry Circuits,” IEEE/ACM International Conference on Computer

Aided Design, pp.260-263, 2000.

[70] T. Chan, J. Cong, T. Kong, and J. Shinnerl, “Multilevel Optimization for Large-scale

Circuit Placement,” Proc. IEEE International Conference on Computer Aided Design,

San Jose, California, pp. 171-176, November 2000.

[71] C. Chang, J. Cong, D. Pan, and X. Yuan, “Multilevel Global Placement with

Congestion Control,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 22, no. 4, pp. 395-409, July 2002.

[72] P. K. Chan and M. D. Schlag, “Parallel placement for Field-programmable gate

arrays,” 11th International AC/SIGDA Symposium on Filed Programmable Gate

Arrays, (Monterey, California), February 2003.

[73] M. Grötschel, A. Martin, and R. Weismantel, “The Steiner Tree Packing Problem in

VLSI-Design,” Mathematical Programming, pp. 165-281, 1997.

[74] G. Grewal, T. Wilson, M. Xu, and D. Banerji, “Shrubbery: A New Algorithm for

Quickly Growing High-Quality Steiner Trees,” 17th International Conference on

VLSI Design, Mumbai, January 2004.

[75] L. Kou, G. Markowsky, and L. Berman, “A Fast Algorithm for Steiner Trees,” Acta

Informatica, Vol.15, pp.141-145, 1981.

[76] R. Karp, “Reducibility among combinatorial problems,” in Complexity of Computer

Computations (E. Miller and J Thatcher, eds.), Plenum Press, New York, pp. 85-103,

1972.

[77] G. Grewal, M. Xu, T. Wilson, and C. Obimbo, “An Approximate Solution for Steiner

Bibliography

 178

Trees in Multicast Routing,” International Conference on Artificial Intelligence, Las

Vegas, June 2004.

[78] G. Grewal, M. Xu, T. Wilson, and X. Yu, “Generating Diverse Pools of Steiner Trees

for VLSI Routing,” IEEE 18th Canadian Conference on Electrical and Computer

Engineering, Saskatoon, Canada, ref. 1568948681, May 2005.

[79] G. Grewal and M. Xu, “An Efficient Graph-Based Steiner Tree Heuristic for the

Global Routing of Macro Cells,” IEEE Canadian Journal of Electrical and Computer

Engineering, Vol. 31, No. 4, 2006.

[80] J.B. Kruskal, “On the Shortest Spanning Subtree of a Graph and the Traveling

Salesman Problem,” Proceedings of the American Mathematical Society, 7(1): 48-50,

1956.

[81] R.C. Prim, “Shortest Connection Networks and Some Generalizations,” Bell System

Technical Journal, Vol. 36, pp. 1389–1401, 1957.

[82] D. Chen, J. Cong and P. Pan, “FPGA Design Automation: A Survey,” Foundation

and Trends in Electronic Design Automation, Vol. 1, No. 3, 2006.

[83] B. M. Riess and G. G. Ettelt, “Speed: Fast and Efficient Timing Driven Placement,”

Proc. ISCAS, pp. 377-380, 1995.

[84] http://en.wikipedia.org/wiki/Student's_t-test, “Student’s t-test”

[85] E.W. Dijkstra, “A Note on Two Problems in Connection with Graphs”, Numerical

Mathematics, 1:pp269-271, 1959.

[86] J. M. Kleinhans, G. Sigl, F. M. Johannes, “Gordian: A new global optimization/

rectangle dissection method for cell placement”, Proc. of ICCAD, pp. 506-509, 1988.

[87] W. Mak and H. Li, “Placement for modern FPGAs,” In Proceedings of the 2005

conference on Field Programmable Logic and Applications, 2005, pp. 789-784.

[88] M. Hutton and V. Betz, “FPGA synthesis and physical design,” Electronic Design

Automaton for Integrated Circuits Handbook,” Taylor Francis CRC Press, vol. 1, ch.

13, 2006, pp. 13.1-12.2.

Bibliography

 179

[89] Alisson V. Brito, Matthias Kuhnle, Michael Hubner, Jurgen Becker, Elmar U. K.

Melcher, "Modelling and Simulation of Dynamic and Partially Reconfigurable

Systems using SystemC," isvlsi,pp.35-40, IEEE Computer Society Annual

Symposium on VLSI (ISVLSI '07), 2007.

[90] .D. Rao and M. Venkatesan, M, “An Efficient Reconfigurable Architecture and

Implementation of Edge Detection Algorithm using Handle-C,” In Proceedings of the

international Conference on information Technology: Coding and Computing (Itcc'04)

Volume 2, pp. 846, 2004.

[91] M. Haldar, A. Nayak, A. Choudhary and P. Banerjee, “A system for synthesizing

optimized FPGA hardware from MATLAB,” In Proceedings of the 2001 IEEE/ACM

international Conference on Computer-Aided Design, 314-319.

[92] Michael A. Shanblatt, Brian Foulds, "A Simulink-to-FPGA Implementation Tool for

Enhanced Design Flow," mse,pp.89-90, 2005 IEEE International Conference on

Microelectronic Systems Education (MSE'05), 2005.

[93] P. Maidee, C. Ababei and K. Bazarga, “Timing-Driven Partitioning-Based Placement

for Island Style FPGAs,” IEEE Transaction Computer-Aided Design of Integrated

Circuits and Systems, 24(3): 395-406, March 2005.

[94] G. Karypis and V. Kumar, “Multilevel Hypergraph Partitioning,” In Design

Automation Conference, 1997.

[95] P. Gopala Krishnan, X. Li and L. Pilleggi, “ Architecture-Aware FPGA Placement

Using Metric Embedding,” In IEEE/ACM Designer Automation Conference, pp.

460-465, 2006.

[96] S. Ariebi, G. Grewal, D. Banerji and P. Du, “Hierarchical FPGA Placement,” IEEE

Canadian Journal of Electrical and Computer Engineering Vol. 32, No. 1, pp. 53-64,

Winter 2007.

[97] T. Chan, J. Cong and K. Sze, “Multilevel generalized force-directed method for

circuit placement,” Proceedings of the 2005 international symposium on Physical

Bibliography

 180

design, San Francisco, CA, April 2005.

[98] A. B. Kahng, S. Reda and Q. Wang, “Architecture and details of a high quality,

large-scale analytical placer,” In Proceedings of the 2005 IEEE/ACM international

Conference on Computer-Aided Design, 891-898, November, 2005.

[99] A. Ludwin, V. Betz and K. Padalia, "High-Quality, Deterministic Parallel Placement

for FPGAs on Commodity Hardware," ACM / Sigda Int. Symp. on FPGAs, 2008, pp.

14 - 23.

[100] Y.T. Chang, Y.W. Chang, "An Architecture-Driven Detric for Simultaneous

Placement and Global Routing for FPGAs," 37th Conference on Design Automation

(DAC'00), 2000, pp.567-572.

[101] S. Nag and R. Rutenbar, “Performance-driven simultaneous place and route for

row-based FPGAs,” In Proceedings of the 31st Annual Conference on Design

Automation, 1994.

[102] R. Fletcher and C. M. Reeves, “Function minimization by conjugate gradients,” The

Computer Journal 1964 7(2): 149-154.

[103] G. Chen, and J. Cong, "Simultaneous Timing Driven Clustering and Placement for

FPGAs," Springer Berlin / Heidelberg, ISBN 978-3-540-22989-6, August 2004.

[104] Y. Xu and M. A. Khalid, “QPF: efficient quadratic placement for FPGAs,”

International Conference on Field Programmable Logic and Applications, 2005, pp.

555-558.

[105] H. Etawil, S. Arebi, and A. Vannelli, “Attractor-repeller approach for global

placement,” Proc. IEEE/ACM Intl. Conf. on Computer-Aided Design, pp. 20–24,

1999.

[106] B. Hu and M. Marek-Sadowska, “Far: Fixed-points addition and relaxation based

placement,” Proc. Intl. Symp. on Physical Design, pp. 161–166, 2002.

[107] J. Vygen, “Algorithms for large-scale flat placement,” Proc. ACM/IEEE Design

Automation Conf., pp. 746–751, 1997.

Bibliography

 181

[108] C. J. Alpert, T. F. Chan, D. J. H. Huang, A. B. Kahng, I. L. Markov, P. Mulet and K.

Yan, “Faster Minimization of Linear Wire Length for Global Placement,” Proc. ISPD

'97, pp. 4-11.

[109] R. Baldick, A. Kahng, A. Kennings and I. Markov, “Function Smoothing with

Applications to VLSI Layout,” Proc. ASP-DAC `99, pp. 225-228.

[110] http://www.edn.com/article/CA6495296.html, “High noon for FPGAs:

Low-cost-versus-high-end showdown”.

[111] M. Xu, “Fast Heuristics for Solving Single- and Multiple-Objective Steiner Tree

Problems in a Graph,” M. Sc. Thesis, University of Guelph, 2004.

[112] W. Kahan, “Gauss-Seidel methods of solving large systems of linear equations,”

PhD thesis, University of Toronto, 1958.

[113] M. Xu, G. Grewal, S. Areibi, C. Obimbo and D. Banerji, “Near-Linear Wirelength

Estimation for FPGA,” IEEE 22nd Canadian Conference on Electrical and Computer

Engineering, St. John’s, Canada, May 2009, pp.1198-1203.

