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Abstract 
Within the last 20 years, the use of Field Programmable Gate Arrays (FPGAs) to 

implement digital systems has grown significantly because of their flexibility, dramatic 

reduction in turn-around time, and start-up costs compared with traditional Application 

Specific Integrated Circuits (ASICs). Moreover, FPGAs themselves have experienced an 

exponential growth in size, complexity, and performance. Computer-Aided Design (CAD) 

plays a critical role in optimizing high-performance design solutions using these high-end 

FPGAs. However, compilation times for designs, which are dominated by placement and 

routing times, are growing much more rapidly than the available computation power. 

While current CAD algorithms provide quality solutions, they often require significant 

amounts of CPU time. For many circuits, the compile time can be on the order of tens of 

CPU hours, which adversely impacts the use of FPGAs by hardware designs. This 

provides compelling motivation to explore new methods for fast compilation of designs.  

 

In this thesis, we focus on the placement phase of the FPGA design process. 

Given a circuit represented as a connection of logic blocks, the placement problem can be 

stated as that of assigning each logic block to a unique physical resource on the FPGA 

while achieving a given overall performance. Placement is an NP-complete problem [10] 

and one of the most time-consuming tasks in the automation of FPGA design. 

 

We present a new "near-linear" model for estimating wirelength, called Star+. The 

model is similar to the traditional star model [21], but is strictly differentiable, making it 

suitable for use with analytic placement methods. Most importantly, the time to compute 

the change in cost resulting from the swap of two blocks always runs in O(1) time. We 

also present two analytic placement methods based on Conjugate Gradient (CG) [18] and 

Successive Over-Relaxation (SOR) [33], respectively. Both analytic methods seek to 

minimize total wirelength using the Star+ model as an estimate of wirelength. The 

novelty of the CG method lies in the fact that this method avoids computing the Hessian 

matrix on each iteration, thus reducing the (traditional) cost of computing the inner loop 



from O(n2) to O(n). The SOR method, on the other hand, has the same runtime 

complexity as CG, but by properly arranging the sequence in which equations in the non-

linear equation system are processed, SOR placement runs faster by a constant amount 

(approximately 7x).  We also present a novel pre-placement method for pre-assigning 

certain blocks on the FPGA which runs in O(n log n) time. Finally, we develop and 

present a timing-driven placement algorithm by adding timing-driven parameters into the 

original (Star+) objective function used by both CG and SOR. 

 

Compared with Versatile Place and Route (VPR) – the state-of-the-art academic 

placement tool, with our methods we are able to achieve solutions 4 to 40 times faster and 

with 1 to 8.8% less critical-path delay.  
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Chapter 1 

Introduction 

1.1 Motivation and Technology Trends 

Field-Programmable Gate Arrays (FPGAs) represent a major manifestation of 

microelectronics as a key enabling technology. Since their inception in 1985, FPGA use 

has grown almost exponentially because they dramatically reduce design turnaround time 

and manufacturing costs for prototype circuits and small to medium volume electronic 

products. This is due to the fact that the logic and interconnect components in an FPGA 

are reconfigurable, making design debugging and modifications as easy as downloading 

another file to the chip. It has been estimated that more than 80% of design starts rely on 

the use of FPGAs, because they do represent an ideal means of establishing proof-of-

concept, prototyping, and use in low and medium volume products. Due to the 

prohibitive cost of using the services of silicon foundries, many companies have turned 

away from designing and fabricating Application Specific Integrated Circuits (ASICs), 

instead relying on FPGAs even for high-volume products. A major part of the impetus for 

this switch comes from the need to upgrade or modify the product functionality even after 
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releasing it in the market. The change is simply affected by downloading new 

configuration information into the FPGA. This makes it extremely cost-effective to make 

product/service changes in the field. This factor has become very important in today’s 

highly competitive marketplace, where time to market and time to change or modify 

functionality in response to customer needs can make or break a company. From all 

indications, FPGAs have assumed a central role in digital system design. In fact, FPGA 

revenues are expected to grow from just under 4 billion in 2008 to just under 6 billion by 

2011 [110]. 

 

Of course, technology must constantly change to meet the needs of the 

marketplace. When FPGAs first debuted in the mid-1980s, the Xilinx XC2064 (Xilinx, 

San Jose) FPGA had only 64 Lookup Tables (LUTs) and was used as simple glue logic. 

Today, Altera’s Stratix IV (Altera, San Jose) and Xilinx’s Virtex-6 both offer over 

680,000 logic cells, plus a large number of hard-wired macro blocks such as embedded 

memories, DSP blocks, embedded processors, high-speed IOs, and clock synchronization 

circuits, representing more than a 10,000 times increase in logic capacity [110].  These 

modern FPGA devices are being used in entertainment, navigation, information, 

communication, and safety systems [1-5], including highly-complex System-on-Chip 

(SoC) components that contain both hardware and software elements. 

 

Computer-Aided Design (CAD) plays a critical role in optimizing high-

performance, high-density, and low-power design solutions using these high-end FPGAs. 

However, compilation times for designs are dominated by placement and routing time†. 

FPGA placement usually begins with a netlist of logic blocks and their interconnections. 

The result of placement is the physical assignment of all blocks on the target FPGA in a 

way that minimizes one or more specific objective cost functions (e.g., wirelength, delay, 

power dissipation, etc.).  FPGA placement is similar to the more general ASIC placement 

problem in the sense that all blocks must be arranged inside a prescribed region on the 

chip such that no two blocks overlap and the estimated wirelength needed to implement 

the connections is minimized. However, it differs from the ASIC problem in that both the 

                                                 
† A detailed overview of the FPGA design flow is given in Chapter 2 
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size of the logic blocks, the type of logic blocks available, and the location that the blocks 

can occupy on the chip is fixed. Thus, FPGA placement can be viewed as a more 

constrained version of the general ASIC placement problem.  In practice, placement has a 

significant impact on the performance and routability of circuit design, especially in 

nanometer designs because a placement solution, to a large extent, defines the amount of 

interconnect in the design, which now becomes the bottleneck of circuit performance. 

  

FPGA routing is similar to the general ASIC routing problem in that all nets 

(wires that must be connected) must be successfully routed subject to timing constraints. 

However, FPGA routing is more constrained in the sense that it can use only the 

prefabricated routing resources on the FPGA, including available wire segments, 

programmable switches, and multiplexers. Therefore, achieving 100% routability is more 

challenging than ASIC routing. Moreover, a poor placement cannot be improved later by 

a high-quality routing. 

 

For today’s modern designs, FPGA placement and routing times are growing 

much more rapidly than the available computation power. While current CAD algorithms 

provide high-quality solutions, they often require great amounts of CPU time. For many 

circuits, this compile time can be in the order of tens of CPU hours, which adversely 

impacts the use of FPGAs by hardware designers. This provides compelling motivation to 

explore new methods for fast compilation of designs. 

 

 The focus of this thesis is on the FPGA placement problem. The objective is to 

develop efficient and effective placement algorithms. The strategy is based on developing 

novel analytic models and solution methods. 

 

1.2  Overview of the Placement Problem 

The FPGA placement problem usually begins with a netlist of logic blocks and their 

interconnections. The result of placement is the physical assignment of all blocks on the 
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target FPGA, which minimizes one or more specific cost functions. A formal description 

of the FPGA placement problem follows: 

 

 Given a set of blocks B = {b1, b2, … bm}, a set of signals S = {s1, s2, … sn}, and a 

set of locations on the field-programmable gate-array L = {l1, l2, … lp}, where p   |B|.  

bi  B, there is a set of signals Sbi  S, and  si  S, there is a set of blocks Bsi , Bsi = {bj | 

si  Sbj }. Bsi only contains all the blocks that send or receive signal si, and Sbj only 

contains all the signals that are sent or received by block bj . The goal is to assign each 

block bi  B to a location lj  L such that the chosen objective function is optimized.  

 

In practice, Bsi is said to be a “signal net,” and each such net specifies the 

connectivity of the original circuit. Typically, each block belongs to several nets. 

Locations on the FPGA typically correspond to Configurable Logic Blocks (CLBs) or I/O 

pads. CLBs are used to implement logic, while the pads are used for input/output to and 

from the FPGA. These blocks have distinct connection points on their boundary (called 

pins), which are used to provide each net a unique connection point.   

 

When performing placement, the most basic objective is to minimize the 

wirelength required to complete the routing. Routing cost is used because reducing it 

reduces a number of associated design parameters. By reducing the routing length, the 

routing resources required by all interconnections are reduced. This results in an increase 

in circuit speed due to the reduction in connection capacitance and resistance. Power 

consumption, which is another important parameter to measure the quality of an FPGA 

implementation, is reduced too [12]. If the objective of the placement tool is to minimize 

the routing cost, the process is known as wirelength driven placement. There are other 

objective terms that can be added to the original cost function to directly optimize various 

design goals. For example, placement can be performed to minimize the length of the 

critical path to meet timing constraints, referred to as timing-driven placement.  Circuits 

implemented on an FPGA are synchronous and, therefore, are driven by a clock.  

                                                 
 For simplicity, we leave off any discussion regarding the need to deal with timing constraints on signal nets 
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Minimizing the length of the critical path to meet timing constraints has the effect of 

maximizing the speed at which the circuit can be clocked. 

 

In this thesis, the focus is primarily on using a near-linear wirelength objective in 

the analytical placement algorithms that we present. However, we also present a novel 

multi-objective analytical model that seeks to simultaneously optimize wirelength and 

critical-path delay. 

  

A tiny problem is given in the (simplified) illustration in Fig. 1.1. (The illustration 

is simplified in that, for the sake of clarity, all of the programmable routing resources on 

the FPGA have been omitted. A much more detailed illustration is given in Chapter 2 

which shows the typical routing resources available on an FPGA.) I/O pads are shown as 

shaded squares; CLBs are shown as non-shaded squares; and signal nets are shown as 

connections between the I/O pads and CLBs. Fig. 1.2 shows a “bad” placement that does 

not minimize total wirelength. As discussed, minimizing wirelength is important because 

excess wirelength degrades the performance of the final circuit. Moreover, excessive 

wirelength may lead to congestion in different parts of the chip making routing 

impossible (due to the limited and fixed number of routing resources available on the 

FPGA). Figure 1.1 shows a much better placement, from a wirelength perspective. 
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Figure 1.1: A “good” placement. 
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1.3  FPGA Placement Methods 

Over the last few years, many FPGA placement algorithms have been proposed to handle 

the objective of wirelength minimization. However, as the placement problem is NP-hard 

[10], no polynomial-time algorithm is known to produce an exact solution. Therefore, 

most algorithms are heuristic, seeking to find “good” solutions in  “reasonable” amounts 

of time.  Historically, these algorithms have been divided into three classes: partitioning-

based placement [13][14], iterative improvement [15], and analytical-based placement 

[16-26]. 

 
In partitioning-based placement, a circuit is recursively bisected, minimizing the 

number of cuts of nets that connect components between partitions, while leaving highly 

connected blocks in one partition. Eventually, the partition size reaches a few blocks to 

obtain improvement by grouping highly connected blocks in one partition. These kinds of 

methods are good from a “global” perspective, but they do not directly attempt to 

optimize wirelength, timing, or routability. Therefore, the solutions obtained are inferior 

compared with other placement methods. However, partitioning methods run fast, and are 

normally used in conjunction with other search techniques, such as local search [15] for 

further quality improvement or quadratic programming [17]. 

 

Iterative methods, on the other hand, start with an initial placement and seek 

improvements by searching for small perturbations in the neighbourhood of the 

placement that result in better solutions. For FPGA placement, perturbations are location 

swaps (pair-wise moves) between blocks or moves (in the case where one of the 

“swapped blocks” is an empty location on the FPGA).  The well-known Versatile 

Placement and Routing (VPR) [27][28] package for FPGA placement and routing uses 

the Simulated-Annealing (SA) method as its optimization engine for placement. 

 

The simulated annealing algorithm simulates the annealing process that is used to 

temper metals. Given an initial placement configuration, a change to that configuration is 

made by either swapping the positions of two blocks, or moving a single block to an 
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unoccupied location on the FPGA. In simulated annealing, all swaps (or moves) that 

result in a decrease in cost are accepted. Swaps (or moves) that result in an increase in 

cost are accepted with a probability that decreases over the iterations.  More specifically, 

moves and swaps that deteriorate the solution are accepted in SA with a probability of 

T
C

e



, where C  is the change in cost, and T is analogous to temperature in the metal-

crystallization process. The change of T is referred to as an annealing schedule. Initially, 

T is set to a high value such that most inferior solutions can be accepted. This helps the 

search escape the many local optima it is likely to encounter as it begins to explore the 

problem’s search space. As the annealing process continues, T gradually decreases 

(cools), reducing the probability of accepting poor solutions. This causes the search to 

slowly turn its focus away from exploring the search space in a global fashion to 

exploiting the current region of the search space. In the final state, T usually is only a 

small fraction of its original value, and almost only improving solutions are allowed; 

thus, the primary focus of the search becomes one of pure exploitation. 

 
In the context of FPGA placement, it is too expensive to determine the exact 

configuration of routing resources needed to realize physical connections between the 

blocks, which is another NP-hard problem [10]. Besides distance (wirelength) between 

connections, there may be constraints on the number of wires sharing a channel, the 

allowed length or number of turns for certain wires, the availability of routing junctions, 

etc. For this reason, the routing cost is approximated during placement. The speed and 

accuracy of routing-cost estimation has a significant effect on the overall performance of 

any placement method. For example, VPR [27] (and many similar methods) employ the 

well known Half-Perimeter Wirelength (HPWL) model [30][31] to estimate the 

wirelength of a net. The wirelength is approximated by half the perimeter of the smallest 

bounding rectangle that encloses all terminals in the net. For a net with two or three 

terminals, the routing cost is accurate. However, when there are more than three 

terminals, a factor [27] can be introduced to compensate for the fact that HPWL 

underestimates the wire length required to connect all blocks.  Using the HPWL model, 

VPR has achieved similar or higher quality solutions, compared with other types of 
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placement methods. However, because SA-based approaches must test an enormous 

number of possible swaps and moves, and because the annealing schedule required to 

find high-quality solutions is typically slow, the improvement over other placement 

methods comes at the cost of significantly longer run times.  

 

In order to improve the runtime of SA-based approaches, some researchers apply 

multilevel techniques [66]. Multilevel optimization starts with multilevel clustering [82]. 

It requires cluster sizes at each level to be the same to facilitate pair-wise exchange at 

each level later on by simulated annealing. The clustering begins with a cluster with a 

random seed occupying an arbitrary slot in the cluster. Then, it grows the cluster by 

adding a logic block with the highest connectivity, measured by the summation of the 

shared nets between the block and the cluster. If all blocks on a net belong to the cluster, 

that net is absorbed. When the cluster is full, a new cluster is started with a random seed. 

This process is repeated until all blocks are clustered. The result is a clustered netlist with 

the absorbed nets removed. Then, it proceeds to create the next level of the clustering 

hierarchy. After the clustering hierarchy is created, low-temperature simulated annealing 

is performed at each level of the clustering hierarchy. During de-clustering from a coarser 

level to a finer level, the position of each cluster (or logic block) in the finer level is 

determined by the mean of the positions of the I/O pads and the parent clusters that are 

connected to it. Multilevel techniques speed up SA-based approaches at the cost of 

quality. 

 

The last category of FPGA placement algorithms, and the focus of this thesis, is 

analytical placement methods. Rather than evaluate many small-scale provisional 

modifications (like iterative improvement methods), analytical placement methods 

typically tackle the problem from the top down by considering global (block and I/O pad) 

connectivity. They include both force-directed [16] and quadratic-programming 

[17][18][95] methods. The force-directed method introduces attracting, repelling, and 

other additional forces, and then solves a linear equation system using these forces. In 

contrast, the quadratic programming (QP) method solves a sequence of quadratic 

programming problems derived from the circuit connectivity information. On each 
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iteration, additional constraints are added to restrict the movement of blocks in order to 

gradually reduce the amount of block overlap.  

 

Analytical methods are widely used for ASIC placement, but not as widely used 

for FPGA placement. Unlike ASICs, FPGAs are pre-fabricated before logic designs. 

Consequently, the placement solutions (in the form of the x- and y-coordinates of all logic 

blocks and I/O blocks) must be integers. However, the solutions obtained by solving 

equation systems are non-integers, which are acceptable in ASIC placement but are 

illegal in FPGA situation.  In FPGA placement, the solutions directly obtained by solving 

equation systems must be legalized. This legalization procedure is usually performed at a 

cost of sacrificing placement quality. 

 

 Recently, graph-based approaches have been combined with analytic methods to 

better capture the true cost of using routing resources on the FPGA [95]. The algorithm in 

[95] views the placement task as an embedding of a graph (representing the netlist) into a 

chosen metric space. It first defines an analytic metric of “distance” in terms of the total 

delay through switches on the FPGA routing architectures, and then uses it to construct a 

metric space that captures FPGA performance. Next, the netlist graph is embedded into 

the metric space based on a binary quadratic assignment formulation, which is solved 

with a heuristic technique based on matrix projections followed by online bipartite graph 

matching. At last, the resulting solution is improved using low-temperature simulated-

annealing method for local optimization. 

 

In general, analytic placement is very promising as both the force-directed and 

quadratic-programming methods, if implemented correctly, have the potential to produce 

good solutions in small amounts of time. However, one of the primary considerations 

when implementing an analytic method is the form of wirelength model to use. Although 

HPWL [31] is widely used by iterative-improvement based methods, the fact that it is not 

continuously differentiable makes it difficult to employ in analytic methods that rely on 

the presence of first- and second-order partial derivatives. Moreover, HPWL ignores the 

relative positions of blocks inside the bounding box, despite the fact that the position of 
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these blocks has a direct affect on the total wirelength required. Due to these limitations, 

HPWL is rarely used by analytic methods directly. Analytic methods typically begin by 

transforming a hypergraph representation of the original circuit into a graph, where each 

(hyper) edge is modeled as a star [21] or a clique [21].  The actual effect of these models 

depends on the type of objective used. As discussed above, analytic FPGA placement 

algorithms commonly utilize a squared (quadratic) wirelength objective, as this allows 

efficient quadratic programming techniques to be applied [18] – something that is very 

important from a performance perspective. However, the quadratic wirelength objective 

has the effect of overemphasizing the optimization of longer nets at the expense of shorter 

nets. To compensate, some analytic methods have tried using a regularized linear wire-

length estimate [17][21] in the context of ASIC placement. However, minimizing 

regularized linear wire-length is computationally more difficult than minimizing squared 

wire-length. Moreover, regularized linear wire-length results in lower-quality solutions 

compared with HPWL, again in the context of ASIC placement.  

 

In this thesis, we propose to employ a new, near-linear wirelength model that is 

both differentiable (and hence suitable for use with the analytic methods we present later 

in the thesis) and accurate (does not overemphasize the optimization of longer nets). The 

employment of a near-linear objective into an analytic placement method is not new. For 

example, in the context of ASIC placement, the Gordian-L [17] uses iteratively refined 

piece-wise “linear” approximation of wire length. Compared with Gordian, which uses a 

traditional quadratic objective, Gordian-L is generally observed to lead to higher-quality 

placements. Moreover, the term-wise scaling approached used in Gordian-L does not 

change the properties of the underlying wirelength matrix. Hence, the same fast 

numerical techniques can be used to solve sequences of linear systems of equations 

arising in both formulations. 

 

The proposed wire-length model, which we call Star+, is a variant of the well-

known star model [21] (which was originally proposed for estimating wirelength in the 

context of ASIC placement) but with some key differences1. By using a near-linear wire-

                                                 
1 Differences between Star+ and existing models are described in detail in Chapter 3 
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length model in our analytic optimization engine, wirelength can be more accurately 

estimated compared to the quadratic wirelength objective.  This provides another avenue 

for analytic methods to follow.  However, there is an important caveat. By employing a 

non-linear objective the resulting system of equations that must be solved is no longer 

linear, but non-linear; thus, making the resulting optimization problem (equation system) 

harder to solve. To compensate, we propose both theoretical as well as heuristic 

modifications to standard methods (conjugate gradient [32] and successive over-

relaxation [33]) for solving systems of non-linear equations to improve their runtime 

performance. The goal is to develop analytic methods that are both effective and efficient. 

 

1.4  Contributions 

The contributions that this thesis makes are summarized as follows: 

 

 We present a new near-linear model for estimating wirelength, called Star+. The 

model is based on the star model [21], but unlike HPWL, is directly differentiable, 

making it suitable for use with analytical methods. Another feature of the Star+ 

model is that the computation of C  caused by the swap of two blocks always runs 

in O(1) time. This feature makes it suitable for SA-based methods, too. The Star+ 

model is also accurate. Our results show that when the Star+ model replaces the 

HPWL model in VPR [27][28], the quality of placements are similar with respect to 

total wire length and channel capacity, but Star+ produces placements with, on 

average, 6-9 percent smaller critical-path delay with no additional effort. 

 

 We propose a novel non-linear Conjugate Gradient (CG) placement algorithm, 

which generates placement solutions by minimizing an objective function based on 

the Star+ model. The proposed method is more efficient than traditional conjugate 

gradient method [19] for FPGA placement. When using the traditional CG method, 

the Hessian matrix of the objective function has to be calculated on each iteration. 

This is not a problem when the Hessian matrix is sparse. But in the case of the 
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FPGA placement, the Hessian matrix is dense and, therefore, the computation of the 

Hessian is )( 2nO . In the non-linear CG method proposed here, we avoid computing 

the Hessian directly, and reduce the time complexity of an iteration to )(nO .  

 

 We introduce a second analytic placement algorithm based on the Successive Over 

Relaxation (SOR) method [33]. SOR is also based on the Star+ model and has the 

same runtime complexity as CG placement. However, by properly arranging the 

sequence for calculating each equation of the nonlinear equation system, SOR-

based placement runs faster by a constant amount (approximately 6.9 times as fast). 

 

 In order to obtain non-trivial solutions of a nonlinear equation system, some logic 

and/or I/O blocks must temporarily be assigned to fixed locations on the FPGA 

chip. This assignment is called pre-placement. We present a novel pre-placement 

algorithm (called Shrubbery) that pre-places certain blocks using a method, which 

runs in )log( nnO  time. 

 

 We develop an analytical timing-driven placement algorithm by adding timing-

driven factors into the original objective function used by both non-linear CG and 

SOR. The timing-driven model that is employed is the same as that used in other 

timing-driven placement methods, including VPR [27][28]. 

 

 

1.5 Thesis Organization 
 

The remainder of this thesis is organized as follows. Chapter 2 introduces the FPGA 

architecture that we target throughout the remainder of this thesis, and gives an overview 

of previous works including a detailed comparison of different wirelength estimation and 

timing models, and a brief analysis of current placement algorithms. Chapter 3 describes 

the accuracy, computational complexity, and the differentiability of the Star+ model. 

Chapter 4 presents the non-linear CG placement algorithm based on the Star+ model. 
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Chapter 5 introduces the pre-placement algorithm – Shrubbery. Chapter 6 gives the SOR 

placement algorithm. Chapter 7 summarizes our research results and gives suggestions 

for future work. Finally, Appendix A describes the timing-driven placement.  
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Chapter 2 

Relevant Background 

In this chapter, we provide the necessary background material. In Section 2.1 we describe 

the basic island-style FPGA architecture that we assume throughout the remainder of this 

thesis. Section 2.2 describes the typical FPGA design flow. In Section 2.3, we discuss 

previous relevant work related to the FPGA-placement problem, while in Section 2.5 we 

describe the main wirelength estimation models employed by these placement 

methodologies. In Section 2.5 we provide a brief summary that seeks to place the work 

that we are proposing in this thesis in proper relation to the previous work. Finally, in 

Section 2.6 we introduce the benchmarks that will be used to validate the effectiveness of 

our placement algorithms. 

 

2.1 FPGA Architecture(s) 

There are various types of FPGA architectures available from different vendors including 

Xilinx, Altera, Actel, Lucent, and QuickLogic. Although the exact structure of these 

FPGAs varies from each other, all FPGAs consist of three fundamental components (as 

seen in Fig. 2.1): 
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1. Logic blocks that are capable of implementing multiple logic functions; 

2. I/O blocks or I/O pads for communication with the outside world; and, 

3. fixed, as well as programmable, routing resources used to realize all required 

interconnections between the blocks. 

 

Based on their routing architectures, current commercial FPGAs can be classified 

into three groups: island-style FPGAs, row-based FPGAs and hierarchical FPGAs. As 

the placement methods mentioned in this thesis are aimed mainly at island-style FPGAs, 

we give a brief introduction of this FPGA architecture next. 

 

Employed by many vendors, the island-style FPGA architecture is characterized 

by its two-dimensional symmetry. The architecture contains a square array of logic blocks 

surrounded by routing resources (wire segments and programmable switches). Logic 

blocks in this architecture are referred to as Configurable Logic Blocks (CLBs) and are 

arranged as a symmetrical array. Routing tracks have a Manhattan geometry; that is, they 

are either horizontal or vertical. Figure 2.1 shows a generic model of this kind of FPGA, 

an architecture that we assume throughout the rest of this thesis. 

 

 
Figure 2.1:  Architecture of Island Style FPGA. 
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 The detailed routing structure consists of three components: connection blocks, 

switch blocks, and routing channels. A connection block is used to connect a CLB to the 

routing channels via programmable connections. The pins of each CLB pass 

uninterrupted through the connection block and have the option of “fusing” to some 

channel segments. The switch block is a switch matrix that is used to connect wires in 

one channel segment to other wires. Depending on the topology, each wiring segment on 

one side of a switch block may be connected to some or all of the wiring segments on the 

other three sides. This flexible routing structure enables every CLB to have connections 

with any other CLB or I/O pad, depending on the number of tracks in the routing 

channels. A CLB in most commercial FPGAs consists of one or more Basic Logic 

Elements (BLE). Each BLE usually consists of a Look Up Table (LUT) and a register, as 

shown in Fig. 2.1. The underlying concept behind a LUT is relatively simple. A group of 

input signals is used as an index (pointer) to a lookup table. The contents of this table are 

arranged such that the cell pointed to by each input combination contains the desired 

value. In general, an n-input LUT can implement any possible n-input combinational 

circuit.  

2.2 FPGA Design Procedure 

As implementing a circuit using FPGAs involves the configuration of millions of 

programmable gates and switches, it is impractical for designers to specify all of the 

states for these components. Rather than setting the gates and switches to their proper 

states directly, designers describe the circuit to be implemented on the FPGA at a high-

level of abstraction, typically using a Hardware Description Language (HDL) (or, in rare 

cases, using schematic entry). Then, Computer-Aided Design (CAD) tools convert this 

high-level description into a configuration file that specifies the states of all the 

programmable resources on the FPGA. Figure 2.2 shows a typical design flow. 

 

Inputs to the design flow typically include the HDL specification of the design, 

design constraints, and a specification of the target FPGA. Each of these inputs is 

described below: 
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 Circuit description 

During the 1980s, schematic capture programs allowed engineers to create circuit 

(schematic) diagrams interactively.  However, towards the end of the 1980s, as 

designs grew in size and complexity, schematic-capture tools began to run out of 

steam. Today, most FPGA designers use design tools and flows based on the use of 

HDLs. The most widely used design specification languages are Verilog [37] and 

VHDL [36], which are used at the Register-Transfer Level (RTL) to specify the 

operations in each clock cycle. Recently, there has been a trend toward moving to 

specification at a higher level of abstraction, using languages like System-C [89] or 

Handel-C [90], or domain specific languages, such as MatLab [91] or Simulink [92]. 

These languages allow a designer to focus on the algorithm/behavior that is to be 

implemented on the FPGA, rather than having to focus on the cycle-accurate 

description of the design. 

 

 Design Constraints 

Design constraints typically include the desired operating frequencies of different 

clocks employed in the design, bounds on path delays from input pads to output pads, 

from input pads to registers (setup times), and from registers to output pads (hold 

times), or delays between specific pairs of registers. Moreover, the user (or synthesis 

tool) may specify constraints requiring that certain elements or blocks be placed at 

certain physical locations on the FPGA. 

 

 Target FPGA 

The third input is the type of target FPGA to be used. Most FPGA vendors provide a 

wide variety of FPGA architectures that differ with respect to size, performance, 

power, and cost. Typically, a designer will start with a small (low capacity) FPGA 

with nominal speed-grade. However, if the synthesis effort fails to map the design 

onto the FPGA or fails to meet performance requirements, the user will have to 

upgrade to a larger (higher capacity and/or higher speed grade), but more expensive 

device. This fact clearly underscores the need to have better synthesis tools, as their 

quality directly impacts the performance and cost of FPGA designs. 
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We now briefly describe the FPGA design flow in Fig. 2.2. Given a design 

(described in a suitable HDL), set of design constraints, and a target FPGA device, the 

overall FPGA synthesis goes through the following steps. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2:  Typical FPGA design flow 

 

 Synthesis and logic optimization 

This step involves synthesizing the designer’s original hardware description into a 

logic design, using CAD tools. This involves identifying both datapath operations 

and control logic. Identification of the latter is important, as modern FPGAs often 

have architectural support such as embedded multipliers and adders with fast carry 

chains. Next, complex logic is broken down into simple logic expressions, which are 

converted into a netlist of basic gates.  This netlist of basic gates is then transformed 

into a netlist of FPGA logic blocks. During this stage, technology-independent logic 

optimization is often involved to remove any redundant logic and simplify logic 

wherever possible [38][39]. 
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 Technology mapping 

Once optimized, the netlist of logic gates has to be mapped into Look-Up Tables 

(LUTs), which will be packed into FPGA logic blocks later on. In this context, 

mapping refers to the process of associating entities such as gate-level functions in 

the net-list with the LUT-level functions available on the FPGA. This is not a one-

for-one mapping because each LUT can be used to represent a number of logic gates.  

In practice, mapping is a nontrivial problem because there are a large number of 

ways in which the logic gates forming a netlist can be partitioned into the smaller 

groups to be mapped into LUTs. 

 

 Logic block packing 

Following the mapping phase, the next step is packing, in which the LUTs and 

registers are packed into the CLBs. A CLB usually contains more than one look-up 

table and flip-flop. Logic block packing groups several look-up tables and flip-flops 

into each CLB with the objective to minimize the interconnections between CLBs. 

During packing, constraints such as the maximum number of inputs per CLB have to 

be taken into account. In practice, packing is also a nontrivial problem because there 

are myriad potential combinations and permutations. 

 

 Placement 

Following packing, we move to placement. After logic block packing, the circuit has 

been transformed into a list of blocks (CLBs) and nets (pins that must be connected) 

that specify the connections between these blocks. Placement algorithms now assign 

these logic blocks to physical locations on an FPGA with optimization goals to 

minimize the required wiring (wirelength-driven placement) [20][21], balance the 

wiring density (routability-driven placement), and/or to maximize circuit speed 

(timing-driven placement) [28]. In general, placement is an NP-hard problem and 

represents one of the main bottlenecks in the FPGA design flow, as FPGAs can 

contain hundreds of thousands of CLBs. In fact, placement times for industrial-

strength applications are often so long that most designers today would be very 
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happy if these times could be reduced to allow for one full-compile (from HDL to 

FPGA) per day. 

 

 Routing 

Following placement, routing algorithms (global and detailed) identify which 

specific wire segments should be used and which programmable switches should be 

turned on to connect all the nets specified in the netlist file. The optimization goals 

are typically to reduce the amount of routing resources required to connect all the 

nets, and/or minimize the delay. 

 

 Simulation: 

Following place-and-route, we have a fully routed physical (CLB-level) netlist. At 

this point, a static timing analysis utility is run to calculate all of the input-to-output 

and internal path delays and also to check for any timing violations (setup, hold, etc.) 

associated with any of the internal registers.  Interestingly, if the designer wishes to 

re-simulate their design with accurate (post place-and-route) timing information, 

they have to use the FPGA tool suite to generate a new gate-level netlist along with 

associated timing information in the form of an industry-standard file format, called 

standard delay format. The main reason for generating this new gate-level netlist is 

that once the original netlist has been coerced into its CLB-level equivalent – it 

simply isn’t possible to relate the timings associated with this new representation 

back into the original gate-level incarnation. 

 

 Bit-stream file: 

The last process in the FPGA-design flow inputs the mapped, placed, and routed 

design and generates a bit-stream file that can be downloaded to the target FPGA 

chip. This bit-stream file stores the configuration of programmable blocks and 

routing resources. 

 

                                                 
  informed through private communication with Altera’s Vaughn Betz 
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As the focus of this thesis is on developing fast analytic methods for performing 

placement, we now turn our attention to the literature and existing placement methods. 

2.3 Placement Methods 

In the last two decades, abundant placement approaches have been proposed to deal with 

the broadly used objective of wirelength minimization. These methods can be roughly 

divided into 5 categories: (i) partition-based placement; (ii) simulated-annealing based 

placement; (iii) multi-level based placement; (iv) analytic placement; and (v) other 

placement methods, including hybrid and parallel methods. 

 

2.3.1 Partition-Based Methods 
 

Partitioning-based placement methods [40][41] are also referred to as min-cut methods. 

The basic idea is to use a graph-partitioning algorithm to divide a region of the FPGA 

into two halves. A circuit partitioning algorithm is then applied to determine which logic 

block goes to which half with the goals of minimizing the number of cuts in the nets 

across the boundary between two partitions, and placing highly-connected blocks in the 

same partition. These procedures are recursively repeated until each partition contains 

only a few blocks.  The advantage of partitioning-based placement algorithms is that they 

run very fast. As they use a divide-and-conquer strategy, where large problems are 

divided into small sub-problems, partitioning-based methods significantly reduce the 

problem search space. However, since the cut size is not an exact function of wirelength, 

timing or routability, the quality is not as good as other placement strategies. 

 

A notable (and recent) contribution is PFFF [93], which uses the start-of-the-art 

multi-level (see Section 2.3.4) partitioner hMETIS [94] as its partitioning engine. The 

experimental results in [93] report a slight degradation in solution quality, with a 3-4 

times improvement in runtime, compared with the state-of-the-art academic placement 

tool, VPR [27][28]. 
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2.3.2 Simulated Annealing 
 

Simulated Annealing (SA) is widely used for solving combinatorial optimization 

problems and has been applied to circuit placement (in the context of ASIC design) 

successfully [27][54].  As the name suggests, this method mimics the process used to 

gradually cool molten metal in order to obtain a good crystalline structure. An ideally 

annealed crystal should be in the lowest-energy ground state, which corresponds to the 

globally optimal configuration in a combinatorial-optimization problem. SA-based 

placement algorithms are readily adapted to handle any known form of constraint and 

optimization goals [55]. In addition to their hill-climbing property, their ability to accept 

non-improving moves enables them to escape local optima.  

 

 Simulated annealing belongs to a class of stochastic search algorithms that accept 

any randomly encountered solution within the neighborhood of solutions being currently 

considered with a defined probability.  In practice, new neighbouring solutions are 

created incrementally from the current solution. If the cost of the new solution (derived 

using an appropriate objective function for the problem) is reduced, the new solution is 

accepted. However, if the new solution is found to have inferior cost, the new non-

improving solution may still be accepted with a probability of TCe  , where C  is the 

change in cost and T is analogous to temperature in the metal-crystallization process. The 

parameter T is used to control the probability of accepting non-improving moves. In 

general, a high value of T causes the search to become random, while a low value of T 

causes the stochastic algorithm to revert to an ordinary hill-climber. Thus, an appropriate 

value of the parameter T must be found (throughout the search) for the particular problem 

being solved. 

  

 The rate of change of T is referred to as the annealing schedule, and has a great 

influence on the quality of the final solution as well as runtime. Initially, T is set to a high 

value such that most non-improving solutions can be accepted. However, as the process 

continues, T is gradually decreased (simulating cooling), reducing the probability of 

accepting poor solutions. In the final states of the search, T is only a small fraction of its 
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original value and only improving solutions are accepted most of the time. The 

simulated-annealing algorithm is characterized by its ability to escape local optima, 

which often traps other search procedures. 

 

 Like all search methods, simulated annealing has both advantages and 

disadvantages. One advantage is that theoretical analysis [56] shows that simulated 

annealing converges with probability 1 to the globally optimal solution by imposing 

certain conditions on the number of iterations evaluated at each T and a certain rule to 

update the value of T. In addition, it is much easier to add new optimization objectives or 

constraints to SA compared with most other search procedures. However, there is 

precious little information on how to set the proper parameters for a particular 

implementation. Moreover, the runtime to find the globally optimum solution can become 

extremely large. Consequently, most current applications of simulated annealing employ 

simple, yet effective, approaches to obtain good, sub-optimal solutions. 

 

2.3.2.1 Versatile Placement and Routing (VPR) 
 

SA-based placement methods for FPGAs have been well studied [29][50][56][58][60]. In 

[103], Chen and Cong use a SA-based algorithm, called SCPlace, which performs 

clustering and placement simultaneously. There are two types of moves in their approach. 

The first type of move is the block level move, in which an entire Clustered-based Logic 

Block (CLB) is moved to a new location and swapped with another CLB if necessary. The 

second type of move is the fragment level move, in which only a Basic Logic Element 

(BLE) is moved to a new CLB and swapped with another BLE if necessary. After each 

move, the cost function is updated to decide whether to keep the move or not. In [27][28], 

Betz et. al. present the current state-of-the-art academic place-and-route tool, Versatile 

Placement and Routing (VPR).  In addition to a mapping and routing tool, VPR contains 

an extremely effective SA-based placement tool, called VPlace. The VPlace tool follows 

the basic template of simulated annealing (see previous Section), but with several 

placement-specific enhancements like: (i) a new temperature updating scheme, which 

decreases the temperature faster when the move acceptance rate is very high or very low, 
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so that the annealing process spends more time at the most productive temperature 

regions (when a significant number of moves are being accepted); (ii) a limitation on the 

range of cell exchanges so that the move acceptance rate is as close to 0.44 as possible 

and for as long as possible; (iii) a linear congestion model that can be used when the 

channel capacity is non-uniform in the FPGA; (iv) and a faster method for incremental 

net bounding box updating. Overall, the VPR placement tool provides very good results 

and is widely used in the FPGA research community.  

 

Figure 2.3 shows a pseudo-code description of the VPlace algorithm. As Fig. 2.3 

indicates, VPlace first creates an initial solution by placing CLBs and I/O pads randomly 

into locations throughout the target FPGA (line 1). Some CLBs and I/O pads may remain 

unused; these blocks are marked as void blocks. Based on earlier work by Huang et. al. 

[58], the initial temperature T (line 2) is set to 20 times the standard deviation in cost after 

a set of Nblocks pairwise swaps (moves) have been attempted. (Nblocks is the total number of 

CLBs and I/O pads in the circuit.) The number of new configurations evaluated at this 

temperature is set to: 

 

MovesPerT = innerNum * (Nblocks) 4/3      [59] 

 

where the scaling factor innerNum, which by default is 10, allows a trade-off between 

CPU time and placement quality. 

 

In [59][60] it is shown that the most desirable annealing schedule is one that 

keeps the acceptance rate of moves near 0.44 for as long as possible. VPlace 

accomplishes this by utilizing the value of the acceptance rate  to control a range limiter 

Rlimit, which follows the work of Lam et. al. [60]. 

 

Rlimit= Rlimit * (1 – 0.44 + )      where 

Rlimit  [1, maximum FPGA dimension] 

 

Any attempted swap of blocks is allowed only within a square window, where the 

new old 
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[1] S = InitPlacement(); 
[2] T = InitTemperature(); 
[3] Rlimit = InitRlimit();   //set to whole chip initially 
[4]        while( ExitCriterion() == false )  //outer loop 
            {  
[5]  while( InnerLoopCriterion == false )  //inner loop 
  {  
 
  //create a candidate solution from the current solution by 
  //performing a random pair-wise move within the window 
  //specified by Rlimit 
[6]  Scandiate = GenerateMove(Scurrent, Rlimit); 
  
  //Calculate change in cost 
[7]  C = Cost(Scandidate) – Cost(Scurrent) 
   
[8]                      r = random(0,1) // compute random number between 0 and 1 
 

//if C  0, accept move; otherwise accept the move 
//with probability  e -C/T  

 
[9]               if(C  0 | | r  < e -C/T) 
[10]   Scurrent = Scandidate; 

 
}  //end of inner loop 
 

[11]  Update(T);  //Tnew =  * Told 
[12]                   Update(Rlimit); 
 
[13] } // end of outer loop 
 
//return final placement solution S 

length of each size of the window equals Rlimit. A small value of Rlimit ensures that only 

blocks close together are considered for swapping. These “local” swaps tend to result in 

an increase in the move being accepted. In practice, Rlimit initially spans the entire FPGA, 

shrinks gradually as the search progresses and blocks find themselves settling in the 

correct regions, and finally reduces to 1 during the latter part of the search where only 

local refinement is necessary. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Pseudo-code for simulated annealing [28] 
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The placement is improved by iteratively selecting random blocks and swapping 

their locations. The effect of each potential swap, on total wirelength, is calculated using 

the HPWL wirelength model described in Section 2.4. 

 

Clearly, a robust FPGA placement tool must be able to effectively handle a wide 

variety of circuits with different sizes. Consequently, as the core of any SA-based 

implementation, the annealing schedule must automatically adapt to different circuits. 

The VPlace annealing schedule is based on the following observations and methodology: 

At the outset of the search when the temperature T is so high that almost every swap is 

accepted, the FPGA configurations randomly move from one configuration to another 

with no appreciable improvement in quality. Conversely, at the end of the search, when 

very few swaps are accepted due to the extremely low temperature T and (hopefully) high 

quality of the current placement, very little improvement in quality is obtained. Therefore, 

VPlace searches the problem space efficiently by increasing the amount of time spent on 

exploring the problem space in the middle part of the search, where more productive 

swaps are likely to be found and made. The exact update schedule for T in VPlace is as 

follows: 

 

   0.5 * Told,  acceptance rate > 0.96 

   0.9 * Told,  acceptance rate  0.96 

   0.95 * Told,  acceptance rate   0.8 

   0.8 * Told,  acceptance rate  0.15 

 

Finally, VPlace terminates when the temperature T falls below a certain fraction 

of the average cost per net (set of pins that must be connected). This makes the 

acceptance of any cost-increasing move almost impossible: 

 

 

 

 With regards to computational complexity, the timing analysis for VPlace is 

performed once per temperature change, which is an O(n) operation. At each temperature, 

Tnew = 

bounding box cost (HPWL) 
total number of nets Tend = 0.005  * 
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the inner loop of the placer is executed O(n4/3) times; i.e., O(n4/3) swaps are performed. In 

the inner loop is an incremental-bounding-box-update operation (see Section 2.4) that is 

worst case O(kmax), where kmax is the fanout of the largest net in the circuit. The average 

complexity of the bounding box update is O(1) [28][61]. The overall result is that VPlace 

has an average runtime complexity, per temperature change, of O(n4/3). 

 

Currently, amongst academic tools, VPlace is considered to be the best – 

producing high-quality placements in reasonable amounts of time when tested with the 

MCNC [62] benchmark suite. Therefore, it has become the standard by which all other 

placement tools presented in the literature are compared. In this thesis, we will also be 

using VPR (placement and routing) as a baseline for comparison with our analytic 

technique.  However, it should be noted that as FPGAs continue to grow in size, and the 

problem instances mapped to these FPGAs increase in size, SA-based placers, like 

VPlace, may fail to scale. Therefore, we plan to explore fast, analytic placement 

techniques. 

    

2.3.3 Analytic Methods 
 

Analytic algorithms are among the most promising methods for performing fast 

placements. These algorithms tackle the problem from the top down by considering 

global connectivity rather than evaluating many small-scale provisional modifications. 

They include both force-directed [16][22][105][106] and quadratic programming [17] 

[18][25][43][95][104][107] methods. The force-directed method introduces attracting, 

repelling, and other additional forces and then solves a linear equation system using these 

forces. In [16] and [22], Eisenmann et al. introduce additional forces to each cell based on 

cell distribution to pull cells away from dense regions. Xu and Khalid [104] use quadratic 

programming technique to minimize the squared distance, and then use low temperature 

Simulated Annealing to refine the placement. Etawil et al. [105] add repelling forces for 

cells sharing a net to maintain a target distance between them and attractive forces by 

fixed dummy cells to pull cells from dense to sparse regions. Hu et al. [106] introduce the 

idea of a fixed-point as a more general way to add forces for cell spreading. 
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The quadratic programming method solves the placement problem by solving a 

sequence of quadratic programming problems derived from the circuit connectivity 

information. This type of method maintains a whole view of the placement problem, and 

hence is often used as a global optimization method [17][25][104][107]. In general, 

quadratic programming methods take a hypergraph netlist as their input, and then seek to 

minimize the total squared wire length. The objective function follows: 
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where x, y are the coordinates of a logic block. Wij is the weight of the edge that connects 

block (xi, yi) and block (xj, yj). Since two blocks may be connected by more than one net, 

the hypergraph first needs to be converted into a weighted graph. Two models can be 

used for this conversion: clique and star. A clique model introduces k(k-1)/2 edges with 

each edge connecting each pair of blocks incident to a k-pin net, while a star model 

creates a new node at the center of gravity of the net and introduces k edges with each 

edge connecting a block and the center.  

 

The previous objective function is often written in matrix form as shown below:  

 

)(
2
1),( AyyAxxyx TT   

 

where A is an nn   symmetric matrix, called the Hessian matrix, and n is the number of 

blocks. In order to obtain non-trivial solutions, some of the variables ( ix ’s, jx ’s, iy ’s and 

jy ’s) must be fixed. Therefore, the above objective function can be rewritten as:  
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 where T
y

T
x dd  and  are n-dimensional vectors representing various constraints and fixed x 

and y values. As all x variables are independent of y variables and vice versa, this 

objective function can be separated into two functions with the same form. For the sake 

of simplicity, we only discuss the function in the x-dimension (the function in the y-

dimension can be dealt with in a similar way): xdAxxx T
x

T 
2
1)( . This function is 

strictly convex and definitely positive and, therefore, its minimum is the point where (the 

gradient) 0 T
xdAx . This linear equation system can be solved efficiently by a variety 

of standard techniques, including Conjugate Gradient (CG) [32][33] and Successive 

Overrelaxation (SOR) [33] methods. 

 

A major concern with the quadratic programming is that it results in a placement 

with a large amount of overlap among blocks. It is reported in [16] that quadratic 

methods produce placements where 85% to 98% of the blocks overlap. Thus, to legalize 

the placement, researchers must apply various techniques that have the potential of 

degrading the quality of the original (infeasible) placement. Kleinhans et al. [17] and 

Kernighan et al. [53] use a bisection technique to recursively divide the circuit into two 

partitions until each partition has only one block and one CLB. Vygen [107] uses a 

quadrisection instead. Eisenmann and Johannes [22] use additional forces from higher 

density regions to coerce blocks to move into lower density regions. Mo et al. [51] 

introduce repulsive forces for overlapping cells and filling forces for lower density 

regions. Vorwerk and Kennings [16] apply min-cut partitioning before quadratic 

placement.  

 

Another issue with quadratic programming is that the placement quality is sub-

optimal since its objective function uses squared wirelength. To improve placement 

quality, subsequent refinement techniques are used after. For example, Viswanathan et al. 

[25] use a cell shifting technique for local refinement; Xu et al. [104] apply low 

temperature simulated annealing to improve the placement. Some other researchers use 

an approximate linear objective instead of quadratic objective. In particular, Kennings et 

al. [21][108][109] apply regularization techniques on linear wirelength (in the context of 
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ASIC placement). The objective function after regularization is: 

 

bHxxxx
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where xi and xj are the x-coordinates of block i and block j; H represents various linear 

constraints. When 0, 



ji

jiij xxx ||)(  . The regularized linear wirelength 

represents a better estimate of routing length compared with quadratic distance. 

 

 In summary, the primary advantage of analytic methods is their potential for short 

run times. However, the quality of analytic techniques is typically not as good as SA-

based placers. Therefore, in this thesis we plan to develop placement algorithms, based 

on analytic methods that are not only fast, but also able to produce high-quality solutions. 

 

2.3.4 Multilevel Clustering 
 

As FPGAs continue to increase in logic capacity and functionality, so do the designs 

mapped to them. A recent approach to reducing the complexity of placing large designs 

(circuits) is to employ what is known as a multilevel strategy. Multilevel strategies 

construct a hierarchy of successively coarser problems from the bottom by recursive 

aggregation. They employ iterative improvement at each of the resulting levels, transfer 

these improvements up and down the hierarchy, and eventually terminate with a solution 

at the original, finest level. 

 

The multilevel approach is illustrated in Fig. 2.4. As discussed, the procedure is 

essentially a two-step procedure – first proceeding bottom-up then top-down. The bottom-

up technique is clustering which involves grouping highly-connected blocks into clusters. 

Then a top-down method is applied to largely determine the locations for all of the 

clusters. The simplified problem makes the use of a traditionally time-consuming method, 

like simulated annealing, more feasible. A declustering process proceeds to restore the 
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original FPGA layout according to the previous placement result of the clusters. In this 

procedure, the flattened blocks should be as close as possible to their center-of-gravity 

[64][65] as possible. Finally, a localized improvement heuristic is executed to move 

blocks in small regions to achieve the final placement.  

 

 

 
 

Figure 2.4:  Multi-level clustering 

 

Although multilevel strategies have the potential to improve the runtime of 

existing FPGA placement algorithms, only recently has the multilevel approach been 

applied, and then only in a limited way [66][93][96]. To the best of our knowledge, the 

first multilevel placement method described in the literature was Ultra-Fast Placement 

(UFP) [66]. The aim of UFP was to significantly reduce the runtime of VPlace. (Note that 

VPlace produces good results, but these results are not scalable as problem sizes increase 

due to the nature of the simulated annealing optimization engine employed by VPlace.)  

The approach described in [66] has the caveat that the size of the clusters at each level 

must be the same. In fact, they must be powers of 2 (e.g., 4, 8, 16, 32, …) to facilitate 
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pair-wise exchanges at each level using simulated annealing. The experimental results 

reported in [66] show a smooth runtime and quality trade-off. At one extreme, UFP 

achieves a 50 times speed-up over VPlace, but with 33% wire length overhead. The work 

in [66] uses an extremely effective simulated-annealing based optimization engine in a 

multilevel framework similar to that used by UFP. The results in [96] show that a 79% 

reduction in CPU time (compared with VPlace) can be achieved, with only a slight (less 

than 2%) reduction in solution quality.  Recently, multilevel placement has become a very 

active research topic, with several high-quality multilevel placement methods being 

developed for standard cell designs [55][97][98]. It is likely that the multilevel placement 

techniques in these works can also be used to further enhance the quality of the work in 

[66][96]. However, we do not employ these multilevel strategies in the work in this thesis, 

but rather leave it for future work. 

 

 

2.3.5 Other Approaches to Placement 
 

In recent years there have been several novel placement algorithms that employ multiple 

placement techniques. For example, Mongrel [68] adopts a middle-down methodology in 

which a global placement solution is obtained by placing logic cells into coarse bins. 

During the placement phase, a Relaxation-Based local search methodology is applied to 

generate global complex modifications to the current placement. A novel ripple move [68] 

based legalization procedure is also presented. After the global placement is completed, a 

detailed placement is obtained by applying the optimal interleaving [68] technique. 

Dragon2000 [69] uses a top-down hierarchical approach, and integrates the partitioning-

based cut size minimization techniques and simulated-annealing-based wirelength 

minimization techniques. mPL [70] and mPG [71] are based on the multi-level 

framework to improve both runtime and quality of placement. 

 

Several non-traditional approaches have also been tried for accelerating 

placement. For example, techniques for parallelizing simulated annealing have been used 

to accelerate VPR on expensive shared-memory machines (SGI Origin) or specialized 
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distributed memory multiprocessors (IBM-SP2) [47]. FPGA-based computing platforms 

to accelerate placement and routing have also been proposed in [48][49][50]. These 

methods often reduce the runtime of placement by orders of magnitude compared with a 

sequential algorithm. However, the quality of results that they produce is significantly 

worse than that obtained with other methods. In [72], a placement algorithm, called NAP, 

which runs in a ubiquitous network environment, is presented. The algorithm obtains 

speedups of 2-3 using a small number of machines connected on a local network.  

However, while readily available, this environment still requires the user to have access 

to a network and multiple machines. In [51], the previous placement algorithm is 

implemented using both multi-core and SIMD units resulting in speedups of 1.34 

compared when implemented as a traditional serial algorithm. Although the speedups are 

modest, and lag well behind those of previously reported methods, they are immediate 

and more widely available. Very recently, strategies have been presented for parallelizing 

move-based heuristics on processors with multiple cores [99].  The experimental results 

show speed up of 1.3 times on 2 cores and 2.2 times on 4 cores. 

 

 Given that it is hard to achieve 100% routability, especially for the earlier 

generation of FPGAs (1990s), several attempts were made to combine placement and 

routing, so that the placement solution is assured to be routable [100][101]. However, in 

general, these approaches have not shown results that demonstrate the superiority of the 

combined approach. Moreover, given that modern FPGAs have much higher logic 

capacity and richer routing resources, one may question if it is feasible to compute or 

even necessary to carry out simultaneous placement and routing. 

 

2.4 Wirelength Models 

As the precise wire length for a given placement can only be known after routing, 

accurate and fast to compute wirelength estimates are required by FPGA placement 

algorithms.  The main models include minimum Steiner-tree, half-perimeter wire length, 

clique, and star.  A brief description of these models is given below. 
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 Minimum Steiner Tree Model: 

A minimum Steiner tree [74] is a minimum-cost tree that spans a set of terminals. In 

a minimum Steiner tree net model, each input or output pin of a CLB is mapped to a 

terminal. Minimizing the wirelength required by a net is equivalent to finding a 

minimum Steiner tree. Figure 2.5 shows a net with three terminals. Figure 2.5(a) 

shows a Steiner tree that connects the net with a total wirelength of 9. Figure 2.5(b) 

shows a Steiner tree that connects the net with a total wirelength of 8. The Steiner 

tree in Figure 2.5(b) is the minimal Steiner tree, and is the optimal way to route the 

net. As the Steiner tree model does not consider the track capacity of each routing 

channel, the sum of the costs of all the minimum Steiner trees for the nets is usually 

less than the wirelength required by all the connections between CLBs. Moreover, 

the minimum Steiner tree problem is NP-hard [75]. More discussion on the Steiner 

tree problem and approximation algorithms for solving minimum Steiner tree 

problems can be found in [75-79]. 

 

 Half-Perimeter Wirelength (HPWL) 

The most commonly used wirelength model, and the one used by VPlace, is called 

the Half-Perimeter Wirelength (HPWL) model.  The HPWL estimates the wirelength 

by half the perimeter of the smallest rectangle that surrounds all blocks in the net. 

Figure 2.6 shows a net connecting three blocks A, B and C. The bounding box (the 

smallest rectangle surrounding the net) shown in thin dashed lines has a perimeter of 

16. The minimum rectilinear Steiner tree (shown with solid lines) has a total 

wirelength of 8, which is exactly half of the perimeter of the bounding box. 

 

Clearly, the HPWL model is exact for a net connecting two or three blocks (see 

Figure 2.6), but it underestimates the wirelength of a net connecting more than three 

blocks. To compensate for this underestimation, the HPWL model introduces a factor 

that is 1 for nets connecting 2 or 3 blocks, and gradually increases to 2.7933 for nets 

connecting 50 blocks. The formula for estimating the wirelength of net i is as 

following: 

)}1min(max)1min{(max)( i i i i i   bnetbbnetbbnetbbnetbknet yyxxiqCost
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(a) A Steiner tree (also a minimum spanning tree) with total wirelength of 9 

 

 

 

 

 

 

 

 

(b) A Steiner tree with total wirelength of 8 

Figure 2.5:  Steiner tree example with a 3-block net. 

 

The values bnetbbnetb yx i i max and max   are the largest coordinates in x- and y-

dimension of all the blocks connected to net i, while bnetbbnetb yx i i min and min   

are the smallest coordinates. The value ik is the cardinality of net i (the number of 
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blocks connected to net i). Table 2.1 gives the value of q(ik) when ik is less than or 

equal to 50. For a net that has more than 50 blocks, the value of q(ik) linearly 

increases as follows:  5002616.07933.2)(  kk iiq . 

 

Table 2.1: Weight of net with cardinality less than or equal to 50 
ik q(ik) ik q(ik) ik q(ik) ik q(ik) 

1 – 3 1.0000 15 1.6899 27 2.1379 39 2.5064 

4 1.0828 16 1.7304 28 2.1698 40 2.5356 

5 1.1536 17 1.7709 29 2.2016 41 2.5610 

6 1.2206 18 1.8114 30 2.2334 42 2.5864 

7 1.2823 19 1.8519 31 2.2646 43 2.6117 

8 1.3385 20 1.8924 32 2.2958 44 2.6371 

9 1.3991 21 1.9288 33 2.3271 45 2.6625 

10 1.4493 22 1.9652 34 2.3583 46 2.6887 

11 1.4974 23 2.0015 35 2.3895 47 2.7148 

12 1.5455 24 2.0379 36 2.4187 48 2.7410 

13 1.5937 25 2.0743 37 2.4479 49 2.7671 

14 1.6418 26 2.1061 38 2.4772 50 2.7933 

 

 

 

 

 

 

 

 

 

 

Figure 2.6:  HPWL model for 3-block net. 
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(a) A net connecting 4 blocks with a wirelength of 8 

 

 

 

 

 

 

 

(b) A net connecting 4 blocks with a wirelength of 10 

Figure 2.7: Two nets with the same bounding-box size. 

 

The main advantage of HPWL model is that it can be computed very efficiently in 

O(1) time on average [28]. Nevertheless, it has its weaknesses. Figure 2.7 shows a 

situation where the net in Fig. 2.7(a) and the net in Fig 2.7(b) have the same 

cardinality and their bounding-boxes have the same perimeter. Therefore, their 

HPWL estimates will be the same, too. However, the minimal wire-segments needed 
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to route the net in Fig. 2.7(a) is only 8, while the minimal wire-segments needed to 

route the net in Fig. 2.7(b) is 10. We can see that the HPWL model totally ignores the 

relative positions of the blocks inside the bounding-box, although these relative 

positions inside also affects the number of wire-segments needed to connect the net. 

Another disadvantage of the HPWL model is that it is not differentiable with respect 

to the variation of the positions of blocks, and hence it cannot be easily applied to 

analytic methods. 

 

 Clique Model and Quadratic Distance 

As the HPWL model is not suitable for analytic methods due to its non-

differentiability, researchers typically estimate wire length using quadratic distance. 

A circuit is modeled as a hypergraph Gh(Vh, Eh) with vertices Vh = {v1, v2,…vn} 

representing cells and hyperedges Eh = {e1, e2,…en} corresponding to signal nets. 

Vertices are weighted by cell area while hyperedges are weighted according to 

criticalities or multiplicities [21]. Vertices are either free or fixed. Cell placements in 

the x and y directions are captured by placement vectors x=(x1, x2,…xn) and y=(y1, 

y2,…yn). 

 

Circuit hypergraphs are typically transformed into graphs in which each hyperedge is 

represented by a set of equally weighted edges.   The clique model replaces a net 

connecting k blocks with a complete graph with k vertices and k(k-1)/2 edges. Each 

vertex represents a block. The edge between vertices A and B is denoted as EAB. Each 

edge EAB has two properties: a weight WAB and a length LAB. All of the edge weights 

equal 1/k, and the length LAB equals the shortest wirelength (distance) between A 

and B. The wire length of a net is estimated as 
 netedge

edgeedge LW 2 .  

 

As in the case of analytic placement algorithms, the variations of coordinates in x- 

and y-dimensions are often independent on each other. Therefore, the distances in x- 

                                                 
  Some timing-driven placement algorithms use criticality as the weight of the edge (see Chapter 7) but the 
computation is similar. 
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and y-dimensions are handled separately. The following example shows the x-

dimensional (horizontal) quadratic distance of the net in Fig. 2.6. The clique model is 

shown in Figure 2.8. LAB is the x-dimensional distance between A and B, which 

equals 5; LAC is the x-dimensional distance between A and C, which equals 3; LBC is 

the x-dimensional distance between B and C, which equals 2. As this net has 3 

terminals, the weight of every edge is 1/k (i.e., 1/3). The x-dimensional quadratic 

distance of the net is calculated as follows: 

 
222distance quadratic BCBCACACABABx LWLWLW   

 

which in this case equals   667.12235
3
1 222  . The y-dimensional quadratic 

distance can be calculated in a similar way.  

 

 

 

 

 

Figure 2.8: The clique model of the net in Figure 2.6 (x-dimension) 

 

Clearly, quadratic distance does not directly reflect the wirelength of a net, but it can 

be applied easily to analytic placement. The total quadratic distance of all the nets 

can be minimized by solving linear equation systems, to which many mature 

mathematical methods (like CG and SOR) can be applied. The primary problem with 

Clique models is that for large hypergraphs they become prohibitively expensive due 

to the quadratic edge count. Consequently, large edges are either dropped completely, 

or a combination of clique and Star models (discussed below) are employed in which 

cliques are used to model small hyperedges and stars are used to model large 

hyperedges. 
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 Star Model and Quadratic Distance 

The star model adds a new vertex at the center of gravity and represents the original 

net by edges connecting the center to previously existing vertices. The edge between 

vertex A and the center is denoted as EA. Each edge EA has a length LA equal to the 

distance between A and the center. The wire length of a net is estimated as 
 netedge

edgeL2 . 

Like clique model, the wire length in x- and y-dimensions are handled separately. 

The following example shows the x-dimensional (horizontal) quadratic distance of 

the net in Fig. 2.6. The star model is shown in Figure 2.9. The x-coordinate of the 

center is computed as (1+4+6)/3≈3.67.  LA is the x-dimensional distance between A 

and the center, which equals 3.67–1=2.67; LB is the x-dimensional distance between 

B and the center, which equals 4–3.67=0.33; LC is the x-dimensional distance 

between C and the center, which equals 6-3.67=2.33. The x-dimensional quadratic 

distance of the net is calculated as follows: 

 
222distance quadratic CBAx LLL   

 

which in this case equals 67.1233.233.067.2 222  . The y-dimensional 

quadratic distance can be calculated in a similar way.  

 

 

 

 

 

 

 

 

Figure 2.9: The star model of the net in Figure 2.6 (x-dimension) 
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 Regularization of Linear Wirelength 

Pure linear wirelength is rarely used in placement algorithms, as the objective 

function: 



ji

jiij xx ||  is neither differentiable nor very accurate. (The actual 

routing length of a net is not simply the sum of the length of all the edges of the 

hypergraph, but the wirelength of the corresponding Steiner tree.) However, the 

regularization of linear wirelength is used in some ASIC analytic placers [21][108] 

[109] due to its differentiability and more accurate estimate compared with quadratic 

distance. The objective function of regularized linear wirelength is: 

 

bHxxxx
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where xi and xj are the x-coordinates of block i and block j; H represents various 

linear constraints. When 0, 



ji

jiij xxx ||)(  . Since minimizing 

regularized linear wirelength is more difficult than minimizing quadratic distance 

(minimizing quadratic distance results in solving a linear equation system while 

minimizing regularized linear wirelength results in solving a non-linear system), 

regularization of linear wirelength is not as popular (in analytic methods) as 

quadratic distance. 

 

2.5 Summary 

In summary, existing wirelength models may be too expensive to be practically used in 

placement algorithms (e.g., minimum Steiner tree and minimum spanning tree model), 

too inaccurate to produce high-quality results (e.g. quadratic distance), or not 

differentiable so that they cannot be applied easily in analytic methods (e.g., HPWL 

model). In the next Chapter, we present a novel wirelength estimate, called the Star+ 

model. Unlike the HPWL model, the Star+ model is differentiable, and hence suitable for 

analytic methods. Another feature of the Star+ model is that the computation of C  
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caused by the swap of two blocks always runs in O(1) time. This also makes it suitable 

for use with SA-based methods, where millions of swaps may need to be evaluated 

efficiently. Finally, the Star+ model is also very accurate. Our results show that when the 

Star+ model replaces the HPWL model in VPlace, the Star+ model produces results that 

are as good (and in some cases better) than those produced by HPWL. As well, the actual 

runtime for Star+ is as fast (and in many cases slightly faster) as that of HPWL. 

 

Based on the Star+ model, we introduce two novel analytic placement algorithms 

(Chapter 4 and Chapter 6). These algorithms differ from other analytic placers in that we 

do not employ quadratic distance, but a more accurate distance measure. This allows us 

to produce accurate results quickly. 

 

 

2.6 Benchmarks 
 

All 20 MCNC benchmarks, shown in Table 2.2, are used to measure the performance of 

all of the analytic methods developed in this thesis. We have chosen to use these 

benchmarks because most researchers use them to validate the experimental results. The 

suite consists of circuits ranging from a few hundred CLBs to nearly ten thousand CLBs. 
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Table 2.2: 20 MCNC benchmarks 

Circuit FPGA 
matrix 

Number of 
CLBs 

Number of 
Nets 

Number of 
I/O pads 

Maximum 
Fanout 

Average 
Fanout 

tseng 33x33 1047 1099 174 389 4.77 
ex5p 33x33 1064 1072 71 324 4.73 
apex4 36x36 1262 1271 28 208 4.52 
misex3 38x38 1397 1411 28 186 4.52 
diffeq 39x39 1497 1561 103 497 4.63 
alu4 40x40 1522 1536 22 250 4.52 
seq 42x42 1750 1791 76 234 4.46 

apex2 44x44 1878 1916 41 148 4.49 
s298 44x44 1931 1935 10 397 4.6 
dsip 54x54 1370 1599 426 908 4.67 

bigkey 54x54 1707 1936 426 461 4.38 
frisc 60x60 3556 3576 136 887 4.82 

elliptic 61x61 3604 3735 245 1471 4.68 
spla 61x61 3690 3706 62 215 4.73 
des 63x63 1591 1847 501 227 4.31 

ex1010 68x68 4598 4608 20 303 4.49 
pdc 68x68 4575 4591 56 261 4.74 

s38417 81x81 6406 6435 135 1464 4.54 
S38584.1 81x81 6447 6485 342 2742 4.41 

clma 92x92 8383 8445 144 1170 4.61 
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Chapter 3 

The Star+ Model 

As the precise wirelength for a given placement can only be known after routing, 

accurate and fast approximation models for calculating the amount of wire required to 

connect all of the nets are needed for placement algorithms. The accuracy of these models 

directly affects the quality of the placements obtained when using these models. An 

inaccurate model will certainly degrade the quality of results. Moreover, a 

computationally expensive model will increase the running time of the algorithms that 

use these models. 

 

 As discussed in Section 2.4, the Half-Perimeter Wire-Length model [28] is the 

most commonly used wire-estimation model, and is used today in commercial placement 

tools including Altera’s Quartus CAD tools.  HPWL is both accurate and fast to compute. 

However, it cannot be used directly in analytic placement tools due to its non-

differentiability. In this Chapter, we present a novel wire-length estimation model, called 

Star+, which is both differentiable and suitable for use in analytic placement. We use an 

empirical method to evaluate the Star+ model and compare it to the HPWL model used 

by VPR [28]. The comparison of the two wire-length estimation models involves using 

the VPR framework to place and route benchmark circuits into realistic FPGA 
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architectures, first using HPWL then using Star+. The delay and wiring requirements of 

each circuit implementation are computed using sophisticated models (that are already 

part of VPR), and from these results we are able to compare Star+ and HPWL.  The 

objective of our experiments is not to show that Star+ is superior to HPWL, but to show 

that Star+ is comparable to HPWL, both with respect to runtime and quality of results 

produced.  A direct comparison of both models to determine which, if either, is superior, 

would require testing both models on thousands of problem instances, and with hundreds 

or even thousands of different placement and routing parameters – something that is 

unnecessary for the work proposed here. Consequently, we deliberately limit the scope 

and extent of the experiments that follow. 

 

 The remainder of this Chapter is organized as follows: In Section 3.1 we 

introduce the Star+ wire-estimation model. In Section 3.2, we show that the Star+ wire 

estimate can be computed in O(1) time. Then, in Section 3.3, we perform a series of 

experiments comparing Star+ head-to-head with HPWL. As the Star+ model contains 

parameters that affect its performance, in Section 3.4 we explain how appropriate values 

for these parameters were determined. In Section 3.5 we explain some limitations of 

Star+. Finally, we provide a summary of the results in Section 3.6. 

 

3.1 Wire-estimation based on the Star+ model 

Like the quadratic distance measure employed in quadratic placement tools [17][18], the 

Star+ model handles the x-dimension and the y-dimension separately. Therefore, for the 

sake of simplicity, only the x-dimension is discussed here.  (The y-dimension is processed 

similarly.) 

 

An important concept in the Star+ model is the center-of-gravity of a net. We 

define the center of gravity of a net as follows. First, for lNet , we use lk  to represent the 

cardinality of the net (i.e., the number of blocks connected to lNet ). Let lc  represent the 
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center of gravity of net l; we define the x-coordinate of lc  as: 



lNeti

i
l

cl x
k

x 1 . The 

expression lNeti  simply means that iblock  connects to lNet , and xi represents the x-

coordinate of iblock .  The Star+ model is effectively the 2-norm of all of the distances 

from iblock  to the center of gravity of lNet : 

 





lNeti

clixl xxNet  2)(     (Equation 3.1) 

 

The factor , like the factor q(ik) used in the HPWL model, is used to compensate 

for underestimation of the wire-length. The parameter  is a positive number, which is 

used to make Equation 3.1 always differentiable. Equation 3.1 has two important features: 

First, it is differentiable when  is greater than zero, and hence it is suitable for use with 

analytic methods. Second, the incremental change in cost caused by swapping two blocks 

(or moving a single block) can always be calculated in constant time. This feature is very 

important as it allows the Star+ model to also be used in move-based methods, like 

VPlace [28], where the time to calculate the incremental changes of the cost of a net 

(after performing a candidate swap) directly affects the performance of the algorithm. 

 

The graphical representation of the Star+ model is based on a star model [18][83]. 

Figure 3.1 shows a star model of a net with 4 blocks: A, B, C, and D. Each block has a 

connection to the center of gravity of the net (represented by the bold dot). The length of 

each edge 2)( cli xx   is the quadratic distance from iblock  to the center of gravity clx .  

However, the Star+ model is different from the traditional quadratic distance used in 

analytic placement.  Analytic placers, using traditional quadratic distance, minimize the 

sum of all of the squared distances between any pair of blocks that connect to a common 
                                                 
 In linear algebra and related areas of mathematics, a norm is a function that assigns a positive length or size to all 

vectors in a vector space. The most commonly used norm is Star+, which is a special case of p-norm (p  1). The p-

norm of a vector X=(x1, x2, …, xn) is presented as: 
pn

i

p
ip

xX
1

1







 


. 
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net. The Star+ model, on the other hand, minimizes the sum of the square roots of the 

sum of the quadratic distances between each block and the center of gravity of a net 

(Equation 3.1). Due to the linear nature of distance, the Star+ model can, theoretically, be 

more accurate than quadratic distance if the parameters   and are assigned appropriate 

values. The accuracy of the Star+ model, however, comes at the expense of the 

complexity of the (analytic) algorithm that employs it. To minimize quadratic distance, 

only a linear equation system must be solved. To minimize the Star+ model a non-linear 

equation system must be solved, which is usually much harder and hence more time-

consuming. (In Chapter 4 we introduce a special mechanism for reducing the time 

required to solve the non-linear equation systems based on conjugate-gradient [32].)   

 

 

 

 

 

 

 

 

 

Figure 3.1:  A star model of a 4-pin net 

 

 

3.2 Constant-time update of cost 
 

In its current form, Equation 3.1 is not suitable for estimating wire length, as it is too 

expensive to calculate each time a block moves position. Therefore, it must be 

transformed into a new form that allows incremental changes in cost (resulting from 

block movement) to be calculated in constant time. This can be done as follows: 

A        

        

   D  B   

  C      
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



lNeti

clixl xxNet  2)(  





lNeti

clclii xxxx  )2( 22  

 
 


l llNeti Neti

cl
Neti

clii xxxx  22 )(2  

 
 


l llNeti Neti

cl
Neti

icli xxxx  22 2  





lNeti

cllcllcli xkxkxx  22 2  





lNeti

clli xkx  22  

 

Let 



lNeti

il xU 2  and cll
Neti

il xkxV
l

 


, then we have: 

 





lNeti

cllixl xkxNet  22  

 



lNeti l

cll
i k

xkx 
2

2 )(
 

  
l

l
l k

V
U

2

     (Equation 3.2) 

 

Now suppose b is a block connected to lNet  (i.e., lNetb ) and that block b 

moves from position bx  to the new position new
bx . This movement causes lU , lV  and 

xlNet  to change values. The new value of new
lU  and new

lV  can be calculated, 

respectively, in constant time using following formulas: 

 
22 )( new

bbl
new
l xxUU    and  new

bbl
new

l xxVV  .  (Equation 3.3) 

 

As a result, the new value of 
xlNet  can also be calculated in a constant time 
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using Equation 3.2. 

 

 To incorporate the Star+ model into VPlace [28] – VPR’s placement tool – two 

variables representing lT  and lS  for each net must be introduced, and all of the functions 

that involve calculation of the cost of the nets must be changed to use the new Star+ 

model.  In practice, the parameters  and  in Equation 3.2 are set to 1.59 and 1, 

respectively. (The previous values of 1 and 1.59 were determined empirically.  A 

discussion of how these values were obtained is postponed to Section 3.4. However, we 

note that our experimentation reveals that the value of  does not have a significant effect 

on the quality of placement, while the value of  does have a significant effect on both 

the quality of the placement and its routability. ) 

 

3.3 Star+ Model Evaluation 

The objective of our experiments is to show that the Star+ model is accurate enough to 

produce high-quality placements, and fast enough that it can be used with both analytic 

methods [18][19][25] as well as move-based methods, like those in [28][29][50][54].  As 

VPR [28] is the current public domain state-of-the-art place-and-route tool, we use it as a 

basis of comparison. Our methodology is as follows. First, we run VPR on all 20 MCNC 

[62] benchmarks using VPR’s original placement algorithm, VPlace, which uses the 

HPWL wire-estimation model. Each placed circuit is then routed. Following routing, 

information about the minimum number of required channels, critical path, and total wire 

length is obtained for each circuit. The HPWL model in VPlace is then replaced with the 

Star+ model, and the process repeated. Finally, the routing results from both models are 

used to compare the speed and effectiveness of the two models head-to-head. 

 

For the purpose of this experiment, we downloaded the VPR 4.3 source code, 

architecture file, and the complete set of 20 MCNC benchmark circuits used by VPR 

from [28]. We used the default architecture file as is, which assumes that each CLB 

contains 4 LUTs, and each LUT has 4 inputs and is paired with one flip-flop. We first ran 
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the benchmarks through the entire VPR flow having first configured VPlace to use the 

HPWL estimation model, and to report the minimum channel width when using its 

breadth-first strategy to route the components. We then repeated the experiment, but this 

time configured VPR to route the components using its timing-driven algorithm.  We then 

replaced the HPWL model in VPlace with the Star+ model, and repeated the previous 

experiments (using both breadth-first and timing-driven timing options).   

 

For each benchmark, each model, and each routing algorithm, VPlace was executed 

with the option inner_num equal to 1 and 10, respectively. VPlace uses inner_num 

to trade-off quality for speed. In particular, the number of moves attempted at each 

temperature equals inner_num x (the number of blocks)4/3. The default value of 

inner_num is 10. Specifying an inner_num of 1 will speed up VPlace by a factor of 

10, but will typically reduce placement quality by about 10 percent. Setting inner_num 

greater than 10 barely improves the quality of the placement, but does increase the 

running time of VPlace.  

 

As discussed in Section 2.3, VPlace is based on simulated annealing which is 

stochastic. Therefore, running VPlace more than once with different seed values results in 

different placements being produced. In order to make the experiments more accurate, for 

each set of parameters, VPR is executed ten times, each time using a different (randomly 

generated) seed value.   

 

 

3.3.1 Routability 
 

We begin by considering how effective the Star+ model is in producing placements that 

are routable. As a measure of the quality of a routable placement, we measure the 

minimum channel width (or number of tracks per channel) that VPR’s router needs to 

successfully route each circuit placement.  Channel width is one of the most commonly 

used criterions for assessing the routability of a potential placement. The results of the 

previous experiments are given in Table 3.1, Table 3.2, Table 3.3, and Table 3.4, 
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respectively.   

 

Table 3.1: Channel Width and Routing (breadth_first and inner_num=1) 

HPWL Star+ 
  

CW SR CW SR CW SR CW SR CW SR CW SR 

alu4 9 0 10 4 11 10 9 0 10 8 11 10 
apex2 11 1 12 8 13 10 11 1 12 10 13 10 
apex4 12 1 13 10 14 10 12 0 13 9 14 10 
Bigkey 5 0 6 1 7 10 5 0 6 9 7 10 
Clma 12 3 13 10 14 10 12 4 13 9 14 10 
Des 6 0 7 4 8 10 6 0 7 3 8 10 
Diffeq 7 0 8 10 9 10 7 0 8 8 9 10 
Dsip 5 0 6 3 7 7 5 0 6 5 7 9 
Elliptic 11 0 12 9 13 10 11 3 12 10 13 10 
ex1010 10 0 11 10 12 10 10 1 11 7 12 10 
ex5p 13 2 14 9 15 9 13 0 14 10 15 10 
Frisc 12 0 13 8 14 8 12 0 13 9 14 10 
Misex3 10 0 11 8 12 10 10 0 11 4 12 10 
Pdc 16 3 17 10 18 10 16 1 17 8 18 10 
s298 7 0 8 9 9 10 7 1 8 9 9 10 
s38417 7 0 8 8 9 9 7 0 8 4 9 9 
s38584.1 8 0 9 8 10 10 8 0 9 10 10 10 
Seq 11 2 12 10 13 10 11 1 12 10 13 10 
Spla 13 0 14 10 15 10 13 0 14 4 15 10 
Tseng 6 0 7 3 8 9 6 0 7 8 8 10 

 

 

Note that when running VPR’s router, the designer must also specify the minimum 

channel width (CW) that is to be used. As different placements may require different 

channel widths in order to be routed, several different channel widths are tried as 

indicated in table columns 2, 4, 6, 8, 10, and 12, respectively. The actual number of 

placements that were successfully routed (SR) for each channel width is reported in 

columns, 3, 5, 7, 9, 11, and 13, respectively. (Note: if five (or more) of the ten placements 

are found to be routable for a given channel width, we consider this a “success”. We then 

shade the smallest successful CW entries in each row of the table.)  For example, 

consider Alu4 in Table 3.4. For both the HPWL and Star+ model, when the channel width 

is 9, none of the 10 placed circuits was found to be routable. However, when the channel 

width was increased to 10, 4 of the 10 placements using HPWL were successfully routed, 
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while 8 of the 10 placements found using Star+ were successfully routed. Finally, when 

the channel width was increased to 11, all 10 placements, for both HPWL and Star+, were 

found to be routable. Therefore, in this case, shading is used to indicate CW=10 and 

CW=11 as the smallest “successful” channel widths found by Star+ and HPWL, 

respectively. 

 

Table 3.2: Channel Width and Routing (breadth_first and inner_num=10) 

HPWL Star+ 
  

CW SR CW SR CW SR CW SR CW SR CW SR 

alu4 9 0 10 9 11 10 9 0 10 10 11 10 
apex2 10 0 11 6 12 10 10 0 11 5 12 10 
apex4 11 0 12 6 13 10 11 0 12 2 13 10 
Bigkey 5 0 6 1 7 10 5 0 6 4 7 10 
Clma 11 1 12 10 13 10 11 0 12 7 13 10 
Des 6 0 7 2 8 10 6 0 7 8 8 10 
Diffeq 6 0 7 5 8 10 6 0 7 2 8 10 
Dsip 5 0 6 5 7 10 5 0 6 9 7 10 
Elliptic 9 0 10 6 11 10 9 0 10 1 11 8 
ex1010 9 0 10 4 11 10 9 0 10 6 11 10 
ex5p 12 0 13 7 14 10 12 0 13 4 14 10 
Frisc 11 0 12 6 13 10 11 0 12 0 13 9 
Misex3 10 0 11 10 12 10 10 0 11 7 12 10 
Pdc 15 0 16 7 17 10 15 0 16 3 17 10 
S298 6 0 7 7 8 10 6 0 7 5 8 10 
S38417 6 0 7 0 8 10 6 0 7 0 8 9 
S38584.1 7 0 8 8 9 10 7 0 8 6 9 10 
Seq 10 0 11 9 12 10 10 0 11 1 12 10 
Spla 12 0 13 8 14 10 12 0 13 1 14 6 
Tseng 6 0 7 10 8 10 6 0 7 10 8 10 
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Table 3.3: Channel Width and Routing (timing_driven and inner_num=1) 

HPWL Star+ 
  

CW SR CW SR CW SR CW SR CW SR CW SR 

alu4 9 0 10 1 11 7 9 0 10 0 11 9 
Apex2 11 0 12 4 13 10 11 0 12 7 13 10 
Apex4 12 0 13 3 14 8 12 0 13 2 14 10 
bigkey 6 3 7 9 8 10 6 5 7 10 8 10 
Clma 12 0 13 5 14 10 12 0 13 4 14 8 
Des 6 0 7 3 8 10 6 0 7 1 8 9 
Diffeq 7 0 8 2 9 10 7 0 8 7 9 10 
Dsip 5 0 6 0 7 8 5 0 6 5 7 9 
elliptic 11 0 12 1 13 8 11 2 12 4 13 10 
ex1010 11 4 12 10 13 10 11 3 12 9 13 10 
ex5p 13 0 14 5 15 10 13 0 14 0 15 9 
Frisc 12 0 13 3 14 9 12 0 13 3 14 8 
misex3 11 2 12 9 13 10 11 0 12 8 13 10 
Pdc 17 2 18 8 19 10 17 0 18 8 19 10 
s298 7 0 8 5 9 10 7 2 8 8 9 10 
s38417 7 0 8 5 9 10 7 0 8 5 9 10 
s38584.1 8 1 9 5 10 10 8 1 9 10 10 10 
Seq 11 0 12 3 13 9 11 0 12 6 13 9 
Spla 14 1 15 8 16 10 14 0 15 5 16 8 
Tseng 6 0 7 0 8 10 6 0 7 2 8 10 

 

 

Table 3.5 summarizes the previous experimental results. The entries in the table 

indicate the smallest “successful” routable channel width. The last row of the table shows 

the aggregate of the smallest “successful” routable channel widths for each situation. 

Overall, it can be seen that both HPWL and Star+ performed similarly across the entire 

set of benchmarks and for all situations, with Star+ slightly outperforming HPWL when 

inner_num=1 (215 versus 216 using breadth first and 223 versus 226 using timing-

driven). A close look at Tables 3.1 – 3.4 reveals that the Star+ model finds a smaller 

minimum “successful” routable channel width in 18% of the test cases, while the HPWL 

model finds a smaller minimum “successful” routable channel width in 20% of the test 

cases. 
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Table 3.4: Channel Width and Routing (timing_driven and inner_num=10) 

HPWL Star+ 
  

CW SR CW SR CW SR CW SR CW SR CW SR 

Alu4 9 0 10 3 11 9 9 0 10 7 11 10 
apex2 10 0 11 4 12 10 10 0 11 4 12 10 
apex4 12 0 13 6 14 10 12 0 13 4 14 10 
bigkey 6 3 7 9 8 10 6 5 7 10 8 10 
clma 11 0 12 6 13 10 11 0 12 3 13 10 
Des 6 0 7 3 8 9 6 0 7 4 8 10 
diffeq 6 0 7 4 8 10 6 0 7 3 8 10 
dsip 5 0 6 3 7 10 5 0 6 5 7 10 
elliptic 10 3 11 7 12 10 10 2 11 7 12 10 
ex1010 10 0 11 6 12 10 10 0 11 7 12 10 
ex5p 13 2 14 9 15 10 13 0 14 6 15 10 
frisc 12 0 13 6 14 10 12 0 13 6 14 10 
misex3 10 0 11 8 12 10 10 0 11 4 12 10 
Pdc 16 0 17 3 18 10 16 0 17 2 18 9 
s298 6 0 7 2 8 9 6 0 7 3 8 10 
s38417 6 0 7 3 8 10 6 0 7 3 8 10 
s38584.1 8 2 9 6 10 10 8 1 9 10 10 10 
Seq 10 0 11 4 12 10 10 0 11 4 12 9 
spla 13 0 14 2 15 10 13 0 14 2 15 10 
tseng 6 1 7 8 8 10 6 1 7 8 8 10 

 

 

 
3.3.2 Critical Path Delay 
 

We now turn our attention to critical-path delay. Table 3.6 reports the critical-path delay 

computed by VPR’s router when performing the experiments described in Section 3.3.1.  

Column 1 identifies the benchmark. Column 2 gives the channel width used by the router 

(Note: When providing a minimum channel width to VPR’s router for each benchmark, 

we used the minimum successful channel width (from Table 3.3 and Table 3.4) plus 1. 

(By using a channel width one more than the minimum, the probability of the router 

finding a feasible route is effectively 1 in all cases.) Column 3 is the number of times of 

successful routing out of 10. Column 4 gives the average critical-path delay for HPWL 
                                                 
 VPR is run 10 times on each benchmark as per the experiment in Section 3.3.1 
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when VPlace is run with inner_num equal to 1.  Columns 5 and 6 provide similar 

information for the Star+ model. Column 7 shows the p-value (see the next section, 

Statistical Testing for explanation). Columns 8 – 12 give similar information as Columns 

3 – 7, but for inner_num equal to 10. Note that the results presented in Table 3.6 were 

obtained running VPR’s router with the timing-driven option invoked. (Results were also 

obtained using the breadth-first timing option; however, these results in all cases were 

consistent with, but inferior to, those found using the timing-driven option. As such, they 

are not reported.)  

 

Table 3.5: Summary of Minimum Routable Channel Widths 

Breadth_first Timing_driven 
inner_num 1 inner_num 10 inner_num 1 inner_num 10   

HPWL Star+ HPWL Star+ HPWL Star+ HPWL Star+ 
alu4 11 10 10 10 11 11 11 10 
apex2 12 12 11 11 13 12 12 12 
apex4 13 13 12 13 14 14 13 14 
Bigkey 7 6 7 7 7 6 7 6 
Clma 13 13 12 12 13 14 12 13 
Des 8 8 8 7 8 8 8 8 
Diffeq 8 8 7 8 9 8 8 8 
Dsip 7 6 6 6 7 6 7 6 
Elliptic 12 12 10 11 13 13 11 11 
ex1010 11 11 11 10 12 12 11 11 
ex5p 14 14 13 14 14 15 14 14 
Frisc 13 13 12 13 14 14 13 13 
Misex3 11 12 11 11 12 12 11 12 
Pdc 17 17 16 17 18 18 18 18 
S298 8 8 7 7 8 8 8 8 
S38417 8 9 8 8 8 8 8 8 
S38584.1 9 9 8 8 9 9 9 9 
Seq 12 12 11 12 13 12 12 12 
Spla 14 15 13 14 15 15 15 15 
Tseng 8 7 7 7 8 8 7 7 
Total 216 215 200 206 226 223 215 215 
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Table 3.6: Critical Path Delay (unit: ns) 

Inner_num 1 Inner_num 10 
HPWL Star+ P-value HPWL Star+ P-value 

  
CW 

ST CPD ST CPD   ST CPD ST CPD   
Alu4 11 7 120.331 9 106.477 0.0006 9 113.6717 10 104.823 0.0082 
Apex2 13 10 128.77 10 109.399 1E-07 10 125.1346 10 108.013 1E-06 
Apex4 14 8 127.922 10 117.623 0.001 10 122.6053 10 104.512 2E-06 
Bigkey 8 10 100.935 10 79.6366 4E-06 10 100.0536 10 75.9327 6E-10 
Clma 14 10 264.999 8 248.781 0.0625 10 252.9958 10 254.389 0.5168 
Des 8 10 123.01 9 142.761 0.0119 9 136.5118 10 142.17 0.4948 
Diffeq 9 10 106.112 10 97.1525 0.0711 10 90.33062 10 88.3868 0.5933 
Dsip 7 8 91.0482 9 75.7863 0.0034 10 93.37907 10 76.9176 6E-05 
Elliptic 13 8 257.387 10 224.639 0.0033 10 206.6148 10 210.407 0.7445 
ex1010 13 10 205.552 10 186.939 0.0182 10 202.9452 10 192.969 0.2136 
ex5p 15 10 116.071 9 109.359 0.1208 10 125.2613 10 102.643 1E-06 
Frisc 14 9 227.362 8 210.73 0.2222 10 189.0848 10 193.943 0.43 
Misex3 13 10 108.431 10 103.505 0.1367 10 105.6976 10 104.492 0.6061 
Pdc 19 10 254.422 10 234.849 0.0051 10 217.5874 10 219.941 0.7644 
s298 9 10 240.983 10 215.34 0.0007 10 203.189 10 202.723 0.9335 
s38417 9 10 196.969 10 159.805 9E-05 10 163.1709 10 131.942 3E-07 
s38584.1 10 10 123.888 10 117.656 0.1231 10 119.709 10 110.079 0.0239 
Seq 13 9 123.035 9 111.032 0.0246 10 118.0495 10 110.467 0.0663 
Spla 16 10 205.085 7 185.875 0.0023 10 188.0682 10 173.829 0.0318 
Tseng 8 10 81.7572 10 82.3753 0.8034 10 75.83124 10 75.2984 0.6969 
Total   189 3204.07 188 2919.72   198 2949.891 200 2783.88   

 

Our results show that when VPlace is run with inner_num equal to 1, Star+ 

results in a lower critical-path delay compared with HPWL for 18 of the 20 benchmarks. 

Moreover, the placements found using Star+ are, on average, 9 percent faster than those 

found when using HPWL.  Similarly, when VPlace is run with inner_num equal to 10, 

Star+ results in a lower critical-path delay compared with HPWL for 15 of the 20 

benchmarks. Moreover, the placements found using Star+ are, on average, 6 percent 

faster than those found using HPWL. 

 

 

3.3.2.1 Statistical Testing 
 

The previous results were somewhat unexpected. To verify whether or not the results of 

the previous experiments were due to variance, we employed the Student’s t-test [84]. 
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The Student’s t-test is a statistical tool typically used to make inferences from samples 

that are relatively small in size. The motivation for using Student’s t-test for a small 

sample size is that the sample’s mean and standard deviation may not reflect the true 

mean and standard deviation of the entire population that was sampled. Student’s t-test 

provides a probability of confidence, or P-value, for the null hypothesis that the means of 

two populations are equal, given two sets of sample data - one taken from each 

population. It is common for a significance level of 0.05 to be chosen as a fixed 

probability of wrongly rejecting the null hypothesis, if it is true. The null hypothesis is 

rejected at the 5% significance level for P-values that are less than 0.05. A caveat of 

Student’s t-test is that the sample sets are assumed to be normally distributed. For cases 

where the sample set data is not normal, a non-parametric, ranked t-test can be used to 

relax the normality assumption. The ranked t-test assigns each sampled data instance with 

a rank that is used instead of the actual data’s value for the purposes of calculating the t-

test confidence probability. The ranks are assigned by combining the sample sets together 

and sorting them in descending order based on their value, after which ranks are assigned 

in increasing order, starting at one and increasing by one for each rank. Once these ranks 

have been assigned, the rank values are separated based on which sample set they were 

originally from and the t-test is performed on these ranks instead of on the original data 

values. 

 

For the previous experiments summarized in Table 3.6, the Student’s t-test can 

provide insight into whether or not the performance of HPWL and Star+ with respect to 

producing routable placements is attributable to chance. Using the data in Table 3.6, the 

Student’s t-test was used to test the null hypothesis that the mean value of the results 

found using HPWL and Star+, respectively, are equal, implying that the differences in 

results between the two models are due to “chance”. The alternative hypothesis states that 

HPWL and Star+ are unique models that provide different results, not attributable to 

“chance”. The corresponding t-test P-value scores for the previous four experiments are 

reported in Table 3.7 (columns 4 and 7). The null hypothesis is rejected in favour of the 

alternative hypothesis in cases where the P-value for a set of results is less than 0.05. This 

corresponds to a significance level of 5%. For cases where the P-value is greater than 
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0.05, the null hypothesis is not rejected. 

  

Table 3.7: Results of Student T-test 

inner_num 1 Inner_num 10 
  HPWL Star+ P-value HPWL Star+ P-value 

Alu4 120.3309 106.4766 0.000564 113.6717 104.8231 0.00817 
Apex2 128.7704 109.3992 1.4E-07 125.1346 108.0127 1.35E-06 
Apex4 127.9216 117.6226 0.001031 122.6053 104.5116 1.9E-06 
Bigkey 100.9347 79.63662 4.07E-06 100.0536 75.93271 5.51E-10 
Clma 264.9987 248.7808 0.062485 252.9958 254.3889 0.516848 
Des 123.0099 142.7608 0.011871 136.5118 142.1703 0.494806 
Diffeq 106.112 97.15254 0.071095 90.33062 88.38679 0.593258 
Dsip 91.04823 75.78627 0.003382 93.37907 76.91763 6.44E-05 
Elliptic 257.3873 224.6386 0.00333 206.6148 210.4074 0.744468 
ex1010 205.5515 186.9388 0.018189 202.9452 192.9694 0.213586 
ex5p 116.0711 109.3591 0.120808 125.2613 102.6426 1.47E-06 
Frisc 227.3616 210.7299 0.222162 189.0848 193.9425 0.430033 
Misex3 108.4306 103.5046 0.136724 105.6976 104.4922 0.60606 
Pdc 254.4219 234.8487 0.005147 217.5874 219.941 0.7644 
S298 240.9833 215.3401 0.000691 203.189 202.7228 0.933478 
S38417 196.9685 159.805 9.31E-05 163.1709 131.9415 2.61E-07 
S38584.1 123.8882 117.6562 0.123138 119.709 110.0792 0.023875 
Seq 123.0353 111.0318 0.024585 118.0495 110.467 0.066259 
Spla 205.0847 185.875 0.002318 188.0682 173.8293 0.031827 
Tseng 81.75721 82.37529 0.803405 75.83124 75.29837 0.696864 
Total 3204.068 2919.718   2949.891 2783.877   

 

 

 The P-values in Table 3.7 reveal that for inner_num =1 the null hypothesis is 

rejected for 13 of the 20 cases; indicating that in 65% of the test cases, the difference 

between the Star+ and HPWL models with respect to critical path delay is statistically 

significant. Moreover, Table 3.7 reveals that for inner_num = 10 the null hypothesis 

is rejected for 9 of the 20 cases. Thus, from this we can conclude that variance can 

account for the difference in wirelength estimates in approximately 40% of the test cases. 

For the remaining 60% of the test cases, the Star+ and HPWL models were found to be 

different, with Star+ outperforming HPWL with respect to critical-path delay. However, 

again we would emphasize that our goal here is not to present Star+ as a superior 

wirelength estimation model to HPWL, but comparable, which these results suggest. 

 



CHAPTER 3: The Star+ Model 

 60 

3.3.2.2 Insight into performance of Star+ versus HPWL 
 

A possible insight into why Star+ outperforms the HPWL model in some cases with 

respect to critical-path delay is now given. Observe that when the HPWL model is used to 

perform placement, only the positions of the blocks on the four sides of the bounding box 

are taken into account. If the two ends of the path with the longest delay happen to be on 

the sides of the bounding box, minimizing the bounding box will move these ends inside 

the current box, and hence reduce the longest path delay. Otherwise, minimizing the 

bounding box only decreases the wire-length estimate and does nothing to shorten the 

path(s) with the longest delay(s).  Generally, the more blocks a net has, the smaller the 

chance that the two ends of the longest path will lie on the sides of the bounding box.  

Conversely, if the Star+ model is used in lieu of the HPWL model, we can see from 

Equation 3.1 that the positions of all blocks in the net are considered. Minimizing the 

Star+ distance pulls all the blocks towards the center-of-gravity of the net. Even if the two 

ends of the longest path are not on the sides of the bounding box (imagine there still is a 

bounding box surrounding all of the blocks in the net), they are still pulled towards the 

center-of-gravity, directly reducing the wire-length between them. Furthermore, if the two 

ends are farther from the center-of-gravity (i.e., closer to the sides of the bounding box), 

they will be pulled “harder” towards the center due to the square effect in Equation 3.1.  

 
Figure 3.2 shows the placement of a net (clma: 661) obtained by VPR using the 

HPWL model. Figure 3.3 shows the placement of the same net by VPR using the Star+ 

model. In both plots, each dot represents a block, and the rectangle surrounding the dots 

is the bounding box. All together, this net connects 31 blocks. It can be seen that there are 

more blocks on or near the sides of the bounding box in Fig. 3.2 than in Fig. 3.3. This is 

because HPWL is more likely to move blocks near the sides of the box, while the Star+ 

model is more likely to move blocks close to the center-of-gravity. Although one cannot 

definitely state the net in Fig. 3.2 will have a longer critical path than the net in Fig. 3.3 

until routing is performed, intuitively, we believe that this may be the case for the reasons 

mentioned. 
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Figure 3.2: The placement of Net clma:661 obtained using bounding box 

 

 

 

 

Figure 3.3: The placement of Net clma:661 obtained using Star+ 

 

3.3.3 CPU Running Time 
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One of the major reasons that the HPWL model is so popular is that calculation of a 

bounding box can be performed quickly.  Calculating the bounding box of a net from 

scratch is linear with respect to the number of blocks in the net. However, Betz et. al. [28] 

have developed a method, called incremental bounding box evaluation, which can re-

compute the bounding box in a constant amount of time on average. This is crucial for 

SA-based placers, because the most computationally expensive part of evaluating a swap 

is computing the change in cost that the swap would produce.  

 

 To implement incremental bounding box evaluation, one has to store the 

coordinates of the four sides of the bounding box (xmin, xmax, ymin, ymax) and the number of 

blocks on these sides (Nxmin, Nxmax, Nymin, Nymax) for each net. Figure 3.4 lists the pseudo-

code used to update xmin and Nxmin values for a net. 

 
 

 
Figure 3.4: Pseudo-code of incremental bounding box evaluation 

 

if (xnew != xold) {  // block x has moved 
 if (xnew < xmin) { // block x moves outward 
  xmin = xnew; // bounding box becomes larger 
  Nxmin = 1; 
 } 
 
 else if (xnew = xmin) { // block x lies on the old xmin edge 
  Nxmin ++; 
 } 
 
 else if (xold = xmin) { // block x moves inward 
  if (Nxmin >1) { // bounding box unchanged 
   Nxmin --; 
  } 
  else {  // bounding box becomes smaller 
   recompute bounding box from scratch 
  } 
 } 
} 
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 The only case for which the net bounding box must be recomputed from scratch is 

when the block moves inward and it is also the only block on a side of the bounding box. 

In this case, the re-computation takes O(k) time, while in all other cases it is O(1). In 

contrast, the re-computation of the Star+ model always takes O(1) time.  To implement 

the constant time re-computation of the Star+ model, one has to store 
 lNeti

il xT 2is  which, , 

and 
 lNeti

il xS is  which, , for each net l. Figure 3.5 lists the pseudo- code for re-computing 

the Star+ model of Net l. 

 

One immediately notices that the re-computation of the Star+ model is extremely 

straightforward and very easy to implement. Most importantly, it is O(1) in all cases. It 

should be noted, however, that the Star+ model uses Equation 3.2, which has a square 

root operation, while the HPWL model requires multiplication and addition operations to 

be performed. 

 

 

Figure 3.5: Pseudo-code for re-computing the Star+ model of net l 

  

Table 3.8 reports the average running time of VPlace when performing the 

experiments described in Section 3.3.1. Column 1 identifies the benchmark. Columns 2 

and 3 give the average runtime for HPWL and Star+, respectively, when VPlace is run 

with inner-num equal to 1. (Running VPlace with an inner_num of 10 simply 

causes the runtime to increase by a factor of 10 and, hence, is not shown.)  The last row 

                                                 
 VPR is run 10 times on each benchmark as per the experiment in Section 3.3.1 

if (xnew != xold) {  // block x has moved 
 delta = xnew - xold; 
 S += delta; 
 T += delta * (xnew + xold); 
} 
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of Table 3.8 shows the aggregate runtime for VPR for each model. Clearly, there is very 

little difference in the actual runtimes. 

 

Table 3.8: CPU Running Time (unit: seconds) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 It should be noted, however, the runtimes reported in Table 3.8 ultimately depend 

on the number of swaps performed during the optimization process. Thus, the fact that 

the total time required by Star+ is slightly more than the total time required when using 

HPWL does not necessarily mean that HPWL is faster to compute. On the contrary, 

changes in cost can be computed faster using the Star+ model as the size of the nets 

becomes larger. To illustrate this, we randomly generated nets with cardinalities (number 

of blocks) of 2, 3, 5, 10, 50, 100, 500, 1000 and 2000. Each net was then randomly placed 

on a 100 by 100 FPGA chip. We then performed 1 million improving swaps/moves on 

each net, and calculated the average time required by Star+ and HPWL to re-compute the 

  
HPWL Star+ 

alu4 2.66 2.91 
apex2 3.86 4.06 
apex4 2.20 2.30 
Bigkey 3.83 3.70 
Clma 33.30 33.22 
Des 3.47 3.67 
Diffeq 2.95 2.95 
Dsip 2.80 2.89 
Elliptic 10.11 10.09 
ex1010 13.55 14.28 
ex5p 1.83 1.86 
Frisc 9.59 9.94 
misex3 2.53 2.69 
Pdc 13.24 14.33 
S298 3.45 4.00 
S38417 22.69 21.66 
S38584.1 22.30 21.27 
Seq 3.45 3.81 
Spla 9.84 10.64 
Tseng 1.86 1.89 
Total 169.50 172.15 
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wirelength estimates. The results are shown below in Table 3.9, where the times recorded 

in the table are given in nanoseconds. Notice that the time required by HPWL to re-

compute the wire-length estimate varies from 19 nanoseconds for a small net with just 2 

blocks to 8380 nanoseconds for a large net with 2000 blocks. However, the Star+ model 

requires a small re-computation time of only 53 nanoseconds for all size nets. 

 

Table 3.9: Re-computing time for HPWL and Star+  

Cardinality HPWL (ns) Star+ (ns) 
2 19 53 
3 26 53 
5 38 53 
10 50 53 
50 227 53 
100 431 53 
500 2127 53 
1000 4213 53 
2000 8380 53 

 

 

 

3.3.4 Wirelength 
 

As a final basis of comparison, we compare the Star+ and HPWL models with respect to 

the total number of wire segments required by VPR’s router to route each placement. 

Table 3.10 reports the total number of wire segments required to route each placement 

when performing the experiments described in Section 3.3.1. Column 1 identifies the 

benchmark. Column 2 gives the channel width used by the router. Columns 3 and 4 give 

the successful times (out of 10) and the average number of wire segments required to 

route each placement for HPWL when VPlace is run with inner_num equal to 1. 

Columns 5 and 6 provide similar information for the Star+ model. Column 7 gives the p-

value. Columns 8 – 12 provide similar information as Columns 3 – 7 when VPlace is run 

with inner_num equal to 10. 

                                                 
 VPR is run 10 times on each benchmark as per the experiment in Section 3.3.1 
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Table 3.10: The number of Wire Segments Needed for Successful Routing 

inner_num 1 Inner_num 10 
HPWL Star+ P-value HPWL Star+ P-value 

  
CW 

ST WL ST WL   ST WL ST WL   
alu4 11 7 22038.4 9 21090.8 3E-05 9 21016.22 10 20542.7 0.0011 
Apex2 13 10 32545.5 10 31361 8E-05 10 30637.5 10 30722.7 0.5886 
Apex4 14 8 22865.1 10 22136.1 0.0002 10 21848 10 21448 0.0003 
Bigkey 8 10 22395.7 10 22387.8 0.9619 10 18504.6 10 18568.3 0.6616 
Clma 14 10 142509 8 138219 0.0012 10 133591.6 10 133427 0.7296 
Des 8 10 29161.1 9 29488 0.19 9 24757.67 10 27118.3 6E-05 
Diffeq 9 10 16263.4 10 15555.8 0.0002 10 14675.7 10 14502.7 0.0495 
Dsip 7 8 17171 9 17599 0.2093 10 14581.7 10 14471.9 0.6589 
Elliptic 13 8 53811.4 10 50040 1E-06 10 45912.2 10 45194.5 0.1423 
ex1010 13 10 72613.2 10 71220.2 0.0041 10 70864.2 10 69777.7 0.0012 
ex5p 15 10 19923.5 9 19583.1 0.084 10 18647.6 10 19067.2 0.0003 
Frisc 14 9 59957.2 8 57915.5 0.0018 10 55274 10 56284.4 0.0006 
Misex3 13 10 22699.7 10 21751.2 9E-06 10 21870.7 10 20924.5 5E-08 
Pdc 19 10 104298 10 103669 0.3293 10 99046.3 10 100052 0.0125 
s298 9 10 22703.3 10 22461.5 0.0548 10 21346 10 21688.4 0.0088 
s38417 9 10 66586.4 10 66592.4 0.992 10 61764.3 10 61771.1 0.9861 
s38584.1 10 10 63514.7 10 60020.6 2E-08 10 57098.7 10 55975.4 0.0042 
Seq 13 9 29610.9 9 28377.4 1E-05 10 28059.3 10 27879.4 0.0672 
Spla 16 10 71193.8 7 70870 0.4931 10 67361.7 10 69260.1 8E-05 
Tseng 8 10 10419.7 10 9932.7 7E-05 10 9423.4 10 9363.2 0.4156 
Total   189 902282 188 880271   198 836281.4 200 838039   

 

Our results show that when VPlace is run with inner_num equal to 1, Star+ 

results in a lower total number of wire segments compared with HPWL for 17 of the 20 

benchmarks. However, the placements found using Star+ are, on average, only 2.4 

percent less than those found when using HPWL.  In contrast, when VPlace is run with 

inner_num equal to 10, Star+ results in a lower total number of wire segments 

compared with HPWL for only 11 of the 20 benchmarks. In addition, the number of wire 

segments required when using the Star+ model is, on average, 0.2 percent more than 

those found when using HPWL.  On closer inspection, Star+ outperforms HPWL for 28 

of the 40 cases, with 12 of these cases having a P-value less than 0.05 (indicating that the 

difference between the two models cannot be attributable to chance). 
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3.4 Parameter Tuning 

 

The Star+ model contains two adjustable parameters:  and . As first discussed in 

Section 3.1,  is responsible for compensating for the average difference between Star+ 

estimate and the actual number of wire segments used after routing;  is responsible for 

improving the quality of the placement.  In all of the previous experiments,  and  were 

set to 1.59 and 1.0, respectively. We now discuss how these values were arrived at.  

 

To determine an appropriate value for , we replaced the HPWL model in VPlace 

with the Star+ model. We then ran VPlace multiple times on each of the 20 MCNC 

benchmarks with the parameter  set to 0.5, 0.6, , 1.5, respectively. As VPlace is 

stochastic, for each value of , VPlace was executed five times with five randomly 

generated seed values. We then used VPR’s router to route the resulting placements, and 

recorded the number of the times a successful routing was found and the average number 

of wire segments required by the routing solution. When routing the placements, we used 

the same (minimum) channel widths used in Section 3.3. 

 

The results are shown in Table 3.11, Table 3.12 and Table 3.13. In each table, 

column 1 identifies the benchmark. Column 2 lists the channel widths used by the router. 

Columns 3 and 4 indicate the number of times of successful routing found (maximum is 5) 

and the average number of wire segments, respectively, for a particular value of .  The 

remaining columns provide similar information for other values of . For example, 

considering Alu4 when  equals 0.7, all 5 attempts at routing are successful, and the 

average number of wire segments is 21596.  

 

A summary of the results in Table 3.11 – Table 3.13 is given in Table 3.14. With 

respect to finding placements that lead to successful routing, it can be seen that using a 

value of =1 (or =1.1) results in the largest number (95) of successful routings. With 

regards to producing placement solutions with the smallest number of wire segments, it 

can be seen that the smaller  is, the better the placements are. Using =0.5 resulted in 
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the smallest number of wire segments (865799) on average. However, it also resulted in 

the smallest number of successful routable placements been found (81). Given that a 

placement is of no value if it cannot be routed, we chose to set =1. However, we would 

note that the difference in (average) wire-length when =0.5 and =1 is very small 

(approximately 1.7%). 

 

 

 

Table 3.11: Routing Results for Different Values of  (between 0.5 and 0.7) 

0.5 0.6 0.7 
  

CW 
SR Wire SR Wire SR Wire 

Alu4 11 5 21216 5 21521 5 21596 
apex2 13 5 30109 5 30217 5 30381 
apex4 14 5 21489 4 21931 5 21978 
Bigkey 8 5 22169 5 22486 5 22544 
Clma 14 5 135776 5 136797 5 137084 
Des 8 5 30811 5 30795 5 30727 
Diffeq 9 5 15653 3 15220 3 15223 
Dsip 7 5 17557 5 18356 5 18431 
Elliptic 13 3 52711 3 51575 4 51641 
Ex1010 13 5 64890 5 66034 5 66146 
Ex5p 15 5 19867 4 19567 4 19633 
Frisc 14 3 57883 2 58686 3 58985 
Misex3 13 1 20697 4 21152 4 21261 
Pdc 19 1 101621 4 101393 4 101943 
s298 9 5 20109 5 20451 5 20570 
s38417 9 3 65293 2 65203 3 65122 
s38584.1 10 4 62174 5 62682 5 62799 
Seq 13 5 27691 5 27695 5 27832 
Spla 16 1 67620 2 67582 2 67661 
Tseng 8 5 10463 5 10263 5 10291 
Total   81 865799 83 869607 87 871850 
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Table 3.12: Routing Results for Different Values of  (between 0.8 and 1.1) 

0.8 0.9 1 1.1 
  SR Wire SR Wire SR Wire SR Wire 
Alu4 5 21637 5 21899 5 21091 5 21631 
apex2 5 30395 5 30718 5 31361 5 30519 
apex4 5 22128 5 22174 5 22136 5 22374 
Bigkey 5 22539 5 22626 5 22388 5 22595 
Clma 5 136881 5 138275 4 138219 5 138937 
Des 5 30952 5 31145 5 29488 5 31272 
Diffeq 4 15365 4 15468 5 15556 4 15391 
Dsip 5 18586 5 18585 5 17599 4 18710 
Elliptic 4 52227 4 52148 5 50040 5 52079 
Ex1010 5 66013 5 66936 5 71220 5 66621 
Ex5p 4 19623 4 19506 4 19583 5 19785 
Frisc 3 58534 5 59561 4 57916 4 58539 
Misex3 4 21149 4 21107 5 21751 5 21584 
Pdc 4 102679 4 101750 5 103669 5 102966 
s298 5 20608 5 20782 5 22462 5 20677 
s38417 4 65428 4 66277 5 66592 5 66916 
s38584.1 5 63447 5 63498 5 60021 5 63168 
Seq 5 27658 5 28090 5 28377 5 27816 
Spla 3 67942 3 68273 3 70870 3 68498 
Tseng 5 10294 5 10293 5 9933 5 10388 
Total 90 874087 92 879111 95 880271 95 880465 
 

 

 

With =1, we now turn our attention to finding an appropriate value for . Recall 

that  does not affect solution quality directly (like ), but is used as a common multiplier 

to compensate for the difference between the estimated number of wire segments and the 

actual number of wire segments required after routing.  
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Table 3.13: Routing Results for Different Values of  (between 1.2 and 1.5) 

1.2 1.3 1.4 1.5 
  SR Wire SR Wire SR Wire SR Wire 
Alu4 5 21981 5 21746 5 21588 5 21744 
apex2 5 30653 5 30357 5 30498 5 30477 
apex4 5 21867 5 22234 5 21985 4 22281 
Bigkey 5 22526 5 22558 5 22695 5 22689 
Clma 5 138894 5 137336 5 137728 5 139416 
Des 5 31376 5 31213 5 31255 5 31173 
Diffeq 4 15412 4 15351 4 15396 3 15404 
Dsip 4 18433 4 18474 4 18417 4 18488 
Elliptic 5 51743 5 52539 5 52001 5 52458 
ex1010 5 67844 5 66706 5 66825 5 66595 
ex5p 5 19750 5 19861 5 19707 5 19785 
Frisc 4 59547 3 59126 3 59450 3 58880 
Misex3 5 21060 5 21264 5 21423 5 21574 
Pdc 4 102678 4 102324 4 102842 4 103980 
s298 5 20840 5 20647 5 20890 5 20621 
s38417 4 65775 4 65917 3 65214 2 66930 
s38584.1 5 63970 5 63245 5 63269 5 63089 
Seq 5 27921 5 28083 5 28114 5 28108 
Spla 3 68685 2 68461 2 68436 1 68407 
Tseng 5 10271 5 10416 5 10279 5 10329 
Total 93 881230 91 877857 90 878011 86 882427 
 

 

Table 3.14: Routing Results for Different Values of  (Summary) 

 SR Wire 
0.5 81 865799 
0.6 83 869607 
0.7 87 871850 
0.8 90 874087 
0.9 92 879111 
1 95 880271 

1.1 95 880465 
1.2 93 881230 
1.3 91 877857 
1.4 90 878011 
1.5 86 882427 
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To determine an appropriate value for , we experimented with several different 

values of . Table 3.15 shows the results with  equal to 1.58, 1.59 and 1.6, respectively. 

Column 1 identifies the benchmark. Column 2 gives the channel widths used by the 

router. Column 3 is the average number of wire segments obtained after routing. Column 

4 gives the estimated number of wire segments when  equals 1.58. Columns 5 and 6 are 

the estimates when  equals 1.59 and 1.6, respectively. When  equals 1.59, the total 

estimate (879712) is closest to the actual number of wire segments after routing (shown 

in column 3 (880271)). (When  is less than 1.58 or greater than 1.6, the estimates will 

be even farther away from the number of wire segments after routing, and hence are not 

listed in the table.) 

 

 

Table 3.15: Experimental Results of Different  Values 

  CW Routing 1.58 1.59 1.6 
Alu4 11 21091 20177 20305 20433 

apex2 13 31361 30379 30571 30763 
apex4 14 22136 20259 20387 20515 
Bigkey 8 22388 21922 22061 22199 
Clma 14 138219 146711 147640 148568 
Des 8 29488 28119 28297 28475 

Diffeq 9 15556 16151 16253 16355 
Dsip 7 17599 18509 18626 18744 

Elliptic 13 50040 50835 51157 51478 
ex1010 13 71220 67680 68108 68537 
Ex5p 15 19583 18029 18143 18257 
Frisc 14 57916 57200 57562 57924 

misex3 13 21751 20817 20949 21080 
Pdc 19 103669 98639 99263 99887 
s298 9 22462 21050 21183 21317 

S38417 9 66592 68123 68555 68986 
S38584.1 10 60021 63284 63685 64086 

Seq 13 28377 27506 27681 27855 
Spla 16 70870 68363 68796 69229 

Tseng 8 9933 10426 10492 10558 
Total   880271 874180 879712 885245 
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3.5 Limitations of the Star+ Model 

The Star+ model is mainly developed for island-style FPGAs. As other styles of FPGAs 

(e.g., row-based FPGAs and hierarchical FPGAs) have different routing architectures, 

using Star+ on these types of FPGAs may provide lower estimation accuracy. For row-

based FPGAs, since x-dimension and y-dimension are asymmetric, a possible way to 

improve the accuracy of Star+ is to try different values for  and  on x- and y-

dimensions.  

 

For modern FPGA architectures, there is hard logic (e.g., multipliers, DSP blocks, 

etc.) at fixed positions on the FPGA chip. If these hard logic blocks are within the area of 

the Star+ model of a net (see Fig. 3.6 for an example), they affect the available routing 

resources that may be used to route the net. Therefore, Star+ is not as accurate in this 

scenario. Consequently, solutions obtained by using analytical methods based on Star+ 

may suffer a loss in quality. However, it is worthwhile to note that HPWL and quadratic 

distance also suffer from the same problem. 

 

 

 

 

 

 

 

 

 

Figure 3.6:  A hard logic within the Star+ model of a net 
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3.6 Summary 

In this chapter, we introduced a new wire-length estimation model that is suitable for use 

both with move-based and analytic placement tools. VPR [28] was used to compare the 

Star+ model to the traditional HPWL model with respect to routability, critical path 

delay, CPU running time, and wire-length. Both models were tested using the 20 MCNC 

[62] benchmarks and with various parameter settings for VPR’s placement and routing 

tools.  The following was observed: 

 

 The Star+ model slightly outperforms the HPWL model when inner_num=1 in 

terms of minimum channel width and total wire-length.  

 

 The Star+ model outperforms HPWL by 6-9% in terms of critical-path delay, and 

for 60% of the benchmarks the difference in performance between Star+ and 

HPWL is statistically significant. 

 

 The Star+ model is differentiable. 

 

 Computing the change in cost resulting from swapping a pair of blocks is always 

an O(1) operation. Moreover, it was shown that as the net size increases, Star+ 

outperforms HPWL with respect to the time required to re-compute the wire-

length estimate following an improving swap/move. 

 

The effect of the Star+ model’s adjustable parameters,  and , was also studied. 

The following was decided: 

 

  affects both the number of placements found that are actually routable and the 

wire segments required to route a placement. Overall, the best value for  is 1. 
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  compensates for the difference between the estimated number of wire segments 

and the actual number of wire segments required after routing. When set to 1.59, 

the estimate is closest to the actual number. 

 

Therefore, we conclude that the Star+ model is indeed suitable for use with 

analytic methods, which we discuss next in Chapter 4. 

 



 75 

 

 
 
 
 
 
 
 
 

Chapter 4  
 

Modifying Conjugate Gradient for Placement 

Most approaches to analytic placement are based on quadratic programming [17].  

Quadratic placement algorithms use squared wire length as the objective function and try 

to minimize it by repeatedly solving a system of linear equations. In practice, quadratic 

placement algorithms are fast and hence capable of handling very large placement 

problems. However, the quality of solutions produced is often inferior compared with 

those found using slower, swap-based algorithms, like VPR [27]. This is a partial result 

of the fact that the objective of quadratic programming is to minimize squared wire 

length, not linear wire length. 

 

To compensate, we propose using the Star+ wire-estimation model presented in 

Chapter 3 as part of an analytic placement tool based on Conjugate Gradient (CG). The 

CG method is one of the most popular iterative methods for solving large systems of 

linear equations. It is very effective for systems of the form Ax=b, where x is an unknown 

vector, b is a known vector, and A is a known, sparse, positive-definite matrix. The 

essential trade-off in changing a squared wire-length objective into a “near” linear wire-
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length objective is that the resulting equations system that must be solved is no longer 

linear, and hence harder to solve. In particular, two problems arise when employing a 

non-linear objective function. First, for the FPGA placement problem, the equations 

system is not sparse, but dense. Second, with a traditional solver, like conjugate gradient, 

the Hessian matrix (i.e., A) must be re-computed on each iteration. Both of these facts 

result in a runtime for each iteration of O(n2).  

 

In this Chapter, we show how the runtime of each iteration of conjugate gradient 

can be reduced to O(n). The basic idea is to avoid computing the Hessian matrix on each 

iteration by calculating a single value that indicates both the direction and distance to 

move in the problem’s search space. 

 

 The remainder of the chapter is organized as follows. In Section 4.1 we provide a 

brief introduction to conjugate gradient. In Section 4.2 we show how conjugate gradient 

can be applied to FPGA placement. Finally, in Section 4.3 we summarize our important 

contributions. 

 

4.1 Conjugate Gradient Method 

The earliest conjugate gradient method was devised by Fletcher and Reeves [102]. If the 

objective function f(x) is quadratic and is minimized exactly in each search direction, it 

has the desirable feature of converging in at most n iterations because its search 

directions are conjugate (or A-orthogonal) (see Section 4.1.1), where A is the Hessian 

matrix of f(x). In practice, conjugate gradient methods are also powerful on general 

functions. This method represents a major improvement in convergence over steepest-

descent methods [32] with only a marginal increase in computational effort compared to 

the latter.  It combines current information about the gradient vector with that of gradient 

vectors from previous iterations (a memory feature) to obtain the new search direction. 

The new search direction is computed by a linear combination of the current gradient and 

                                                 
  See Section  4.1 
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the previous search direction. The main advantage of this method is that it requires only a 

small amount of information to be stored at each stage of calculation and thus can be 

applied to very large problems. 

 

4.1.1 Standard Conjugate Gradient Algorithm 

Consider the problem of minimizing a quadratic function xcAxxxf TT 
2
1)( . If A is 

symmetric and positive-definite, we can find a set of n linearly independent search 

directions )1()1()0( ,,, nddd   that are mutually conjugate with respect to A, i.e., all the 

directions satisfy the conjugacy conditions: 

njijiAdd j
T
i   and  0 ,  ,0)()( . 

The Conjugate Gradient (CG) method is as follows. We start with an initial point )0(x  and 

an initial direction )0(d . We minimize )(xf  along )0(d  to obtain )1(x  by making 

0)(' )1( xf , and obtain )1(d  by letting 0)1()0( Add T . Then, from )1(x , we minimize 

)(xf  along )1(d  to obtain )2(x  by making 0)(' )2( xf , and obtain )2(d  by letting 

)2()0( Add T  and 0)2()1( Add T . This procedure may be repeated at most n times. Finally, we 

minimize )(xf  along )1( nd  to obtain )(nx  by making 0)(' )( nxf . The point )(nx  is the 

minimum solution. Generally, we can terminate CG early as long as it converges. In fact, 

the CG iterations can be terminated at any ith iteration ( )0 ni   if )(ix  is close enough 

to the minimum. The CG method can also be used to optimize problems where the 

objective function )(xf  is not quadratic, provided it is still positive-definite. In practice, 

it is usually more effective than direct methods when the equation systems are large and 

sparse.  

 

To obtain an understanding of what is meant by positive-definite, Figure 4.1 

shows the graph of an arbitrary positive-definite function )(xf . Figure 4.2 gives the 
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contours of )(xf .  The values of )(xf  at the points on the same curve are equal. The 

black dot is the point (degenerate curve) where )(xf  has the minimum value.  

 

 

 

Figure 4.1:  The graph of a positive-definite function )(xf  [32] 

 

The gradient )(' xf  of )(xf  is a vector field that, for a given point x, points in the 

direction of the greatest increase of )(xf . By Newton’s theory, )(' xf  equals zero at the 

point where )(xf  is minimum (or maximum). Figure 4.3 illustrates the gradient vectors 

for )(xf . At the bottom of the bowl shown in Figure 4.1, the gradient is zero. One can 

minimize )(xf  by setting )(' xf =0.  

 

However, directly solving the equation systems )(' xf =0 is usually impractical. 

An iterative way to find the point x at which )(' xf  equals zero is to start at an arbitrary x 

and slide down to the bottom of the bowl step-by-step. At each step we move to a new x 

that makes )(' xf  closer to zero, and eventually we reach a point x at which )(' xf  is 

close enough to zero to enable termination. 
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Figure 4.2:  The contours of )(xf  [32] 

 

 

The question is which direction and how big a step we should take at each point x, 

so that we can move to the bottom of the bowl as quickly as possible. Assume )0(x  is the 

initial point, )(ix  is the point at the ith step, )(id  is the direction we should move from 

point )(ix , and )(i  is the size of the move. Thus 

)()()()1( iiii dxx         (Equation 4.1) 

The CG method uses the following procedure to calculate the direction and how big a 

step we should take. First, calculate the initial direction: 

)(' )0()0()0( xfrd         (Equation 4.2) 
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The residual )0(r  indicates how far )(' xf  is from zero at the initial point )0(x  (remember: 

our goal is to find the x where )(' xf =0). Then for every iteration i0, compute the 

following: 

)()()(

)()(
)( )(" ii

T
i

i
T
i

i dxfd
rr

        (Equation 4.3) 

The previous equation calculates how far to move along the direction )(id . The Hessian 

)(" )(ixf  is an n x n matrix, in which the element at the jth row and kth column is the 

second partial derivative of )(xf  with respect to jx  and kx  at the point )(ix . (x is a 

vector with n elements: 1x , 2x , … nx , where )(ix  is the vector at the ith step.)  Note that 

)()( i
T
i rr  equals the square of the 2-norm of the residual )(ir , and )()()( )(" ii

T
i dxfd  can be 

looked at as the square of the 2-norm of the direction multiplying coefficient matrix. 

 

 

 

Figure 4.3:  The gradient )(' xf  of )(xf  [32] 
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)(' )1()1(   ii xfr        (Equation 4.4) 

calculates the new residual. 

 

)()(

)1()1(
)1(

i
T
i

i
T
i

i rr
rr 

         (Equation 4.5) 

)()1()1()1( iiii drd          (Equation 4.6) 

calculates the new direction. When )(xf  is quadratic, any two different )(id s obtained 

using above formulas will be conjugate to each other. For nonlinear CG (i.e. )(xf  is not 

quadratic), the less similar )(xf  is to a quadratic function, and hence the more quickly 

the directions lose conjugacy. Figure 4.4 suggests the procedure of finding the minimum 

point using the CG method. 

 

 

 

Figure 4.4:  The Conjugate Gradient method [32] 
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 The CG method is efficient for sparse systems, in which )(" )(ixf  is a sparse 

matrix. For dense systems, the computation of )(" )(ixf  is )( 2nO  and therefore makes 

each iteration of CG to be )( 2nO . In such cases, CG may be undesirable compared with 

direct methods. However, for specific applications, researchers are often able to find 

ways   to   calculate   α   without   re-computing )(" )(ixf  entirely. In particular, if we can 

calculate )()()( )(" ii
T
i dxfd  in linear time, then there is no need to spend )( 2nO  time 

computing )(" )(ixf . 

 

 In the next section, we will discuss how to apply CG on FPGA placement and 

how to keep each iteration of the CG placement algorithm linear in time. 

 

4.2 Conjugate Gradient Placement 

The optimization goal of the target CG placement algorithm is to minimize the amount of 

wire segments required to connect all the nets after a circuit is placed. Since CG requires 

that the gradient )(' xf  and Hessian matrix )(" xf  are computable, the objective function 

)(xf  must be built using differentiable estimation models. Hence HPWL is not 

applicable for the target CG placement algorithm. 

 

4.2.1 Objective Function )(xf  

In Chapter 3, the Star+ model was compared with the HPWL model and found to be at 

least as effective as HPWL with respect to wire-length and routability, and often better 

for critical-path delay. However, and most importantly, the Star+ model is also 

differentiable, and hence suitable for use in analytic methods. Based on the Star+ model 

(see Equation 3.1), the wire-length estimate of a net after being placed can be calculated 

as: 
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



ll Neti

cli
Neti

clil yyxxNet  22 )()(  

 

Since the total wire-length estimate of a circuit is the sum of the wire-length 

estimates of all the nets, the wire-length estimate can be expressed as follows:  

 

  

 








































l Neti
cli

l Neti
cli

l Neti
cli

Neti
cli

ll

ll

yyxx

yyxx





22

22

)()(

)()(

  (Equation 4.7) 

 

where xi and yi are the coordinates of Block i, and xcl and ycl are the coordinates of the 

center of gravity (see Section 3.1).  

 

Equation 4.7 consists of two parts. The first part that contains only x-coordinates 

is the wire-length estimate along x-coordinate axis, and the second part that contains only 

y-coordinates is the wire-length estimate along the y-coordinate axis. All of the xis are 

independent of any yis, and vice-versa. Thus, minimizing Equation 4.7 is equivalent to 

minimizing each part separately.  For the sake of simplicity, we only discuss the wire-

length estimate along x-coordinate axis. The part that estimates the wire-length along y-

coordinate can be solved in a similar way.  

 

Based on Equation 4.7, we define the objective function )(xf  as: 

  











l Neti
cli

l

xxxf  2)()(      (Equation 4.8) 
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4.2.2 Gradient )(' xf  

To implement CG, we need to calculate the gradient of )(xf . The gradient )(' xf  is 

defined as: 



































)(

)(

)(

)('
2

1

xf
x

xf
x

xf
x

xf

n


 

 

The )(' xf  is a vector that points in the direction of the greatest increase of )(xf  
at a given point T

nxxxx ),,,( 21  .  In order to make calculation simpler, we define 





lNeti

clil xxS 2)(       (Equation 4.9) 

 

Therefore,  
l l

ll SSxf  )()(     (Equation 4.10) 

To calculate )(xf
x j
 , we calculate 

j

l

x
S



 first. From the definition of lS , we have: 

 

 





lNeti

clil xxS 2)(  





lNeti

clclii xxxx )2( 22  

 
 


l llNeti Neti

cl
Neti

clii xxxx 22 2  

 
 


l llNeti Neti

cl
Neti

icli xxxx 12 22  





lNeti

lclcllcli kxxkxx 22 2  
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



lNeti

cllclli xkxkx 222 2  





lNeti

clli xkx 22  

 

If lNetj , it is obvious that 0



j

l

x
S

. If lNetj , the partial derivative of lS  with 

respect to jx  is: 

 












lNeti
clli

jj

l xkx
xx

S
22  

)(
2

1 22

22 
 






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

l

l

Neti
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j
Neti
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xkx
xxkx




 














 


2

)()(

2

)()(

2

2
1

cll
jiNeti

i
jiNeti

i
jl

xkxx
xS

ll

 


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
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












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



 
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
j
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i
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2
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Because 0



j

i

x
x  (when ji  ), 1




j

j

x
x

, 
lj

cl

kx
x 1



  and 0




jx
 , the above equation can 

be simplified as follows: 












 



0121202
2
1

)()( l
cllj

jiNeti
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l

clj

S
xx 

  

 

In general,  
















l

l
l

clj

j

l

Netj

Netj
S

xx

x
S

 if             ,0

 if  ,         (Equation 4.11) 

 

Based on Equation 4.10 and 4.11, the partial derivative of )(xf  with respect to jx  is: 














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jj

S
x
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x

)(       (From Equation 4.10) 


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  
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


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





 

 ll NetjlNetjl l

clj

S
xx

::
0     (From Equation 4.11) 







lNetjl l

clj

S
xx

:
       (Equation 4.12) 

 

Recall that these values are the (jth) components of vector )(' xf , the gradient of )(xf . 

 

4.2.3 Hessian Matrix )(" xf  

CG requires computing Hessian matrix. Each element of the Hessian matrix )(" xf  is a 

second-order partial derivative of )(xf , which can be calculated using following 

procedures. 
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The diagonal elements (at jth row and jth column) are: 
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Each off-diagonal element at kth row and jth column is ( kj  ): 

 








 






 

 lNetjl l

clj

kjk S
xx

x
xf

xx :

2

)(      (From Equation 4.12) 








 




 
 lNetjl l

clj

k S
xx

x:
  




















lNetjl lk

cljclj
kl Sx

xxxx
xS:

1)()(1
  




















lNetjl k

l

l
clj

k

cl

l x
S

S
xx

x
x

S:
2

1)()0(1
   ( 0  , When 





k

j

x
x

kj ) 



CHAPTER 4: Modifying Conjugate Gradient for Placement 

 88 




















lNetjl k

l

l

clj

lk

cl

l x
S

S
xx

Sx
x

S:

11
  




















lNetjl k

l

l

clj

k

cl

l x
S

S
xx

x
x

S:
)(1

  


























lNetjl k

l

j

l

k

cl

l x
S

x
S

x
x

S:
)(1     (From Equation 4.11) 






















































 
 llll NetkNetjl k

l

j

l

k

cl

lNetkNetjl k

l

j

l

k

cl

l x
S

x
S

x
x

Sx
S

x
S

x
x

S ::

)(1)(1  


































 


0)(1
: ll NetkNetjl k

l

j

l

k

cl

l x
S

x
S

x
x

S
  ( 0  , When 









k

cl

k

l
l x

x
x
SNetk ) 






















lNetkjl k

l

j

l

ll x
S

x
S

kS,:
)1(1  

 

 

To summarize, we have the elements of Hessian matrix )(" xf : 
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  (Equation 4.13) 

 

The computation of )(" xf  is O(n2), which is too long for iterative methods. Since 

)(" xf  is only used in Equation 4.2, if we can calculate dxfd T )("  directly in a shorter 

time we do not have to calculate )(" xf  especially. Fortunately, the following method 

computes dxfd T )("  in linear time. The direction vector is T
ndddd ),,,( 21  . The 

product dxfd T )("  is a single real number. By the definition of the product of a vector 

and a matrix, we have: 
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Although using Equations 4.14 and 4.15 will give the same result, the time 

complexities to calculate these two equations are significantly different. The complexity 

of Equation 4.14 is O(n2), as the Hessian matrix has n2 elements. In contrast, the 

complexity of Equation 4.15 is O(n). We will clarify this in the next paragraph. 

 

We know computing xcl and lS  are both O(kl). From Equation 4.11, calculating 

j

l

x
S



 is O(1) if we already know  xcl  and lN .  In Equation 4.15, the entire calculation in 

the curved brackets is O(kl) (i.e., linear to the cardinality of Net l). Therefore, the time 

complexity of Equation 4.15 is linear to the sum of the cardinalities of all the nets. As the 

sum of the cardinalities of all the nets equals the sum of the fan in/outs of all the blocks, 

the complexity is also linear to the sum of the fan in/outs of all the blocks. Due to the 

physical limit of FPGA architecture, each block can only connect to a certain number of 

nets. That means the sum of the fan in/outs of all the blocks is O(n) (n is the number of 

blocks). As a result, the time complexity of Equation 4.15 is O(n). (For example, our 

experimentation shows that for a benchmark with 1500 blocks and 1500 nets, the CG 

placement that calculates )(" xf  each iteration is about 70 times slower compared with 

the CG placement that uses Equation 4.15 to calculate dxfd T )("  directly. Since 



CHAPTER 4: Modifying Conjugate Gradient for Placement 

 91 

calculating )(" xf  is in O(n2), it will be even slower when the size of benchmark is 

larger.) 

 

Up to now, we have introduced all the basic theory of the CG placement 

algorithm. Figure 4.5 gives the pseudo code as a summary of the whole procedures. The 

first six lines initialize all x-coordinates, and calculate the initial residue 0r  and search 

direction 0d . Within the while loop, each iteration successively calculates α 

= )
)("

(
dxfd

rr
T

T

, updates x, calculates new residue newr, β = )(
rr
newrnewr

T

T

 and search 

direction d. The iterations are terminated when i reaches the maximum number of 

iterations. 

  

4.3 Conclusion 

In this chapter, we presented an analytic placement algorithm that uses conjugate gradient 

method and the Star+ net model. An important feature of the algorithm is that the 

computation complexity of each iteration is O(n) even though the target system is not  

sparse. In the next chapter, we will present a pre-placement algorithm that initializes the 

coordinates of the blocks and will describe a bi-partitioning method that legalizes the 

solutions obtained from the CG placement algorithm. These additional algorithms are 

needed to make CG practical for obtaining good placements. 
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Figure 4.5:  Pseudo-code of CG placement algorithm 

Initialize all xi s 
For each net l 
{ 

 



lNeti

i
l

cl x
k

x 1  

 



lNeti

clil xxS 1)( 2  

 For each block lNetj , 
l

clj

j

l

S
xx

x
S 



  

} 

For each block j, 
 








lNetjl j

l

j
jj x

Sxf
x

rd
:

)(  

i = 0 
 
While i < n 
{ 

  
  















l Netj

j
j

l

Netj
j

lNetj
j

l

T

lll

d
x
Sd

k
d

S
dxfd 222 )()(11)("  

d
dxfd

rrxx T

T

)
)("

(   //update all x coordinates 

 
For each net l 
{ 

  



lNeti

i
l

cl x
k

x 1  

  



lNeti

clil xxS 1)( 2  

  For each block lNetj , 
l

clj

j

l

S
xx

x
S 



  

} 

For each block j, 
 








lNetjl j

l

j
j x

Sxf
x

newr
:

)(  

d
rr
newrnewrnewrd T

T

)(  

newrr   
1 ii  

 
}    //end of while 



 93 

 

 
 
 
 
 
 
 
 

Chapter 5 

 
Pre-Placement and Legalization Methods  
 

In Chapter 4, we introduced the theoretical background of our conjugate-gradient 

placement paradigm. In this Chapter, we introduce the essential components of our 

conjugate-gradient placement prototype.  More specifically, in Section 5.1 we introduce a 

new algorithm for temporarily pre-placing I/O pads on to the FPGA. Without pre-

assigning I/O pads, minimizing wire length would be vacuous, as collapsing all moveable 

blocks onto one point (CLB) would yield the best possible objective function value of 

f’(x) = 0.  In Section 5.2, we briefly describe the recursive partitioning approach [86] that 

is employed to realize legal placements. As discussed in Chapter 4, because the Star+ 

wirelength is separable into horizontal and vertical components, numerical optimization 

can be applied independently in both directions to obtain (x,y) coordinates for each 

moveable block. In practice, however, blocks tend to overlap and concentrate in the 

center of the FPGA. Consequently, a legalization step is required to map the “global 

placement” (actually, a “continuous solution obtained using a non-linear objective”) back 

to the original discrete problem. In Section 5.3, we provide an overall description of the 

Conjugate Gradient (CG) placement algorithm. In Section 5.4, we discuss the 
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convergence of CG placement algorithm. In Section 5.5, we present the experimental 

results of Shrubbery and CGH. Finally, in Section 5.6 we provide a summary of the main 

contributions of this Chapter. 

 

 

5.1 I/O Pad Pre-placement 
 

In general, pre-placement is a procedure that temporarily assigns some I/O pads and/or 

logic blocks to certain locations on the FPGA. It is an essential step of any analytic 

placement method; without pre-placement, only trivial solutions will be obtained when 

solving the equation system )(' xf =0.  For example, the solution where all of the xis are 

zero will make )(' xf =0. 

 

To avoid obtaining trivial solutions, we choose to pre-place all of the I/O pads. 

The reason that we choose to pre-place I/O pads rather than the logic blocks is because 

I/O-pad placement is an easier, one-dimensional problem to solve. We use a novel graph-

based pre-placement algorithm, which we call Shrubbery, to achieve a pre-placement of 

I/O pads with reasonable quality, prior to placing logic blocks. This pre-placement is not 

the final placement of I/O pads, but helps with the placement of logic blocks later on as 

some of the logic blocks share connections with the various I/O blocks. 

 

The goal of the pre-placement is to place the I/O pads in such a way that those 

with higher connectivity are placed closer together than the I/O pads with lower 

connectivity. Also, this pre-placement provisionally locates components on the periphery 

of the FPGA, which causes other components to be distributed throughout the chip. 

Figure 5.1(a) shows a simple example with three I/O pads L, M and N, three logic blocks 

a, b and c, and five nets Net 1: L-a, Net 2: a-b, Net 3: b-M, Net 4: b-c, and Net 5: N-c. 

The connection between I/O pads L and M involves three nets Net 1: L-a, Net 2: a-b, and 

Net 3: b-M, while the connection between I/O pads L and N involves four nets Net 1: L-

a, Net 2: a-b, Net 4: b-c, and Net 5: N-c.  
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(a) A poor placement 

 

 

 

 

 

 

 

 

 

(b) The optimum 

Figure 5.1:   The pre-placement of I/O blocks 

 

In this case, the quality of placement in Figure 5.1(a) is poor. This is partially 
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caused by I/O pad M being placed too far away from I/O pads L and N. Moving logic 

block b towards logic blocks a and c improves the placement, but this movement 

increases the amount of wire needed to connect b and M. However, if we move I/O pad 

M beside I/O pads L and N, as shown in Fig. 5.1(b), we will use the least amount of wire 

to connect the blocks. This is what the I/O pad pre-placement technique presented in the 

next section intends to do. 

 

5.1.1 Terminology 
 

Throughout the remainder of this section, we use the following definitions and 

terminology when describing Shrubbery.  

 

The following symbols index scalar objects or sets of scalar objects: i and j are used 

to index vertices; a and b are used to index root vertices of shrubs, making them shrub, 

grove, or hedge identifiers. An edge (eij) in a graph is identified by the pair of vertices vi 

and vj it connects. The cost or weight of an edge eij in a graph is identified by wij.  We also 

make use of the following definitions (see Fig. 5.2 for assistance): 

 

Definition 5.1: A shrub 
aS  consists of a set of edges e

aS  and a set of vertices v
aS  where 

av is the unique terminal (root) in v
aS . The edges in e

aS  form a tree rooted at av , meeting all 

vertices of v
aS , and all e

aij Se   have end vertices v
aji Svv , . Shrubs will “grow” to 

encompass more vertices as the algorithm proceeds. 

Once an edge or a vertex is included in a shrub, its shrub membership )( ivs  does not 

change. The function undefinedvs i )( , if vertex iv does not belong to any shrub. Otherwise, 

avs i )( , the identifying root of the containing shrub. Note that a vertex can belong to at 

most one shrub. 

 

Definition 5.2: A Path ijP  is a sequence of distinct edges connecting vertices iv  and jv . 

Two paths ikP  and kjP  with no common vertices except for vertex jv can be concatenated 
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to form a single, longer path; that is, 
kjik PP || is the union of distinct edges and vertices in 

ikP and kjP . A path aiP  entirely within a shrub represents the unique path, by which vertex 

iv was reached from root vertex av during shrub growth. The function )( aiPN returns a list 

of all vertices in the path aiP . The function )( aiPE returns a list of all edges in the path aiP . 

 

 

 

 

 

 

 

 

 

Figure 5.2:  Illustration of shrub, hedge, and grove 

 

 

Definition 5.3: A Steiner Tree is a tree connecting a subset of vertices, called terminals, 

in an undirected, weighted graph. In the context of placement, a minimum weight Steiner 

tree is a measure of placement quality (wirelength) and represents the optimal way to 

connect a net (set of pins that must be connected together). 

 

Definition 5.4: A grove aG is a union of shrubs 
bMb

S

 where M is an index set of member 

shrubs and }{min Mka
k

 . More specifically, e
bMb

e
a SG


  and n

bMb

n
a SG


 .  

 

Definition 5.5 (Hedge) A hedge aH is the partial Steiner tree that connects the terminals 

of grove aG  . aH  consists of two sets e
a

e
a GH   and n

a
n
a GH  , its edges and vertices, 

respectively. 

Sb: Shrub 

Ga: grove a  Ha: hedge rooted 
at a  

Gd: grove d  
Hd: hedge 
rooted at d  

a 
b 

c 

d 

e 
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Definition 5.6 (Root-distance) Every vertex kv  within a shrub Sa has a root-distance 

a
kd , which is the cost of the path by which vertex kv  was reached from root of Sa (vertex 

av ), during shrub growth; that is, 



akij Pe

ij
a
k wd , where ijw  is the cost of edge ije . 

Every vertex within a shrub except the root vertex has a parent (the previous 

vertex on the path from root of Sa). Let’s suppose vertex iv  is vertex jv ’s parent, the 

following relationship exists: ij
a
i

a
j wdd  , where ijw  is the cost of edge ije .  

 

Definition 5.7: A Candidate edge eij for shrub aS  is an edge that can possibly be chosen 

by aS  for the next shrub expansion, where vertex iv  is in aS , vertex jv  is not in aS , and 

vertices iv  and jv  do not belong to the same grove. 

 

Definition 5.8: A Candidate edge set of shrub aS  is denoted as c
aS , which contains all 

candidate edges of aS  for the next step of shrub expansion.  

 

Definition 5.9: An elected edge of Shrub aS  is an edge, which has been chosen from the 

candidate edge set of Shrub aS  for the next step of shrub expansion. There is only one 

elected edge for each shrub at any step of shrub expansion 

 

Definition 5.10: An Elected edge set (denoted as EE) contains the elected edges of all 

the shrubs. 

 

5.1.2 Shrubbery Example 
 

To place the I/O pads, we first transform the original circuit into a graph G = (V, E).   

Each logic block corresponds to a vertex V.  I/O pads are treated as special vertices, 

which we call terminals (T). A net with k blocks or I/O pads is transformed into a k-clique 

with equally weighted edges; i.e., each edge in the clique has a weight of 
1

1
k

.   If there 
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is more than one edge between a pair of vertices, all of these edges are merged into a 

single edge with a new edge weight equal to the sum of all of the original edge weights. 

After the graph is transformed into a simple graph, each edge weight is changed to its 

reciprocal. We use this edge weight as a measure of the connectivity.  Figure 5.3 shows 

an arbitrary circuit, while Fig. 5.4 shows the circuit’s corresponding graph representation.  

(Note: for simplicity, all of the nets contain at most 3 blocks. Therefore, all resulting 

cliques contain at most 3 edges.) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Net 1: J-e  Net 5: N-a  Net 9: a-b-d  Net 13: g-i 
Net 2: K-a  Net 6: O-d  Net 10: d-g 
Net 3: L-f  Net 7: b-e  Net 11: d-h 
Net 4: M-c  Net 8: b-c  Net 12: f-h-I 

Figure 5.3   An arbitrary circuit. 
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Figure 5.4   The corresponding graph 

 

After the transformation is complete, the Shrubbery algorithm computes the 

relative order of the I/O pads. It starts by simultaneously growing individual shortest-path 

trees rooted at every terminal vertex. We refer to these trees as “shrubs”. Shrubs grow 

using a modified version of Dijkstra’s shortest-path algorithm [85]. Initially, each shrub 

consists of a single terminal vertex, its root.  Then, shrubs are extended by adding one 

edge and vertex to one shrub at each step of the algorithm.  At every step, each shrub has 

one nearest adjacent vertex not belonging to the same shrub and having the minimum 

cost path to its root.  The shrub with the (globally) nearest adjacent vertex will grow and 

expand to include its nearest vertex.  That shrub will then determine its next nearest 

vertex and become a candidate with the remaining shrubs, as Shrubbery selects another 

edge and vertex. Eventually all the interior vertices will belong to one of the shrubs. Each 

shrub will then contain only vertices that are at least as close to its terminal (i.e., I/O pad) 

as to any other terminals. More detailed information of the algorithm can be found in 

Section 5.1.3. 

 

Figures 5.5 - 5.7 show the procedure of applying Shrubbery on the graph given in 

Figure 5.4. In these figures, there are six shrubs corresponding to six I/O pads. Each 
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shrub is shown using dashed lines and grows from its terminal I/O pad “inward” toward 

other shrubs. 

 

 

 

 

 

 

 

 

 

 

Figure 5.5   The shrubs when distance is 1 

 

 

 

 

 

 

 

 

 

 

Figure 5.6   The shrubs when distance is 2 
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At a distance of 1, shrub J includes vertex (block) e; shrub K includes vertex a; 

shrub L includes f; shrub M includes c; and shrub O includes d.  Whether vertex a joins 

shrub K or shrub N is arbitrary (Fig. 5.5). At a distance of 2, shrub M adds vertex b; 

shrub O includes vertices g and h. Again, whether vertex b joins shrub M or shrub J is 

arbitrary (Fig. 5.6). At a distance of 3, shrub L includes vertex I, and all shrubs meet (Fig. 

5.7). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7   The shrubs when distance is 3 

 

 Each shrub starts with an association tree. During the growth of shrubs, when two 

shrubs meet the first time, their association trees combine into one tree (more than one 

shrub can refer to one association tree).  For example, in Figure 5.4, shrub n and shrub k 

meet first. Their association trees combine to kn. Then shrubs m and j meet, and their 

trees combine to jm. Then l and o meet, and their trees combine to lo. Then k and m meet. 

The trees kn and jm combine to form jmkn (if there is more than one way to join two 

strings, choose the combination with the fewest letters between m and k). Then k and o 
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meet, and their association trees jmkn and lo combine to jmknol (Please note: this time k 

and o cannot be adjacent to each other. There are two ways to join the two strings: 

jmknol (lonkmj) and jmknlo (olnkmj). There is only one letter (n) between k and o in 

jmknol, while there are two letters (nl) between k and o in jmknlo. Therefore, jmknol is 

chosen.) At this moment, all shrubs are attached, and the final tree jmknol implies the 

degree of association between shrubs and thus between their terminals. Since the 

terminals represent I/O pads, this implies the degree of association between I/O pads and 

suggests an initial relative (ordering) placement of I/O pads. In the previous example, j is 

adjacent m; m is adjacent to k; and so on. Figure 5.8 gives the final tree. (Note: The I/O 

pads can now be assigned to actual positions (locations) on the FPGA (see Section 5.1.3). 

Again, we stress that this assignment may change later after the logic blocks have been 

placed.) 

 

 

 

 

 

 

 

Figure 5.8   The final tree 

 

 

5.1.3 Shrubbery Algorithm 
 

A formal description of the Shrubbery algorithm is presented in Fig. 5.9. The algorithm 

begins (line 0) with a search for the edge eij from the elected edge set E whose weight wij 

extends any shrub, say Sa, by the smallest root-distance. Once determined, if the vertex 

that edge eij meets (xj) does not already belong to a shrub, the original shrub (Sa) expands 
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to include both the new edge and new vertex. Moreover, the unique path from the root of 

the shrub (xa) to vertex xj is recorded (line3), and vertex xj is made an official member of 

the shrub Sa (line 4). Observe (line 5) that the root-distance of vertex xj is simply the root-

distance from the root of the shrub to vertex xi ( aid ) plus the weight (wij) of the new edge.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9   Shrubbery algorithm 

 

If, however, the vertex “closest” to Sa, xj, was found to be part of another shrub Sb 

(line 6), both groves will merge to form a single grove (lines 7 and 8), and their 

respective hedges will be connected by a new hedge segment. Specifically, eij will 

connect Pia and Pjb to form a new hedge segment Pab. The new hedge will consist of the 

union of all of the nodes (line 9) and edges (line 10) involved. Once the new hedge (Ha) 

and grove (Ga) are formed, the two corresponding strings in which each letter represents 

the root of a shrub (i.e. a terminal or an I/O pad) join into one string (line 11). If two 

[0]  do 
[1] Let ije  satisfy Eeij   and 
                  ajaiijaiji

SxSxwdT  ,:min,
,

 

[2]  if TbSx bj  ,   add 
jx  and ije to as  

[3]   
ijaiaj PPP   

[4]  axs j )(  
[5]   

ijaiaj wdd    
[6] else if bj Sx   
[7]   n

v
n
a

n
a GGG   

[8]  }{ ij
e
v

e
a

e
a eGGG   

[9]  )()( bjai
n
b

n
a

n
a PNPNHHH   

[10]  }{)()( ijbjai
e
b

e
a

e
a ePEPEHHH   

[11]  Join two strings including ix  and jx            
                        respectively, in a way that the number of  
                        letters between them is minimum. 
[12] discard 

bG and bH  
[13]  until aG contains all m terminals 
[14]  after m-1 merges, we get a string representing the  
         relative position of all I/O pads. 
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letters are adjacent to each other within the new string, the corresponding I/O pads should 

be placed next to each other. Line 12 just discards 
bG and bH  that are no longer useful. 

 

These steps repeat until all terminals (I/O pads) are included in one grove (line 

13). At last, we get one string that is formed after m-1 merges. This string implies the 

relative position of all I/O pads. Two I/O pads should be placed beside each other if their 

corresponding letters are next to each other in the final string. If there are fewer number 

of I/O pads (m) than I/O blocks around the perimeter of the FPGA (p), the I/O pads are 

evenly distributed around the perimeter of the FPGA. More specifically, if there are m I/O 

pads that must be pre-assigned locations around the perimeter of an FPGA chip with a 

perimeter  p, any two adjacent I/O pads will be placed d = p / m away from each other. 

The first I/O pad is always placed at the top left corner; then the second I/O pad is placed 

at a distance d away from the first I/O pad, travelling in a clock-wise direction. In 

general, the ith I/O pad is placed at a distance (i-1)d away from the first I/O pad, again 

travelling in a clock-wise direction around the perimeter of the FPGA. For example, 

Figure 5.10 gives the placement of the I/O pads (jmknol) shown in Figure 5.8 on a 3  3 

FPGA chip. In this case, the perimeter p is 12, and there are 6 I/O pads, thus the distance 

d between any two adjacent I/O pads is 2. (Note: d does not have to be an integer, since 

we do not require a legal I/O pad placement at this stage.)  

 

 

 

  

 

 

 

 

 

 

 

Figure 5.10   Placement of I/O pads shown in Fig 5.8 
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5.1.4 Implementation and Time Complexity 
 

To achieve an efficient implementation for Shrubbery, all edges and vertices are stored in 

separate Fibonacci heaps. We also make use of the well-known union-find data structure 

when determining whether a newly encountered vertex (during shrub growth) belongs to 

a different grove or simply (another) part of the existing grove. 

 

 In Fig. 5.11, the operations in lines 3-9 and 15 take O(1) time. Therefore, the time 

complexity of the algorithm is dominated by the time spent performing the operations in 

lines 1, 2, and 10-14. Since the time for finding an element with the smallest key value 

from a heap is O(log n), a single execution of line 2 takes O(log|V|) time. Using union-

find to perform the operations in lines 11-14, the resulting operations each take O(log|V|) 

time. The most expensive step in the algorithm is the first (line 1), which requires at most 

|E| iterations. As each iteration of the do-until loop takes O(log|V|) time, we can see that 

shrubbery has a time complexity of O(|E|log|V|). 

 

5.2 Legalizing Solutions using Recursive Bi-partitioning 

By pre-assigning I/O pads to temporary locations, we add constants to the equation 

system )(' xf =0 and effectively avoid producing trivial solutions. In this section, we will 

discuss how to deal with infeasible solutions obtained by solving )(' xf =0. Specifically, 

we will show how to convert an infeasible solution due to block overlap into a feasible 

solution (placement). 

 

Due to the physical characteristics of the FPGA architecture, the coordinates of 

the blocks must obey two basic rules: 

 

1. All the coordinates must be integers. 

2. Each position (CLB) on the FPGA chip can only be occupied by at most one 

block. 
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However, the solutions obtained by solving the equation system )(' xf =0 are 

usually non-integers. Moreover, the positions of the blocks tend to locate in the center of 

the placement area (the so-called overlap problem). To deal with these problems, a 

bisection technique [17] is used recursively to divide the blocks into smaller regions until 

each region only contains one configurable logic block.  

 

At first, the entire FPGA chip is vertically split into two partitions by putting half 

of the blocks with smaller x-coordinates in the left partition and the other half blocks with 

larger x-coordinates in the right one. Then, each of the two partitions is divided 

horizontally into two sub-partitions by putting half of the blocks with smaller y-

coordinates in the bottom sub-partition and the half with larger y-coordinates into the top 

partition. This type of bi-partitioning is alternatively performed vertically and 

horizontally until the FPGA is divided into partitions where each partition contains only 

one block. Once a partition contains only one block, the x- and y-coordinates of the block 

are assigned to the integer values closest to the coordinates of the center of the partition.  

 

Figure 5.11 shows the pseudo-code of the Bi-partitioning algorithm (a partition of 

an FPGA is a part of the FPGA chip that contains at least one CLB or I/O pad). More 

information can be found in [17]. 

 

 

5.3 The CG Placement Algorithm 

It is time to put all of the parts together to build the whole CG placement algorithm. A 

pseudo-code description on the algorithm is given below in Fig. 5.12. Initially, Shrubbery 

is used to pre-place all of the I/O pads in order to prevent CG from producing trivial 

solutions. The main body of the algorithm consists of two nested loops: the inner loop 

runs CG for number_CG  iterations. Due to block overlap, the solution produced is 

usually infeasible and, therefore, passed to the Bi-partitioning algorithm [17] to be 

converted into a feasible solution. The outer loop runs both CG and Bi-partitioning 
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methods, while each iteration reduces the number of CG iterations (number_CG)  by . 

(Throughout the remainder of this thesis, we set   to 0.1; that is, after each iteration of 

the while loop, we reduce the number of iterations that CG subsequently performs by 10 

percent. Empirical justification for setting  equal to 0.1 is given later in Section 5.5.)  

The exit criterion for terminating the outer loop is when number_CG reaches a value less 

than or equal to 1. 

 

 

Figure 5.11:   Pseudo-code of bi-partitioning algorithm 

if  a partition has more than one CLB{ 
if (the x-side length of the partition > y-side length) { 
 sort all blocks assigned to the partition according to their x-coordinates; 
 divide the partition to two partitions A and B along x-dimension; 
 divide all the blocks into two groups: 

group A has all the smaller x-coordinates; 
group B has all the larger x-coordinate; 

} 
 
else {      

sort all blocks assigned to the partition according to their y-coordinates; 
 divide the partition to two partitions A and B along y-dimension; 
 divide all the blocks into two groups: 

group A has all the smaller y-coordinates; 
group B has all the larger y-coordinate; 

} 
 
if the number of blocks in group A is greater than 0{ 

assign blocks in group A to partition A; 
bi-partition partition A; 

} 
 
if the number of blocks in group B is greater than 0{ 

assign blocks in group B to partition B; 
bi-partition partition B; 

} 
 

} 
else{ 
 legalize the x- and y-coordinates of the only block in the partition; 
} 
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Use Shrubbery to pre-place I/O pads;        // the positions of I/O pads may 
   // change later when running CG.  

 
number_CG = max (x-size of FPGA, y-size of FPGA); 
 
while(number_CG > 1) 
{ 

run CG for number_CG iterations; 
recursively bi-partition the placement solution obtained from CG; 
number_CG = number_CG  (1 -  ) 

} 
  

Figure 5.12:   Entire CG placement algorithm 

 

In practice, the CG does not consider the physical positions of the CLBs and I/O 

pads on the FPGA. When CG converges, the blocks will move towards the center of the 

FPGA. The blocks will not be assigned to CLBs and will often overlap on another. If CG 

were to be run again, the blocks will be focused even further into the center of the FPGA. 

Therefore, it is crucial to perform the legalization step after each iteration of CG. The 

legalization step will transform the infeasible placement solution produced by CG into a 

feasible placement solution. CG can then be re-started from the feasible solution. By 

running partitioning after CG on each iteration, the algorithm can gradually converge 

towards a feasible high-quality placement.  

 

5.4 Convergence of CG 

In Section 5.3, we reported that the decision was made to reduce the number of iterations 

CG is performed by 10 percent (i.e.,  = 0.1) after each iteration of the outer while loop. 

We now provide some empirical evidence for this decision. Figure 5.13 shows the quality 

of placements for the 20 MCNC benchmarks when  is set to 10%, 20%, …, 90%. For 

each value of , the total estimated number of wire segments for all 20 benchmarks is 

shown. When  is set to 10%, the estimated total number of wire segments is 942435. As 

the value of  increases, the number of wire segments required for successful routing also 
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increases. When  reaches 90%, the number of wire segments needed increases by 19.1% 

(1122351) compared with when  is 10%. 
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Figure 5.13:  Wirelength with different reduction rates of the iteration number 

 

Figure 5.14 gives the total CPU running time for all 20 MCNC benchmarks. For 

each value of , the total CPU running time is shown (in seconds). When  equals 10%, 

the total CPU running time is 38.11 seconds. As  increases, the total CPU running time 

reduces, as expected. However, when  is increased to 90%, the total CPU running time 

reduces to 6.72 seconds. 

 

These experiments show that the parameter  is an adjustable parameter that 

allows the user to trade-off runtime versus solution quality (much like the parameter 

inner_num used in VPR [28]). If the user wants better quality solutions, a smaller value 

of  should be used. If the user wants a faster placement, a larger value of  can be used. 

It should be noted that regardless of the value of , the proposed conjugate gradient 

placement method is very fast. Therefore, throughout the remainder of this thesis we 

leverage this speed and  choose to set  to 0.1 in an attempt to find high-quality solutions. 
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Figure 5.14:  CPU running time with different reduce rates of the iteration number 

 

 

5.5 Experimental Results 

In this section, we first run a few tests to determine the effectiveness of Shrubbery. Then, 

we compare CG placement with VPR with respect to runtime, critical-path delay, and 

wirelength following routing. 

 

 

5.5.1 Shrubbery versus Random Pre-Placement 
 

To determine the overall effectiveness of Shrubbery, we ran the conjugate-gradient 

placement method described in the previous section two different ways, and then 

compared the results head-to-head. The first approach involved running Shrubbery once 

to pre-place the I/O pads followed by CG placement (as shown in Fig. 5.12). The second 

approach involved randomly pre-placing the I/O block around the perimeter of the FPGA 
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followed by CG placement.  The random pre-placement approach initializes the x- and y- 

coordinates of each I/O block with random values. In particular, assuming that the size of 

the FPGA is nx x ny, the x-coordinate of an I/O block is set to a random integer between 

0 and nx, while the y-coordinate of the block is set to a random integer between 0 and ny.  

 

Table 5.1 shows the comparison between Shrubbery pre-placement and random 

pre-placement. The first column identifies the benchmark. The second column contains 

the Star+ wirelength estimates of the placement solutions obtained after using Shrubbery 

to perform pre-placement. Columns 3 and 4 show the CPU running times (in seconds) of 

Shrubbery (pre-placement) and the CG placement algorithm including Shrubbery, 

respectively. Column 5 gives the percentage of total CPU time required by Shrubbery to 

perform pre-placement.  As Shrubbery is a deterministic algorithm it need only be run 

once. When performing random placement, however, ten separate runs were performed. 

Column 6 indicates the average Star+ wirelength estimates of the placement solutions 

obtained when starting with 10 random pre-placements, while Column 7 indicates the 

total CPU running time (in seconds) required to place each benchmark ten times.  

 
With regards to estimated wirelength, the results in Table 5.1 show that Shrubbery 

never finds a “bad” placement; that is, it never finds a placement appreciably worse than 

that found using a random pre-placement strategy. Moreover, a closer inspection of Table 

5.1 reveals  that Shrubbery pre-placement outperformed random pre-placement on 14 out 

of 20 benchmarks (70%). In the best case (s38417) Shrubbery outperformed the average 

random pre-placement strategy by almost 10 percent, while the performance of 

Shrubbery over all 20 benchmarks is 1.2% better than that of the random pre-placement 

strategy. 

 

Shrubbery’s main advantage over the random pre-placement strategy, however, is 

its speed. Recall that Shrubbery is deterministic. Thus, it needs to be run only once 

followed by conjugate-gradient. According to Column 5, the time required to perform 

conjugate gradient accounts for approximately 91% to 97% of the total run time. Now, in 

the case of the random pre-placement strategy,  individual random placements may be 
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quite poor requiring a “pool” of solutions (e.g., 10) to be created and evaluated. Note that 

each random trial requires conjugate-gradient to be run. If we assume that each random 

pre-placement is instantaneous, the time required to run CG multiple times versus 

running CG once (when using Shrubbery) is significant. For example, it can be clearly 

seen from Table 5.1 that running Shrubbery and conjugate gradient once is approximately 

9 times faster than running conjugate gradient ten times to generate a pool of 10 (random) 

pre-placements. 

 

Table 5.1:  Shrubbery pre-placement vs. random pre-placement. 

Shrubbery Random 

  

Wire-
length 

Pre-
placement 

time 

Total 
CPU time Percentage Wire-

length CPU time 

Tseng 11288 0.03125 0.34375 9.09% 11706 3.125 
Ex5p 18875 0.03125 0.34375 9.09% 19121 3.125 
Apex4 21484 0.03125 0.4375 7.14% 21500 4.0625 
Misex3 22033 0.03125 0.5 6.25% 22140 4.6875 
Diffeq 17339 0.03125 0.5625 5.56% 18025 5.3125 
alu4 20990 0.03125 0.5625 5.56% 21437 5.3125 
Seq 28485 0.046875 0.6875 6.82% 29021 6.40625 

Apex2 31771 0.03125 0.765625 4.08% 32010 7.34375 
s298 22161 0.03125 0.765625 4.08% 21696 7.34375 
Dsip 21929 0.03125 0.828125 3.77% 23304 7.96875 

Bigkey 25264 0.046875 0.953125 4.92% 26301 9.0625 
Frisc 61315 0.078125 2.078125 3.76% 60168 20 

Elliptic 53487 0.078125 2.0625 3.79% 56499 19.84375 
Spla 73681 0.078125 2.171875 3.60% 71793 20.9375 
Des 32974 0.046875 1.109375 4.23% 32332 10.625 

ex1010 74126 0.09375 2.921875 3.21% 73943 28.28125 
Pdc 103418 0.109375 3.03125 3.61% 103253 29.21875 

S38417 72645 0.171875 4.859375 3.54% 78680 46.875 
S38584.1 72761 0.140625 4.90625 2.87% 73785 47.65625 

Clma 156409 0.25 8.21875 3.04% 157064 79.6875 
Total 942435 1.421875 38.10938 3.73% 953772 366.875 

 

 

5.5.2 CG versus VPR 
 

We now compare CG to VPR [28]  – the state-of-the-art academic place and route tool. 

Table 5.2 compares the running time (in seconds) of CG placement with that of VPR with 
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inner_num set to 1 and 10, respectively. Both placement tools were tested using all 20 

MCNC benchmarks.   The last row of the table shows the total running time to place all 

20 benchmarks.  The total runtime for CG is 264.5 seconds compared with 169.5 seconds 

for VPR when run in its fastest mode with inner_num =1.  This means that CG is 56% 

slower than VPR when run in its fastest mode of operation. However, CG is more than 5 

times faster than VPR when VPR is run with inner_num =10.   

 

Table 5.2: Running time of CG and VPR in Seconds 

VPR 
  

CG 
inner_num=1 inner_num=10 

Tseng 1.41 1.86 18.6 
Ex5p 1.31 1.83 18.3 
Apex4 1.72 2.2 22 
Misex3 2.06 2.53 25.3 
Diffeq 2.42 2.95 29.5 
alu4 2.41 2.66 26.6 
Seq 3.08 3.45 34.5 

Apex2 3.53 3.86 38.6 
s298 3.53 3.45 34.5 
Dsip 4.78 2.8 28 

bigkey 5.25 3.83 38.3 
Frisc 11.52 9.59 95.9 

Elliptic 12.42 10.11 101.1 
Spla 12.34 9.84 98.4 
Des 7.48 3.47 34.7 

ex1010 18.11 13.55 135.5 
Pdc 18.63 13.24 132.4 

S38417 38.17 22.69 226.9 
S38584.1 41.02 22.3 223 

Clma 73.33 33.3 333 
Total 264.52 169.51 1695.1 

 

We now turn our attention to solution quality as measured by critical-path delay. 

Recall that CG and VPR use two different net models for estimating wirelength: Star+ 

and HPWL, respectively. Consequently, any comparison between CG and VPR, with 

regards to solution quality, must be performed after routing. When using VPR’s router, 

the router is configured to perform timing-driven routing which attempts to improve 

circuit speed by reducing critical-path delay.  
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Table 5.3 compares the critical-path delays found when using CG and VPR with 

inner_num=1 and inner_num=10, respectively. (Note: the results presented for 

VPR are the average of 10 independent runs.)  The results show that when VPR is run 

with inner_num=1 (fastest option), CG finds lower critical-path delays for 11 of the 20 

cases. The average reduction for these 11 cases is 13 percent. In the 9 cases that CG fails 

to find a lower critical-path delay, the average increase in delay is 6.6 percent.  Overall, 

CG finds a 2 percent reduction in critical-path delay compared with VPR. 

 

Table 5.3: Critical-path delays (CG vs. VPR) 

VPR 
  CW CG inner_num=1 inner_num=10 

Alu4 12 99.01 120.331 113.6717 
Apex2 13 108.37 128.77 125.1346 
Apex4 15 128.23 127.922 122.6053 
bigkey 9 60.77 100.935 100.0536 
Clma 16 285.18 264.999 252.9958 
Des 12 121.15 123.01 136.5118 

Diffeq 9 112.16 106.112 90.33062 
Dsip 9 75.07 91.0482 93.37907 

elliptic 13 259.96 257.387 206.6148 
Ex1010 14 238.75 205.552 202.9452 
Ex5p 16 124.98 116.071 125.2613 
Frisc 14 249.61 227.362 189.0848 

Misex3 14 99.92 108.431 105.6976 
Pdc 21 222.77 254.422 217.5874 

S298 9 234.20 240.983 203.189 
S38417 10 213.06 196.969 163.1709 

S38584.1 10 115.30 123.888 119.709 
Seq 14 104.22 123.035 118.0495 
Spla 16 213.07 205.085 188.0682 

Tseng 8 78.01 81.7572 75.83124 
Total   3144 3204 2950 

 

Not surprisingly, when VPR is run with inner_num=10, VPR performs much 

better with respect to critical-path delay.  CG finds a better solution for 9 of the 20 cases. 

The overall average increase in critical-path delay is 6.6%.  

 

 We now turn our attention to wirelength. Table 5.4 compares the placements 

produced by CG and VPR (with inner_num=1 and inner_num=10, respectively) 
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with respect to wirelength following routing. For this comparison, the router uses a 

breadth-first strategy. The reason for using a breadth-first strategy is because a breadth-

first routing strategy seeks to find a successful routing by minimizing the number of 

required wire segments to make all connections. 

 

Table 5.4 Wirelength (CG vs. VPR) 

VPR 
  CW CG inner_num=1 inner_num=10 

Alu4 11 20854 22038 21016 
Apex2 13 32629 32546 30638 
Apex4 14 23082 22865 21848 
bigkey 8 25596 22396 18505 
Clma 15 152826 142509 133592 
Des 12 34297 29161 24758 

Diffeq 9 16861 16263 14676 
Dsip 9 25547 17171 14582 

elliptic 13 49536 53811 45912 
Ex1010 13 75553 72613 70864 
Ex5p 15 21142 19924 18648 
Frisc 14 60668 59957 55274 

Misex3 13 24255 22700 21871 
Pdc 19 106503 104298 99046 

S298 9 21388 22703 21346 
S38417 10 72340 66586 61764 

S38584.1 10 64958 63515 57099 
Seq 13 30061 29611 28059 
Spla 16 72155 71194 67362 

Tseng 8 9880 10420 9423 
Total   940131 902282 836281 

 

In Table 5.4, Column 1 identifies the benchmark by name. Column 2 indicates the 

channel width used by the router. The third column shows the actual wirelength required 

when using CG. The fourth and fifth columns show the total wirelength required by VPR 

(with inner_num=1 and inner_num=10, respectively). All data for VPR is the 

average of 10 independent runs.  

 

The results show that when VPR is run with inner_num=1, CG uses 4.2 percent 

more wirelength on average. When inner_num=10, the overall improvement of VPR 

over CG in terms of wirelength is 12 percent. 
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In short, CG is more than 5 times faster than VPR (inner_num=10) but 56% 

slower than VPR (inner_num=1). When VPR is run with inner_num=1, CG gets 

solutions with 2% less delay while using 4.2% more wire segments. When VPR is run 

with inner_num=10, CG gets solutions with 6.6% more delay and uses 12% more wire 

segments.  

 

 

5.6 Summary 

In this chapter, we developed a pre-placement algorithm, called Shrubbery, to pre-place 

I/O blocks. This guarantees that the CG placement algorithm produces non-trivial 

placements. We demonstrated that Shrubbery is able to outperform a random pre-

placement strategy that seeks to find the best (initial) placement by generating a pool of 

random placements, both with respect to solution quality and runtime. Unlike the random 

pre-placement strategy, Shrubbery only requires a single application of CG, which is 

much faster than the multiple applications of CG that are required to create a pool of 

random pre-placements. Most importantly, we were able to show, both theoretically and 

empirically, that the running time of Shrubbery is extremely small. Finally, to avoid 

illegal placements we employed an existing bi-partitioning algorithm [17] that legalizes 

the solutions obtained from CG placement. 

 

From the experimental results, we conclude that CG is competitive with VPR in 

its fast mode (inner_num=1), but produces slightly lower quality solutions than VPR 

when inner_num=10. Also, by reducing the runtime of each iteration from O(n2) to 

O(n), we have improved the speed of CG significantly and made it about 5 times faster 

than VPR when inner_num=10. The speed of CG can be further improved by 80% if 

we increase the value of  from 0.1 to 0.2 at the cost of only 1.2% increase in wirelength 

estimate. However, as an effective “linear search” algorithm CG converges much more 

slowly when used to solve a nonlinear equation system. The convergence of CG depends 
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on how close the objective function approximates “quadratic”. With a constant quadratic 

objective function for n variables and an exact line search, CG will converge in n or 

fewer iterations. However, as our objective function is based on a near-linear model, CG 

loses conjugacy quickly (This is a typical issue when using CG for solving nonlinear 

equation systems [32].)  

 

In the next Chapter, we present another analytical method based on Successive 

Over-Relaxation (SOR), which does not require the objective function to be “quadratic” 

and actually converges much faster than the CG method when used to solve the 

placement problem based on Star+. 
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Chapter 6 

Successive Over-Relaxation Placement 

In Chapter 4, a placement method based on Conjugate Gradient was introduced. 

Conjugate gradient is classified as an iterative method. In general, an iterative method 

starts with an initial solution (or guess). It then incorporates the solution into a recurrence 

formula from which another approximate solution is generated. This process repeats until 

a final solution is found. Ideally, the sequence of solutions produced should eventually 

converge to the exact solution; that is, a placement with minimum total wire length 

should be found. There is, however, an important caveat that must be considered. In order 

to converge to an exact solution, the sequence of approximate solutions generated should 

increasingly resemble the exact solution. When minimizing quadratic functions, an exact 

solution can be found in at most n iterations (Section 4.1). However, for non-linear 

problems (like the one considered in this thesis), the search directions on each iteration 

can quickly lose conjugacy [32].  As a result, slower progress towards the exact solution 

is made. 
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In this chapter, we present a second analytic placement algorithm based on 

Successive Over-Relaxation (SOR) [33]. Like conjugate gradient, SOR is also an iterative 

method. However, unlike conjugate gradient, SOR does not require search directions to 

be conjugate to each other. As a result, SOR can often converge to a final solution 

extremely quickly.  

 

The remainder of this chapter is organized as follows. Section 6.1 provides all of 

the necessary background for understanding the SOR method. In Section 6.2 we show 

how SOR can be used to implement a placement algorithm based on the Star+ model 

presented in Chapter 3. Section 6.3 presents ordering heuristics and relaxation techniques 

for improving the performance of SOR placement. In Section 6.4, VPR [28], SOR and 

CG are applied to the 20 MCNC benchmarks and compared with respect to solution 

quality and run time. In Section 6.5, we compare the convergence of SOR and VPR. In 

Section 6.6, we present a hybrid approach by combining SOR and VPR. Finally, in 

Section 6.7 we provide a summary of the contributions of this Chapter. 

 

6.1 Background 

Successive Over-Relaxation is a numerical method for improving the convergence speed 

of the Gauss-Seidel method [33] for solving systems of linear equations. The Gauss-

Seidel method, in turn, is an improved version of the Jacobi method [33] for solving 

systems of linear equations. Therefore, to prepare the reader for the Successive Over-

relaxation method, we begin with a brief overview of the Jacobi and Gauss-Seidel 

methods. 

 

6.1.1 Jacobi Method 

The Jacobi method is an algorithm for solving linear equation systems of the form Ax = 

b. The algorithm is always guaranteed to converge when the coefficient matrix A is 



CHAPTER 6: Successive Over Relaxation Placement 

 121 

diagonally dominant.  (A matrix is said to be diagonally dominant if for every row of the 

matrix the magnitude of the diagonal element is greater than the magnitude of all other 

(non-diagonal) entries in that row.) The matrix A can be looked at as the sum of three 

matrices: A = D + (L + U), where D, L and U represent the diagonal, lower triangular 

and upper triangular parts of A. Using simple substitution, the original equations system 

can be re-written as follows: 

 

bxULDx  )(  

xULbDx )(   

xULDbDx )(11           (Equation 6.1) 

 

Note that as D is diagonal, therefore it is easy to invert. Equation 6.1 can now be 

converted into an iterative search method as shown below: 

 
)(11)1( )( kk xULDbDx    

 

where k is the iteration count. When implementing the Jacobi iteration, an element-based 

formula is used: 

 

.,,2,1,11 )()1( nixa
a

b
a

x
ij

k
jij

ii
i

ii

k
i  



    (Equation 6.2) 

 

Notice that to compute )1( k
ix  the values for )(k

ix  must be retained from one iteration to 

the next. A summary of the Jacobi method is provided below in Fig. 6.1. 

 

6.1.2 Gauss-Seidel Method 

The Gauss-Seidel method is an improved version of the Jacobi method. The main 

difference between the two methods is that unlike the Jacobi iteration that retains the 
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updated values until the next iteration, the Gauss-Seidel iteration uses the newest values 

immediately.  More specifically, the Jacobi iteration (Equation 6.2) can be rewritten as: 

 

.,,2,1,111 )()()1( nixa
a

xa
a

b
a

x
ij

k
jij

iiij

k
jij

ii
i

ii

k
i  



  

 

 

Figure 6.1:  Jacobi method 

 

Notice that once we calculate )1( k
ix , we have calculated all )1( k

jx s where ij   (assuming 

we calculate all the ix s in order starting from 1x  to nx  in each iteration). Therefore, we 

can use 




ij

k
jij

ii

xa
a

)1(1  instead of 
ij

k
jij

ii

xa
a

)(1  in above equation, and speed up the 

convergence. An element-based formula of Gauss-Seidel can be expressed as follows: 

 .,,2,1,111 )()1()1( nixa
a

xa
a

b
a

x
ij

k
jij

iiij

k
jij

ii
i

ii

k
i  



   (Equation 6.3) 

The Gauss-Seidel method can also be expressed in matrix form. As with the Jacobi 

method, the matrix A can be expressed as the sum of three matrices: A = D + L + U, 

where D, L and U denote the diagonal, strictly lower triangular, and strictly upper 

triangular parts of A, respectively. Through simple substitution, this leads to: 

for k = 1 step 1 until convergence 
{ 
 for i = 1 to n 
 { 
  0s  
  for j = 1 to n 
  { 
   if  ( j != i ) )1(  k

jij xass  
  } 

  
ii

ik
i a

sbx 
)(  

 } 
} 
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bUxxLD  )(  

UxbxLD  )(  

)()( 1 UxbLDx    

 

Therefore, the matrix form of Gauss-Seidel can be expressed as: 

)()( )(1)1( kk UxbLDx    

 

Note that Gauss-Seidel is guaranteed to converge if the matrix A is either diagonally 

dominant or symmetric and positive definite. Figure 6.2 gives the pseudo code of the 

Gauss-Seidel method. 

 

 

Figure 6.2:  Gauss-Seidel method 

 

Although Equation 6.3 looks more complicated than Equation 6.2, the implementation of 

Gauss-Seidel is actually easier than the Jacobi method. Since the computation of )1( k
ix  

uses only the elements of )1( kx  that have already been computed and the elements of )(kx  

that have yet to be advanced to iteration k+1, there is no need to store both vectors )1( kx  

for k = 1 step 1 until convergence 
{ 
 for i = 1 to n 
 { 
  ;0s  
  for j = 1 to n 
  { 
   if  ( j != i ) jij xass   
  } 

  
ii

i
i a

sbx 
  

 } 
} 
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and )(kx  at the same time. The computation can be done in place by replacing )(kx  with 
)1( kx . 

 

6.1.3 Successive Over-Relaxation 

Having described both the Jacobi and Gauss-Seidel methods, we now turn our attention 

to the Successive Over-Relaxation method (which we use throughout the remainder of 

this Chapter). Successive Over-Relaxation was devised by Young and Frankel in 1950 

[34] as a technique to speed up convergence of the Gauss-Seidel method. Given a linear 

equation system of the form Ax = b, we let A = D + L + U, where D, L and U denote the 

diagonal, strictly lower triangular, and strictly upper triangular parts of A. The Successive 

Over-Relaxation iteration is then defined by the following recurrence relation: 

 

 )(1)1( )()( kk xUDDbLDx     

 

where  ω is a relaxation factor. If matrix A is symmetric and positive-definite, Successive 

Over-Relaxation iteration always converges when 0 <  ω < 2. When ω =1, SOR iteration 

reduces to Gauss-Seidel method. 

 

 Like the Gauss-Seidel method, the computation of SOR can also be performed in 

place. The actual implementation of SOR uses the following element-based iteration 

formula: 
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jiji
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


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   (Equation 6.3) 

 

Figure 6.3 gives the pseudo code of the SOR method. 
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6.2  SOR Placement 

In this section, we explain how the SOR method can be used to implement a placement 

algorithm based on the Star+ model presented in Chapter 3. To implement SOR 

placement, it is necessary to begin by finding the recurrence relation between )1( k
ix  and 

)(k
ix .  When )(xf  is positive definite, we can minimize )(xf  by solving )(' xf =0.  

Recall from Section 4.2.2 that )(' xf  is a vector that points in the direction of greatest 

increase of f(x) at a given point x=(x1,x2,…xn)T and is defined as follows: 
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Figure 6.3:  Successive Over-Relaxation method 

for k = 1 step 1 until convergence 
{ 
 for i = 1 to n 
 { 
  ;0s  
  for j = 1 to n 
  { 
   if  ( j != i ) jij xass   
  } 

  )()1( sb
a

xx i
ii

ii 
  

 } 
} 
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In Equation 4.12 (see Section 4.2.2) it was shown that for the Star+ model, the partial 

derivative of f(x) with respect to xj is 








lNetjl l

clj

j S
xx

xf
x :

)(  . By making 



 )(xf
x j

0, we obtain the equation: 
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In the previous equation, 



lNeti

i
l

cl x
k

x 1  and 



lNeti

cllil xkxS 122 . Now, by putting 

the iteration number into these equations we obtain the Jacobi iteration for the placement 

problem: 
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To implement the Gauss-Seidel iteration, we need to update clx  and lS  immediately after 

jx  moves from )(k
jx  to )1( k

jx . Fortunately, both clx  and lS  can be updated in a constant 

time (Section 3.2). This feature makes it possible to build a time-efficient Gauss-Seidel 

method for FPGA placement problem based on the Star+ model. For the sake of 
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simplicity, we introduce two new variables lU  and lV , and let 



lNeti

il xU 2  and 





lNeti

il xV . The Gauss-Seidel iteration for the placement problem is defined as: 
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To advance to the SOR iteration from the Gauss-Seidel iteration, we introduce a 

relaxation  factor  ω  into  Equation  6.4.  The  SOR  iteration  for  placement  is  summarized  as  

follows: 
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6.3 Improving SOR for FPGA Placement 

In practice, the performance of SOR may be affected by the order in which the xi 

variables are calculated. This is illustrated in the following example. 

 

Assume a simple equation system with only three variables and three equations: 

2
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Prepare to calculate the first SOR iteration (assuming, for the sake of simplicity,  ω=1): 
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Now suppose that we start from (initial guess) 0,0,0 )0(
3

)0(
2

)0(
1  xxx , and then perform 

several SOR iterations to solve the equation system. We have: 

2,0,0 )1(
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5.2,1,0 )2(
3
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75.2,5.1,5.0 )3(
3

)3(
2

)3(
1  xxx  

  

  

However, if we change the order of calculating 321  and , xxx  as shown below: 
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21

312

23

2
1

2
1

2
1

2
2
1

xx

xxx

xx







 

And assuming we still start from (with the same initial guess) 0,0,0 )0(
3

)0(
2

)0(
1  xxx , 

and perform several SOR iterations, we get: 

 

5.0,1,2 )1(
1

)1(
2

)1(
3  xxx  

75.0,5.1,5.2 )2(
1

)2(
2

)2(
3  xxx  

875.0,75.1,75.2 )3(
1

)3(
2

)3(
3  xxx  

 

We can now see that the latter sequence results in faster convergence than the former 

sequence. In fact, for a given starting point the difference can be as big as n-1 iterations, 

where n is the number of blocks. The time required to perform n-1 iterations of SOR is 

O(n2).  In order to try and speed up the rate of convergence, we employ a novel heuristic 

to pre-determine (sort) the sequence (order) in which the xi variables should be processed. 

This heuristic is described next. 

 

 

6.3.1 Ordering Heuristic 
 

Recall that prior to performing placement, the Shrubbery algorithm (described in Chapter 

5) is used pre-place all of the I/O pads. (It is necessary to perform this pre-placement to 

avoid trivial solutions being found (i.e., f(x) =0).)  The proposed ordering heuristic is 

based on the idea that the position of blocks that have more connectivity with I/O pads 

should be determined ahead of blocks that have less connectivity with I/O pads. 

 

To determine (sort) the sequence for calculating each block’s x-coordinates xi, we 

use a modified version of Dijkstra’s algorithm. First, a graph with n vertices is built in a 
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way similar to that used when pre-placing I/O pads (see Chapter 5). Each vertex 

represents a block. Each edge represents a connection with an edge weight, which is the 

“closeness” of the connection. The closeness is computed as the reciprocal of the 

cardinality of the corresponding net. 

 

For example, using the graph in Fig 5.4 as a starting point, we obtain the 

“closeness” graph shown in Fig 6.4, which has the same vertices and edges, but each new 

edge weight is now the reciprocal of the original edge weight (also the reciprocal the 

cardinality of the corresponding net). All blocks that have been pre-placed using 

Shrubbery (see Chapter 5) are put into the source pool. In this case, I/O pads J, K, L, M, 

N and O are in the source pool. Any other vertex, which is not in the source pool but has 

an edge (or edges) connecting to any vertex (or vertices) in the source pool, is associated 

to the source with a “closeness” that equals the sum of all the edge weights. For example, 

in Fig 5.4, block e has only one edge connecting it to J (a vertex in the source pool); 

therefore the “closeness” of e is the edge weight, 1; block a has two edges connecting to 

K and N, respectively, and hence its “closeness” is 2 (the sum of the two edge weights). 

For those blocks that have no edge connecting to the source pool, their “closeness” is 0 

and will not be considered (sorted) at this time. The blocks with nonzero closeness are 

sorted in descending order of their closeness: a(2), e(1), c(1), d(1), f(1), and are also put 

into the source pool. (Note: the numbers inside the brackets denotes the closeness of a 

block. Blocks that have the same closeness value are randomly ordered.) All of the blocks 

that are sorted in order are put into the source pool, and closeness of vertices not in the 

source pool is re-calculated (see Fig 6.5). This time, the closeness of all the vertices that 

have edges connecting to the source pool are:  b(3), h(1.5), g(1), i(0.5). Finally, by 

connecting sequence a, e, c, d, f and b, h, g, i, we get the entire sequence a, e, c, d, f, b, h, 

g, i. This sequence defines the order of calculating the coordinates of the blocks. 
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Figure 6.4   The corresponding graph 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5   The graph after a, e, c, d, f are in the source pool 

L 

f 

a 

b c 

d 

e 

g 

h 

i 

J 

K 

M 

N 

O 

0.5 0.5 

0.5 

0.5 

0.5 0.5 

1 

1 

1 

1 

1 

1 

1 

1 1 1 1 

L 

f 

a 

b c 

d 

e 

g 

h 

i 

J 

K 

M 

N 

O 

0.5 0.5 

0.5 

0.5 

0.5 0.5 

1 

1 

1 

1 

1 

1 

1 

1 1 1 1 

Source pool 

Source pool 



CHAPTER 6: Successive Over Relaxation Placement 

 132 

Figure 6.6 shows a simple circuit: 

Three logic blocks with x-coordinates 21 , xx  and 3x respectively; 

Two I/O pads b1 and b2 that are pre-placed at the positions of 0 and 4 (x-

coordinates); 

And four nets: b1- 1x , 21 xx  , 32 xx  , and 3x -b2.  

 

Since each of the nets connects two blocks (including I/O pads), the closeness of each 

corresponding connection is the inverse of two (i.e., 0.5). 

 

 

 

x-coordinates:     0                   1                    2                   3                  4 

 

Figure 6.6  Sort the equations 

 

 

The corresponding equation system is: 

21

312

23

2
1

2
1

2
1

2
2
1

xx

xxx

xx







 

 

Initially, 21 , xx  and 3x  are set to zero, which is the position of b1. The source pool 

has only one vertex b2. Then, we select a vertex that is outside the source pool and has the 

largest “closeness” connecting all vertices in the source pool. At this time, 3x  is picked 

and put into the source pool. Then the next vertex that has the largest closeness is 2x  and 

2x  is put into the source pool. Eventually, 1x  is picked and put into the source pool. 

After all blocks have been put into the source pool, we obtain the sequence of calculating 

x2 x3 x1 

e 
b1 b2 

0.5 0.5 0.5 0.5 
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the variables, which is actually the exact sequence of the corresponding blocks being put 

into the source pool. A formal description of the ordering heuristic is presented in Fig. 

6.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7:  Ordering heuristic 

 

Figure 6.8 gives the pseudo code of the entire SOR placement method. The first 

step initializes all x-coordinates using Shrubbery pre-placement. Step 2 uses the 

aforementioned ordering heuristic to determine the order that will be used to update all of 

the xis. Steps 3-9 initialize the middle variables lU  and lV , the center of gravity clx , and 

compute the Star+ estimate lS  for each net l. Within the while loop (steps 11-25), each 

iteration calculates a new x, and updates lU , lV , clx  and lS  for each affected net l. The 

iterations repeat number_SOR times. (The value of number_SOR is determined in a 

similar way to how number_CG is determined. See Sections 5.3 and 5.5 regarding how to 

compute number_CG.)  

[1] convert the circuit into a graph: 
 a block  a vertex 
            a net  a clique 
[2] for any edge ije , calculate ijw as the reciprocal of the 

cardinality of the corresponding net 
[3] set the “closeness” ic of block i  to 0 
[4] Source_pool = {} 
[5] for each I/O pad i  
[6]  }{__ ipoolSourcepoolSource   
[7]  ijjjij wccpoolSourceje  ,_:  
[8] do 
[9] Let poolSourcei _  and has the max closeness ic   
[10]  }{__ ipoolSourcepoolSource   
[11] ijjjij wccpoolSourceje  ,_:   
[12] until Source_pool contains all m terminals 
[13] The sequence of blocks being put into Source_pool is the 

sequence of calculating the positions of the blocks.  
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Figure 6.8:  Pseudo-code of SOR placement algorithm 

 

[1] Initialize all xi  
[2] Sort the order of calculating all the xis 
[3] For each net l 
[4] { 
[5] 2)0( )(




lNeti

il xU  

[6] )0(



lNeti

il xV  

[7] l
l

cl V
k

x 1
  

[8] 12
 cllll xkUS  

[9] } 
[10] i = 0 
 
[11] While i < number_SOR 
[12] { 
 
[13] For each block j 
[14] { 

[15]   


 
l

l

Netjl l

cl

Netjl l

k
j

k
j S

x

S
xx

:
:

)()1(

1)1(   

[16]  For each net l that lj  
[17]  { 
[18]   2)(2)1( )()( k

j
k

jll xxUU    

[19]   )()1( k
j

k
jll xxVV    

[20]   l
l

cl V
k

x 1
  

[21]   12
 cllll xkUS  

[22]  } 
[23] } 
[24] i = i + 1 
[25] }    //end of while 
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The time complexity of each iteration (steps 13-23) in the SOR placement 

algorithm is O(n), where n is the number of blocks. Because of the physical limit of the 

FPGA architecture, each block can only connect to a certain number of nets. This number 

is a constant in the algorithm implementation. That means in the algorithm described in 

Figure 6.8, the runtime for step 15 and steps 16-22 is also constant. Therefore, the 

runtime for the inner loop (steps 13-23) is linear to the number of blocks, which is O(n). 

 

 

6.3.2 Effect of Ordering Heuristic 
 

In this subsection, we examine the overall effectiveness of the ordering-heuristic 

proposed in Section 6.3.  Table 6.1 compares the quality of the placements obtained when 

using SOR with and without variable ordering. Column 1 identifies each benchmark by 

name. Columns 2 and 3 indicate the wirelength and runtime of SOR with variable 

ordering, while columns 4 and 5 give the same information but this time without variable 

ordering.  

 

For 14 of the 20 benchmarks, using variable ordering results in a lower wirelength 

estimate. The average improvement in these thirteen cases is 3.8 percent. In the 6 cases 

where variable ordering does not help, it does not hurt either. The average difference in 

solution quality for these 6 cases is only 0.5 percent. Overall, the results in Table 6.1 

show that ordering heuristics improves the quality by 2.7% on average, while requiring 

only 0.4% additional runtime. Given these facts, it is clear that there is a definite benefit 

to employing variable ordering when using the SOR-based placement method. 
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Table 6.1: With ordering vs. without ordering  
With Ordering Without Ordering 

  Star+ Time Star+ Time 
Tseng 11288 0.34375 11884 0.342 
Ex5p 18875 0.34375 19982 0.34275 
Apex4 21484 0.4375 22012 0.4375 
Misex3 22033 0.5 22057 0.4965 
Diffeq 17339 0.5625 18595 0.5585 
alu4 20990 0.5625 21252 0.55775 
Seq 28485 0.6875 28627 0.68725 

Apex2 31771 0.765625 31686 0.7585 
S298 22161 0.765625 23553 0.75875 
Dsip 21929 0.828125 21602 0.82175 

Bigkey 25264 0.953125 26348 0.9475 
Frisc 61315 2.078125 64210 2.0745 

Elliptic 53487 2.0625 54540 2.0515 
Spla 73681 2.171875 73421 2.155 
Des 32974 1.109375 32838 1.1065 

Ex1010 74126 2.921875 79055 2.9215 
Pdc 103418 3.03125 103384 3.00125 

S38417 72645 4.859375 75675 4.83125 
S38584.1 72761 4.90625 72320 4.893 

Clma 156409 8.21875 165531 8.19975 
Total 942435 38.10938 968572 37.943 

 

 

6.3.3 Choosing the Value of Relaxation Factor ω 
 

In   Section   6.2,   we   mentioned   that,   in   general,   the   relaxation   factor   (ω) affects the 

convergence  properties  of  SOR.  For  example,  if  ω=1,  the  SOR  method  simplifies  to  the  

Gauss-Seidel method. Moreover, Kahan’s theorem [112] shows that SOR does not 

guarantee  convergence  if  ω  is  not  between  0  and  2.  Typically,  values  of  ω>1  are  used to 

speedup  convergence,  while  values  of  ω<1  are  often  used  to  establish  convergence  of  a  

diverging  iterative  process.  Generally,  it  is  not  possible  to  compute  a  priori  the  value  of  ω  

that is optimal with respect to the rate of convergence of SOR [33]. Even when it is 

possible  to  compute  the  optimal  value  of  ω,  the  expense  of  such  computation  is  usually  

prohibitive [33]. In this subsection, we perform a series of experiments to explore the 

effect  of  ω  on  the  convergence  of  our  SOR-based placement method.  
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In the experiments that follow, SOR was run on all 20 MCNC benchmarks, while 

the  value  of  ω  was  varied  from  0.2  to  2.  For  each  benchmark  and  each  value  of  ω,  SOR  

was executed for the exact same number of iterations as the Conjugate Gradient 

Placement algorithm (see Section 5.3 and Section 5.5 about how to determine the number 

of iterations in CG placement). The experimental results are summarized in Figure 6.9. 

The x-axis  shows  the  value  of  ω  from  0.2  to  2  with  an  incremental  step  of  0.2.  The  y-axis 

gives the total wirelength estimate of the placement solutions obtained by running SOR 

on   20   MCNC   benchmarks,   with   the   corresponding   value   of   ω.   Clearly,   there   is   an  

obvious   trend  showing   that  as  ω   increases   the   total  number  of  estimated  wire  segments  

decreases.   In   particular,   when   ω=2   the   total   estimated   number   of   wire   segments   is  

smallest  (942435).  Based  upon  these  results,  we  choose  to  set  ω=2  in  our  implementation.  

However,   it   is  worthwhile   to   note   that   using   the   smallest  ω   value   (ω=0.2)   results   in   a  

wirelength  estimate  only  (approximately)  1%  worse  than  when  using  ω=2  (952746  versus  

942435). Thus, the proposed SOR method is quite stable and robust, regardless of what 

value  of  ω  is  used  (i.e.,  0.2  to  2). 
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Figure 6.9:  Wirelength  with  different  values  of  ω 
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6.4 Experimental Results 

Having verified that the ordering heuristic is effective, and having determined an 

appropriate value for the relaxation factor, we now turn our attention to the overall 

effectiveness of the SOR method compared with the CG method presented in Chapter 4, 

and the state-of-the-art academic place and route tool, VPR.  More specifically, in 

Section 6.4.1, we compare the SOR-placement head-to-head with the CG-placement with 

respect to both runtime and estimated wirelength quality. Then, in Section 6.4.2, we 

compare SOR placement with VPR, this time with respect to runtime, critical-path delay, 

and wirelength following routing. 

 

 

6.4.1 SOR versus CG 
 

We begin with a head-to-head comparison of the two new analytic placement methods 

proposed in this thesis: Conjugate Gradient placement and Successive Over-Relaxation 

placement. As both of these analytical methods employ the Star+ net model described in 

Chapter 3, and later adapted for use in analytical methods (Chapter 4) both algorithms are 

compared on the basis of estimated wirelength (i.e., no actual routing is performed at this 

point).  

 

Table 6.2 shows the results of the comparison. Column 1 identifies the 

benchmarks by name. Columns 2 and 3 show the estimated wirelength and run time for 

SOR placement, while Columns 4 and 5 show similar information for CG placement. The 

total wirelength and average runtime for both analytic methods is given in the last row of 

the table.  

 

The results show that with regards to estimated wirelength, for 15 of the 20 

benchmarks, SOR is able to find a placement with lower estimated wirelength.  The 

biggest improvement SOR obtains over CG is for the DSIP benchmark where SOR 

obtains a wirelength estimate that is 10% lower compared with CG. However, it should 
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be noted that, overall, SOR obtains a 2.6 percent improvement in estimated wirelength 

compared with CG. Thus, both analytic algorithms perform similarly with respect to 

solution quality. With regards to runtime, however, there is a significant difference 

between the two algorithms.  For every benchmark, SOR is always faster than CG. 

Moreover, on average, SOR is approximately 7x faster than CG.  The reason why SOR is 

so much faster than CG can be explained by the fact that the target equation system is 

non-linear. When using CG to solve a non-linear problem, the search directions on each 

iteration can quickly lose conjugacy [32], and hence are not as helpful to the convergence 

of the algorithm. However, calculating conjugate directions is computationally expensive. 

Therefore, for this specific type of non-linear system, SOR outperforms CG in terms of 

runtime. 

 

Table 6.2: Comparisons between SOR and CG 
 

SOR CG 
  Wirelength Time (s) Wirelength Time (s) 

alu4 20990 0.5625 21702 2.40625 
apex2 31771 0.765625 31744 3.53125 
apex4 21484 0.4375 22498 1.71875 
Bigkey 25264 0.953125 25703 5.25 
Clma 156409 8.21875 151243 73.32813 
Des 32974 1.109375 35345 7.484375 

Diffeq 17339 0.5625 18410 2.421875 
Dsip 21929 0.828125 24160 4.78125 

Elliptic 53487 2.0625 55286 12.42188 
Ex1010 74126 2.921875 74718 18.10938 
Ex5p 18875 0.34375 19629 1.3125 
Frisc 61315 2.078125 64443 11.51563 

misex3 22033 0.5 22782 2.0625 
Pdc 103418 3.03125 104615 18.625 

S298 22161 0.765625 21811 3.53125 
S38417 72645 4.859375 77707 38.17188 

S38584.1 72761 4.90625 73415 41.01563 
Seq 28485 0.6875 29966 3.078125 
Spla 73681 2.171875 71575 12.34375 

Tseng 11288 0.34375 11156 1.40625 
Total 942435 38.10938 957908 264.5156 
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6.4.2 SOR versus VPR 
 

Having established that SOR placement is superior to CG placement, both with respect to 

solution quality and runtime, we now compare SOR to VPR [28]  – the state-of-the-art 

academic place and route tool. 

 

Table 6.3 compares the running time (in seconds) of SOR placement with that of 

VPR with inner_num set to 1 and 10, respectively. Both placement tools were tested 

using all 20 MCNC benchmarks.   The last row of the table shows the total running time 

to place all 20 benchmarks.  The results show that regardless of the value of 

inner_num, SOR always finds a solution faster than VPR for all 20 benchmarks. 

Moreover, the total runtime for SOR is 38 seconds compared with 169.5 seconds for VPR 

when run in its fastest mode with inner_num =1.  This means that SOR is 4x faster than 

VPR when run in its fastest mode of operation. Moreover, SOR is 40 times faster than 

VPR when VPR is run with inner_num =10.  Thus, we can see that SOR is significantly 

faster than VPR, even when VPR is run in its fastest mode. 

 

We now turn our attention to solution quality as measured by critical-path delay. 

Recall that SOR and VPR use two different net models for estimating wirelength: Star+ 

and HPWL, respectively. Consequently, any comparison between SOR and VPR, with 

regards to solution quality, must be performed after routing. When using VPR’s router, 

the router is configured to perform timing-driven routing which attempts to improve 

circuit speed by reducing critical-path delay.  

 

Table 6.4 compares the critical-path delays found when using SOR and VPR with 

inner_num=1 and inner_num=10, respectively. (Note: the results presented for 

VPR are the average of 10 independent runs.)  The results show that when VPR is run 

with inner_num=1 (fastest option), SOR finds lower critical-path delays for 15 of the 20 

cases. The average reduction for these 15 cases is 14 percent. In the 5 cases that SOR 

fails to find a lower critical-path delay, the average increase in delay is 7.8 percent.  
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Overall, SOR finds an 8.8 percent reduction in critical-path delay compared with VPR, 

and does so typically 4x faster than VPR. 

 

 

Table 6.3: Running time of SOR and VPR in Seconds 

VPR 
  

SOR 
inner_num=1 inner_num=10 

Tseng 0.34375 1.86 18.6 
Ex5p 0.34375 1.83 18.3 
Apex4 0.4375 2.2 22 
Misex3 0.5 2.53 25.3 
Diffeq 0.5625 2.95 29.5 
alu4 0.5625 2.66 26.6 
Seq 0.6875 3.45 34.5 

Apex2 0.765625 3.86 38.6 
s298 0.765625 3.45 34.5 
Dsip 0.828125 2.8 28 

bigkey 0.953125 3.83 38.3 
Frisc 2.078125 9.59 95.9 

Elliptic 2.0625 10.11 101.1 
Spla 2.171875 9.84 98.4 
Des 1.109375 3.47 34.7 

ex1010 2.921875 13.55 135.5 
Pdc 3.03125 13.24 132.4 

S38417 4.859375 22.69 226.9 
S38584.1 4.90625 22.3 223 

Clma 8.21875 33.3 333 
Total 38.11 169.51 1695.1 

 

 

 

Not surprisingly, when VPR is run with inner_num=10, VPR performs much 

better with respect to critical-path delay.  SOR finds a better solution for 11 of the 20 

cases. Moreover, the overall average improvement in critical-path delay is reduced to 

0.9%. However, it is important to remember that VPR now requires 40x as much runtime 

as SOR, and even then, SOR finds solutions with lower-critical path delay, on average.  
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Table 6.4: Critical path delays (SOR vs. VPR) 

VPR   CW SOR 
inner_num=1 inner_num=10 

Alu4 11 106.857 120.331 113.6717 
Apex2 13 116.394 128.77 125.1346 
Apex4 14 122.411 127.922 122.6053 
bigkey 8 73.6277 100.935 100.0536 
Clma 15 268.531 264.999 252.9958 
Des 12 124.301 123.01 136.5118 

Diffeq 9 97.553 106.112 90.33062 
Dsip 8 64.4369 91.0482 93.37907 

elliptic 13 180.584 257.387 206.6148 
Ex1010 13 191.122 205.552 202.9452 
Ex5p 15 102.372 116.071 125.2613 
Frisc 15 203.948 227.362 189.0848 

Misex3 13 115.636 108.431 105.6976 
Pdc 21 236.667 254.422 217.5874 

S298 9 203.804 240.983 203.189 
S38417 9 159.145 196.969 163.1709 

S38584.1 10 140.828 123.888 119.709 
Seq 13 96.3664 123.035 118.0495 
Spla 18 238.615 205.085 188.0682 

Tseng 8 80.6322 81.7572 75.83124 
Total   2924 3204 2950 

 

 

 We now turn our attention to wirelength. Table 6.5 compares the placements 

produced by SOR and VPR (with inner_num=1 and inner_num=10, respectively) 

with respect to wirelength following routing. For this comparison, the router is told to use 

a breadth-first strategy. The reason for using a breadth-first strategy is because a breadth-

first routing strategy seeks to find a successful routing by minimizing the number of 

required wire segments to make all connections. 

 

In Table 6.5, Column 1 identifies the benchmark by name. Column 2 indicates the 

channel width used by the router. The third column shows the actual wirelength required 

when using SOR. The fourth and fifth columns show the total wirelength required by 

VPR (with inner_num=1 and inner_num=10, respectively). All data for VPR is the 

average of 10 independent runs.  
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Table 6.5 Wirelength (SOR vs. VPR) 

VPR   CW SOR 
inner_num=1 inner_num=10 

alu4 11 21652 22038 21016 
Apex2 13 31969 32546 30638 
Apex4 14 21666 22865 21848 
bigkey 8 24029 22396 18505 
Clma 15 150305 142509 133592 
Des 12 33778 29161 24758 

Diffeq 9 15990 16263 14676 
Dsip 7 20468 17171 14582 

elliptic 13 50419 53811 45912 
Ex1010 13 74397 72613 70864 
Ex5p 15 20239 19924 18648 
Frisc 14 59043 59957 55274 

Misex3 13 22417 22700 21871 
Pdc 19 105148 104298 99046 

S298 9 19960 22703 21346 
S38417 9 66750 66586 61764 

S38584.1 10 64567 63515 57099 
Seq 13 28186 29611 28059 
Spla 16 72060 71194 67362 

Tseng 8 9835 10420 9423 
Total   912878 902282 836281 

 

 

The results show that when VPR is run with inner_num=1, SOR uses less 

wirelength for 10 of the 20 cases; for these 10 cases, the average improvement of SOR 

over VPR is 4.2%; for the 10 cases where VPR gets a better result, the average 

improvement of VPR over SOR is 4.4%; the overall improvement of VPR over SOR in 

terms of wire-length is 1.1%. When inner_num=10, SOR only outperforms VPR in 2 

of the 20 benchmarks; for these two cases, the average improvement of SOR over VPR is 

3.7%; for the 18 cases where VPR gets a better result, the average improvement of VPR 

over SOR is 11%; the overall improvement of VPR over SOR in terms of wirelength is 

9.1%. It should be emphasized, however, that as all of the circuits are routable, the 

primary objective is not minimizing wirelength, but maximizing the speed of the final 

circuit. Although SOR does not perform as well as VPR with respect to wirelength, SOR 

does find solutions with 1-9 percent less critical-path delay. 
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To summarize, SOR is more efficient than VPR. When VPR is run with 

inner_num=1, SOR is 4x faster and gets solutions with 8.8% less delay while using 

only 1% more wire segments. When VPR is run with inner_num=10, SOR is about 

40x faster and gets solutions with 0.9% less delay while using 9% more wire segments.  

 

6.5 Convergence of SOR 

It is clear that SOR’s primary advantage over VPR is its speed. Figure 6.10 shows the 

convergence properties of SOR and VPR for the CLMA benchmark (the largest 

benchmark among MCNC20). In Figure 6.10, the x-axis is the time (in seconds) that has 

passed since the algorithms started, while the y-axis is the number of wire segments. The 

blue solid line is the convergence curve of VPR with inner_num = 1 (the convergence 

of VPR with inner_num=10 has a similar pattern but is much slower), and the red dash 

line is the convergence curve of SOR.  It shows that SOR converges much faster at the 

beginning of the search than VPR. This feature shows how SOR is able to achieve high-

quality solutions much faster that VPR. (Note: Although Fig. 6.10 is only for a specific 

benchmark, the behaviour it illustrates is typical of that found when using other 

benchmarks.) 

 

A close look at Figure 6.10 shows that convergence curve of VPR is divided into 

three phases. The first phase (roughly from 0 to the 11th second in this case) is the period 

that VPR (based on simulated annealing) is running at high temperature. During this 

period, the quality of the placement is improved very slowly since a large portion of non-

improvement moves are accepted. During the second phase (from the 11th second to the 

25th second in this case), most of the improvement in solution quality is made as the 

temperature goes lower and VPR accepts fewer non-improving moves. During the third 

phase (after the 25th second in this case), solution quality only improves slightly, since 

only a few improving moves can be found due to the low temperature of simulated 

annealing. 
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Figure 6.10:  Convergence of SOR and VPR 

 

In contrast, the convergence curve for SOR has only two phases. SOR improves 

the quality drastically during the first phase (from 0 to the 6th second in this case). During 

the second phase (after the 6th second in this case), the solution quality is still improved 

but very slowly, and finally the curve flattens out where little further improvement is 

made. The ability to improve quality at an early stage in the search is essential when a 

fast solution is required. In this respect, SOR may be more attractive to users, since VPR 

first spends two thirds of its runtime at high and low temperatures where solution quality 

improves slowly. SOR, on the other hand, rapidly improves the quality finding a high-

quality solution in small amounts of actual runtime. 

 

6.6 Hybrid Approach 

Given that SOR is able to find high-quality solutions quickly, in this section we consider 

the effect of combining both SOR and VPR in the context of a hybrid placement strategy. 

The basic idea is to first run SOR to quickly find a high-quality solution, and then run 

VPR to further improve the quality of the solution. Two hybrid strategies are considered: 
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one where VPR uses the Star+ model (and hence is consistent with SOR) and one where 

VPR uses the traditional HPWL model. 

 

Table 6.6 shows the critical-path delays for both hybrid approaches based upon 

using a timing-driven routing option. The first column identifies the benchmark by name. 

The second column shows the channel width used by the router. The third column gives 

the critical-path delay when using SOR by itself. The fourth and fifth columns give the 

critical-path delays of VPR (when run by itself) with inner_num=1 and 

inner_num=10, respectively. (All of the data for VPR are the average of 10 runs.) 

Columns 6 gives the critical-path delays when SOR is run first, followed by VPR using 

the Star+ model and inner_num=1 (which we denote: SOR+VPR(Star+)). Column 7 

provides similar information, but for the case where inner_num=10.  Columns 8 and 9 

give the similar information when VPR is run after SOR but using the traditional HPWL 

model (which we denote: SOR+VPR(HPWL)).  

 

The following observations can be made. First, running SOR followed by VPR 

using the Star+ model and inner_num=1 results in a reduction in critical-path delay for 11 

(of 20) benchmarks compared with running SOR by itself. The average improvement 

among these 11 cases is 16.5 percent. In the 9 cases that did not result in an improvement, 

the average increase in critical-path delay is 13.6 percent.  The main reason, that the 

hybrid approach made the original solution provided by SOR worse, is that VPR, which 

is based on SA, allows for a high-number of non-improving moves during the early part 

of the search when a high-temperature is allowed. This can cause a good initial solution 

to be made substantially worse. When inner_num=1, there may not be enough 

optimization time to find an equivalent or better solution. Not surprisingly, when 

inner_num=10, and more time is allowed for optimization, the hybrid strategy results in a 

better solution being found for 15 of 20 benchmarks. Overall, the hybrid strategy 

SOR+VPR (Star+) is able to improve on the critical-path delay by 3.2 – 6.7 percent over 

SOR alone. Moreover, the same hybrid strategy is able to improve on critical-path delay 

by 7.5 – 11.6 percent over VPR alone. 
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Table 6.6 Critical path delays (hybrid) 

VPR SOR + VPR (Star+) SOR + VPR (HPWL)   CW SOR 
inner_num=1 inner_num=10 inner_num=1 inner_num=10 inner_num=1 inner_num=10 

Alu4 11 106.857 120.331 113.6717 102.287 95.223 118.73 109.308 
Apex2 13 116.394 128.77 125.1346 108.733 103.591 127.654 126.604 
Apex4 14 122.411 127.922 122.6053 108.733 98.1068 119.912 117.003 
bigkey 8 73.6277 100.935 100.0536 92.9461 76.8831 104.838 103.601 
Clma 15 268.531 264.999 252.9958 230.864 246.03 243.582 250.261 
Des 12 124.301 123.01 136.5118 156.97 117.784 124.977 127.872 

Diffeq 9 97.553 106.112 90.33062 98.9624 82.1605 126.119 77.6612 
Dsip 8 64.4369 91.0482 93.37907 75.1003 74.5031 77.404 79.1104 

elliptic 13 180.584 257.387 206.6148 256.487 204.424 237.39 175.422 
Ex1010 13 191.122 205.552 202.9452 190.389 186.379 208.988 196.069 
Ex5p 15 102.372 116.071 125.2613 108.519 96.2305 119.34 127.493 
Frisc 15 203.948 227.362 189.0848 207.03 185.652 219.742 185.216 

Misex3 13 115.636 108.431 105.6976 110.304 102.782 101.673 105.818 
Pdc 21 236.667 254.422 217.5874 225.43 225.133 270.005 222.744 

S298 9 203.804 240.983 203.189 193.695 216.344 212.701 182.025 
S38417 9 159.145 196.969 163.1709 161.73 142.167 194.709 152.599 

S38584.1 10 140.828 123.888 119.709 116.485 124.675 123.172 141.023 
Seq 13 96.3664 123.035 118.0495 96.6295 111.082 133.099 109.401 
Spla 18 238.615 205.085 188.0682 184.265 170.39 203.353 177.867 

Tseng 8 80.6322 81.7572 75.83124 7.875 70.0942 97.7821 78.6372 
Total   2924 3204 2950 2833 2730 3165 2846 

 

 

Perhaps not surprisingly, the second hybrid strategy that employs SOR followed 

by VPR using HPWL does not perform as well. When run with inner_num=1, the hybrid 

strategy only finds a lower critical-path delay for 5 of the 20 benchmarks compared with 

SOR by itself. Overall, this hybrid strategy increases the critical-path delay by 8.2 

percent. The primary reason for the failure of this second hybrid approach is that SOR 

and VPR use different objective functions based on Star+ and HPWL, respectively, and 

their optimization effects counteract with each other. 

 

When inner_num=10 is used, and a longer optimization is performed, the hybrid 

strategy finds a lower critical-path delay compared with SOR for 11 of the 20 

benchmarks. Overall, the hybrid strategy reduces the critical-path delay by 2.7 percent 

compared with SOR.   
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Table 6.7 shows the wirelength for both hybrid approaches based upon using a 

breadth-first routing option. The first column identifies the benchmark by name. The 

second column shows the channel width used by the router. The third column gives the 

wirelength when using SOR by itself. The fourth and fifth columns give the wirelength of 

VPR with inner_num=1 and inner_num=10, respectively. (All of the data for VPR 

are the average of 10 runs.) Columns 6 gives the wirelength when SOR is run first, 

followed by VPR using the Star+ model and inner_num=1. Column 7 provides similar 

information, but for the case where inner_num=10.  Columns 8 and 9 give the similar 

information when VPR is run after SOR but using the traditional HPWL.  

 

Table 6.7 Wirelength (hybrid) 

VPR SOR + VPR (Star+) SOR + VPR (HPWL)   CW SOR 
inner_num=1 inner_num=10 inner_num=1 inner_num=10 inner_num=1 inner_num=10 

alu4 11 21652 22038 21016 21639 21058 22684 21315 
apex2 13 31969 32546 30638 30622 30004 31816 31501 
apex4 14 21666 22865 21848 22278 21984 22471 21770 
bigkey 8 24029 22396 18505 22921 20048 21714 17562 
clma 15 150305 142509 133592 148859 140725 146427 141009 
des 12 33778 29161 24758 35343 29471 29119 25774 

diffeq 9 15990 16263 14676 15412 14379 15839 15281 
dsip 7 20468 17171 14582 18236 14090 16947 13416 

elliptic 13 50419 53811 45912 52704 46629 58153 47273 
Ex1010 13 74397 72613 70864 68554 66683 72087 71667 
Ex5p 15 20239 19924 18648 20402 19632 20042 18971 
frisc 14 59043 59957 55274 59894 56885 60402 55763 

misex3 13 22417 22700 21871 21916 21689 22467 22974 
pdc 19 105148 104298 99046 104078 101859 107686 104080 

S298 9 19960 22703 21346 20961 21053 21424 20623 
S38417 9 66750 66586 61764 67447 64067 67931 62438 

S38584.1 10 64567 63515 57099 63077 56885 64386 57048 
seq 13 28186 29611 28059 28153 26980 29121 28682 
spla 16 72060 71194 67362 71050 70169 74162 69143 

tseng 8 9835 10420 9423 10274 9530 11120 9000 
Total   912878 902282 836281 903820 853820 915998 855290 

 

 

The following observations can be made. Running SOR followed by VPR using 

the Star+ model and inner_num=1 results in a reduction in wirelength for 12 (of 20) 

benchmarks compared with running SOR by itself. The average improvement among 
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these 12 cases is 3.3 percent. In the 8 cases that did not result in an improvement, the 

average increase in wirelength is 3.1 percent.  When inner_num=10, and more time is 

allowed for optimization, the hybrid strategy results in a better solution being found for 

18 of 20 benchmarks. Overall, the hybrid strategy SOR+VPR (Star+) is able to improve 

on wirelength by 1 – 6.5 percent over SOR alone.  

 

The second hybrid strategy employs SOR followed by VPR using HPWL. When 

run with inner_num=1, the hybrid strategy finds shorter wirelength for 9 of the 20 

benchmarks compared with SOR by itself. Overall, this hybrid strategy increases the 

wirelength by 0.3 percent. When inner_num=10 is used, the hybrid strategy is able to find 

less wirelength compared with SOR for 16 of the 20 benchmarks. Overall, the hybrid 

strategy reduces the wirelength by 6.3 percent compared with SOR.   

 

In summary, using a hybrid strategy based on Star+ always helps. Using a hybrid 

strategy based on HPWL may result in even worse solutions unless a long-enough time 

(inner_num=10) is allowed for optimization. However, even then, there is no guarantee 

that an improved solution will be found. 

 

6.7 Conclusion 

In this chapter, we presented an analytic placement algorithm based on Successive Over-

Relaxation (SOR).  We began by introducing the necessary background for understanding 

SOR and showed that SOR was a logical extension of the Gauss-Seidel method. We then 

showed how an SOR placement method could be developed based on the Star+ 

wirelength model first introduced in Chapter 3.  

 

We then showed how the performance of the SOR-placement method could be 

improved by employing a novel heuristic to pre-determine the order in which variables 

appearing in the non-linear equation system should be processed. Our results showed that 

on average a 2.7% improvement in solution quality (wirelength) could be obtained at the 
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cost of a 0.4% increase in runtime. We also showed that using a relaxation factor 2 causes 

the algorithm to converge slightly faster compared with other, smaller relaxation values. 

 

Both SOR placement and CG placement were compared head-to-head using all 20 

MCNC benchmarks. The results revealed that although both analytic methods find 

solutions with similar quality, SOR finds solutions, on average, 7x faster. The superior 

performance of SOR is attributable to the fact that when CG is used to solve a non-linear 

system, the search directions quickly loose conjugacy [32], thus slowing the convergence 

rate of the algorithm. 

 

Due to its superior run-time performance, SOR was compared head-to-head with 

VPR, the state-of-the-art academic placement and routing tool, using all 20 MCNC 

benchmarks. The results showed that SOR is approximately 4x-40x faster than VPR, 

while obtaining solutions with approximately 1-8.8 percent less critical-path delay. 

However, the solutions found by SOR required approximately 1-8.8 percent more wire 

segments to implement.  

   

 Due to the excellent convergence properties of SOR placement, we also 

considered a hybrid approach where SOR was used to quickly find a fast initial 

placement, and then VPR was used to improve the quality of the placement. Our results 

showed that the hybrid approach was able to further improve critical-path delay by 

approximately 3-7 percent and wirelength by 1-7 percent, compared with SOR alone, at a 

cost of 4-40x more runtime. 
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Chapter 7 

Conclusions and Future Work 

7.1 Contributions 

This work has contributed two analytic methods based on a new net model for FPGA 

placement. The new net model and the placement methods developed in this research are 

briefly summarized in Table 7.1. 

 

 In Chapter 3, we presented a novel model, called Star+, for estimating wirelength 

during FPGA placement. Unlike the traditional HPWL model [30][31], employed by 

many FPGA placement tools including VPR [27][28], the Star+ model is continuously 

differentiable and hence suitable for use with analytic methods.  However, as was shown 

in Chapter 3, the Star+ model can also be employed effectively in iterative-improvement 

placement methods, like those based on Simulated Annealing [54]. 
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Table 7.1: Summary of contributions 

Contributions Features 

Star+ model 
 Differentiable 
 Outperforms HPWL 6-9% in terms of critical-path delay 
 Constant updating time 

Shrubbery pre-placement  Outperforms random pre-placement by 1.2% 
 Time complexity O(|E|log|V|) 

CG placement method  O(n) computation time of each iteration 
 Similar quality compared with VPR  

SOR placement method  4 – 40x faster than VPR 
 Improves critical-path delay by 1 – 8.8% over VPR 

Hybrid placement 
method 

 Improves critical-path delay by 3.2 – 6.7% over SOR 
 Improves wire-length by 1 – 6.5% over SOR 
 Costs 4 – 40x extra runtime. 

Timing-Driven 
placement method based 
on SOR 

 Optimizes wirelength and critical-path delay 
 

 

 

To establish the effectiveness of the Star+ model, an empirical comparison of 

Star+ and HPWL [30][31] was made by first incorporating both wirelength estimation 

models into VPR [27][28] – the state-of-the-art academic placement and routing tool 

based on simulated annealing  – then using VPR to place and route all 20 MCNC 

benchmarks [62].  Overall, the results showed that VPR has similar and, in some 

instances, superior performance when using Star+ compared with HPWL. More 

specifically, the results show that the Star+ model achieves a 6-9% reduction in critical-

path delay compared with HPWL, while producing similar quality results with respect to 

routability (measured in terms of channel width) and total number of wire segments.  

 

 An important characteristic of the Star+ model is that the time to calculate 

incremental changes in cost from moving/swapping blocks can always be computed in 

O(1) time.  Moreover, it was shown that as the size (cardinality) of a net increases, Star+ 

significantly outperforms HPWL with respect to the time required to re-compute the 

wirelength estimate following an improving move or swap. 
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 In Chapter 4, we presented an analytic placement algorithm based upon the 

conjugate gradient (CG) method. Unlike previous analytic placement methods that try to 

optimize an objective function based on quadratic distance, the CG-based placement 

algorithm seeks to minimize an objective function based on the (near-linear) Star+ model. 

Due to the linear nature of distance, the Star+ model is theoretically more accurate than 

quadratic distance. The accuracy of the Star+ model, however, comes at the expense of 

the complexity of the analytic algorithm that employs it. To minimize quadratic distance, 

only a linear equation system must be solved. To minimize the Star+ model a non-linear 

equation system must be solved, which is usually much harder and hence more time-

consuming. Another important feature of the algorithm is that the computation 

complexity of each iteration is O(n) even though the target system is not sparse. Due to 

the high performance and accuracy of the Star+ model, our method is able to produce 

placements with similar quality compared with VPR [27]. 

 

In Chapter 5, we developed a pre-placement algorithm, called Shrubbery, to 

guarantee that the algorithm produces non-trivial placements. The goal of the pre-

placement is to place the I/O pads in such a way that the I/O pads with higher 

connectivity are placed closer together than the I/O pads with lower connectivity. Also, 

this pre-placement provisionally locates components on the periphery of the FPGA, 

which causes other components to be distributed throughout the chip. We demonstrated 

that Shrubbery is able to outperform a random pre-placement strategy that seeks to find 

the best (initial) placement by generating a pool of random placements, both with respect 

to solution quality and runtime. Unlike the random pre-placement strategy, Shrubbery 

only requires a single application of CG, which is much faster than the multiple 

applications of CG that are required to create a pool of random pre-placements. Most 

importantly, we were able to show, both theoretically and empirically, that the running 

time of Shrubbery is extremely small. In Chapter 5, We also showed that CG conclude 

that CG is competitive with VPR in its fast mode (inner_num=1), but produces slightly 

lower quality solutions than VPR when inner_num=10. By reducing the runtime of 

each iteration from O(n2) to O(n), we have improved the speed of CG significantly and 

made it about 5 times faster than VPR when inner_num=10. 
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In Chapter 6, we introduced an analytic placement algorithm that uses Successive 

Over-Relaxation (SOR) method and the Star+ model. An advantage of using the Star+ 

model is that the wire-length estimate change of a net caused by moving a single block 

can always be calculated in a constant time. Since moving a block is the mostly used 

operation in SOR method, the time for re-computing the cost after a movement counts a 

major part of the total running time. Therefore, constant time for updating the net wire-

length estimate is critical to build a time-efficient SOR placement method. We 

demonstrated that SOR method based on the Star+ model is 4 – 40 times faster than VPR, 

and outperforms VPR by 1 – 8.8% with respect to critical-path delay. Due to the excellent 

convergence properties of SOR placement, we also considered a hybrid approach where 

SOR was used to quickly find a fast initial placement, and then VPR was used to improve 

the quality of the placement. Our results showed that the hybrid approach was able to 

further improve critical-path delay by approximately 3-7 percent and wirelength by 1-7 

percent, compared with SOR alone, at a cost of 4-40x more runtime. 

 

7.2 Future Work  

There are five ways to enhance this work: 1) applying analytic placement in a multilevel 

optimization context to further improve the performance and solution quality; 2) 

designing a router based on Steiner heuristics to improve routing results; 3) acceleration 

via multi-core and/or re-configurable computing; 4) extending the model to include 

timing and congestion; and 5) extending the model to handle modern FPGA architectures. 

 

 

7.2.1 Multilevel Optimization 
 

As FPGAs continue to increase in logic capacity and functionality, so do the designs 

mapped to them. Multilevel methods are able to reduce problem complexity. These 

methods construct a hierarchy of successively coarser problems from the bottom up by 

recursive aggregation. They employ iterative improvement at each of the resulting levels, 
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transfer these improvements up and down the hierarchy, and eventually terminate with a 

solution at the original, finest level. Although multilevel placement has become a very 

active research topic, with several high-quality placers developed for standard cell-based 

designs, little work has been done on multilevel placement for FPGAs. Recently, Areibi 

et. al. [44] have shown the benefit of multilevel optimization by applying multilevel to 

FPGA placement. However, it is likely that many of the multilevel placement techniques 

developed for standard cells can be applied to further enhance the quality of the work 

proposed in this thesis. An important concept in multilevel is to use different placement 

algorithms at different levels of the hierarchy. At the higher level of the hierarchy, we can 

use the proposed analytic method to quickly achieve a globally good placement of 

clusters, and use other techniques (e.g., local improvement and simulated annealing) at 

the low level of the hierarchy to fine-tune the solution quality. 

 

 

7.2.2 FPGA Routing 
 

Routing is a time-consuming step that determines the actual interconnects (wire-length, 

congestion, delay) and plays a critical role in the overall FPGA system performance. 

Given the similarity between FPGA and standard-cell global routing, many FPGA routers 

are based on algorithms developed for routing ASICs, including VPR. The basic 

framework of current FPGA router is based on iterative routing, where on each iteration, 

the routing of each net is based on maze expansion of a multi-pin net in the routing graph. 

Instead of maze expansion one may use graph-based Steiner heuristics to construct a 

near-optimal Steiner tree in the graph. However, to the best of my knowledge, no one has 

tried replacing the maze expansion engine in VPR with a graph-Steiner-based algorithm. 

We proposed two graph-based Steiner heuristics, Shrubbery and Pole-Center, in [111]. 

The experiments done in [111] suggest that using these algorithms to replace maze 

expansion in VPR may drastically improve the routing runtime, while maintaining the 

solution quality.  
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7.2.3 Algorithm Acceleration via Multi-Core and/or Re-configurable 

Computing 
 

An important means to achieve highly scalable placement and routing algorithms is to 

make the best use of multi-core computing systems and hardware acceleration available 

through re-configurable computing. These approaches can be investigated in three 

aspects: 1) implement the algorithm directly in hardware using an FPGA; 2) employ a 

hardware/software co-design approach where time-critical bottlenecks within the 

algorithm are implemented directly in hardware, with the remainder of the algorithm 

implemented in software running on a soft core; and 3) develop an Application Specific 

Instruction Set Processor (ASIP) to run the algorithm.  

 

 

 

7.2.4 Timing and Congestion  
 

Today, it is important to perform timing [13][23], congestion [71], and even low-power 

[11] optimization when performing placement. In Appendix A, we provide a timing-

driven model that carries out timing optimization by including an additional timing cost 

term to the objective function. The timing cost is the summation of the delay times and 

the timing criticality over all connections in the design, where the critically of a 

connection depends on its timing slack. Two important issues resulting from this model 

will need to be considered: 1) When to update the slacks and 2) how to optimize two very 

different objectives. With regards to the former issue, it is suggested that slack values be 

evaluated after every iteration, thus leading to shorter runtime and more effective 

optimization. With regards to the latter issue, optimizing two objectives will require 

careful scaling to ensure that the relative importance of both wirelength and timing are 

independent of their actual values. 
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7.2.5 Modern FPGA Architectures  
 

Today’s modern FPGA architectures contain a variety of features including hardwired 

macro blocks such as embedded memories, multipliers, DSP blocks, just to name a few. 

An important consideration will be how best to extend an analytical method to handle 

blocks of different types.  Given the ease with which simulated annealing can swap 

blocks (or groups of blocks representing more complex structures), it may be beneficial 

to consider using a hybrid analytic/simulated-annealing based algorithm for these types of 

architectures. 
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Appendix A 

Timing-Driven Placement 

In Chapters 4 – 6, we introduced analytic methods based on the Star+ model that 

minimize wirelength. In this appendix, we will show that the Star+ model can also be 

used in analytic timing-driven placement algorithms, by presenting an SOR timing-driven 

placement algorithm that is based on the Star+ model. This appendix is organized as 

follows. Section A.1 gives some background of timing analysis. Section A.2 illustrates 

the timing-driven placement algorithm.  

 

A.1 Background 

The objective of timing-driven placement is to place logic blocks that are on the critical 

path into CLBs that are close to each other and therefore to minimize the amount of wire 

segments and interconnects that the critical signals must travel.  
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Timing-driven placement algorithms can be roughly divided into two categories: 

path-based and net-based. A path-based algorithm computes the delays of all paths and 

directly minimizes the maximum delay (critical path delay). In contrast, a net-based 

algorithm uses static timing analysis to assign each net a criticality weight; higher 

weights are assigned to nets that are more timing critical. A path-based algorithm usually 

gives a more accurate timing inspection. However, this type of algorithm suffers high 

computation complexity due to the exponential number of paths that have to be 

simultaneously considered. 

 

A.1.1 Timing Analysis 

To perform timing analysis, a circuit is first converted into a directed graph G(V, E). Each 

wire and each logic block pin becomes a node in the graph, where a pin comes from a 

look-up table (LUT), a register, or an I/O pad. A node is a source if the original pin is an 

input pad or a register output. A node is a sink if the original pin is an output pad or a 

register input. Each switch becomes a directed edge connecting two corresponding nodes. 

Each edge is assigned a weight that represents the physical delay between the nodes. 

Figure A.1 gives an example of a circuit and the corresponding timing analysis graph. A 

path starts at a source and ends at a sink. Give a node j, the arrival time, )( jTarrival  is the 

time at which the signal at node j settles to its final value. The signal at node j becomes 

stable a delay time after when the signal at all input nodes to node j settle to the final 

value. To determine the arrival time of all the nodes, a breadth first traversal is performed 

on the graph, which starts from the sources. The arrival time Tarrival of each node j can 

iteratively calculated with the following equation: 









      ),(   ,)},()({max

                                                         ,0
)(

)( EjijidelayiT
sourcesj

jT
arrivaljfanini

arrival  

where delay(i,j) is the delay value of the edge connecting the node i to node j. The 

maximum arrival time of all the nodes determines the delay of the circuit and is labeled 

as Dmax, and is calculated as: 

 jjTD arrival        )},(max{max sinks 
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Figure A.1: Timing analysis graph 

 

Our goal is to minimize Dmax. However, simply re-placing the blocks on the path 

from the source to the node with the largest Tarrival for the purpose of reducing Dmax just 

does not work, since reducing the delay on one path will inevitably add delays to the 

connections on some other paths that may become critical thereafter. Accordingly, it is 

useful to find out how much delay can be added to each connection before the 

corresponding path becomes critical. This amount of delay is called the slack.  
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 To determine the slack of each connection, it is necessary to know the maximum 

required arrival time of every node with the condition that Dmax is not increased. 

Obviously, the maximum required arrival time of all output pads and register inputs is 

Dmax. The maximum required arrival time of other nodes is computed as: 

)},()({min)( )( jidelayjTiT requiredifanoutjrequired    

where i is the source of a net;  j is a sink of the net; and the delay(i,j) is the delay value of 

the connection from node i to node j. The slack of connection (i,j) is defined as: 

),()()(),( jidelayiTjTjislack arrivalrequired   

 

A.1.2 Criticality and Cost 

The criticality of the connection from the source i to a sink j is defined as: 

max

),(1),(
D

jislackjicrit   

As ),( jislack  is always between 0 and maxD . The value of ),( jicrit  is therefore between 

0 and 1. The slack of the connections on a critical path is always 0 and the criticality is 

always 1.  

 

In VPR, the time cost of a connection is calculated as:  
ExpoenetCritjicritjidelayjiCostTime _),(),(),(_   

And the total time cost of a circuit equals the sum of the time cost of all its connections: 





circuitji

jiCostTimeCostTime
,

),(__  

VPR uses a trade-off  variable  λ  to  determine  the  weight  of  time  cost  and  wirelength  cost.  

The change in the combined cost is calculated using the following formula: 

wirelengthprevious
wirelength

CostTimeprevious
CostTimeC

_
)1(

__
_ 




   

 

Nevertheless, the above formula does not work for analytic methods, since 

analytic methods need a clearly defined objective function like Equation 4.8. For this 
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purpose, we present the Star+ time-cost model of net l in a format similar to the Star+ 

wirelength model: 





)(

2)])(,([
lfanouti

slil xxislcritT     (Equation A.1) 

where sl is the source (or driver) of net l, and slx  is the x-coordinate of sl. The crit(sl,i) is 

the criticality of connection (sl,i). 

 

By introducing time cost factor into Equation 4.8, we get the total combined cost 

of wirelength and time for the circuit as: 

 
  










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










circuitl
l

Neti
cli Txx

l

 )1()( 2   (Equation A.2) 

where   λ   is   the   trade-off parameter. Since 



lNeti

clil xxS 2)(  (Equation 4.9), the 

total combined cost of a circuit (Equation A.2) can be rewritten as:  

  



circuitl

ll TS  )1(      (Equation A.3) 

where  lS  is the wirelength cost of net l, and ( lT )  represents   the  time  cost.  As  α  

appears in both parts, minimizing Equation A.3 is equivalent to minimizing the following 

equations  obtained  by  removing  α: 

 



circuitl

ll TSxf )1()(      (Equation A.4) 

The above equation is used as the objective function of the presented analytic timing-

driven placement. In the next section, we will introduce how to obtain the recurrence 

relation of SOR iteration from Equation A.4. 

 

A.2 SOR Timing-driven Placement 

As )(xf  is positive-definite, it can be minimized by solving the equation system 

)(' xf =0. The gradient )(' xf  of )(xf  is defined as follows: 
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where the jth element of )(' xf  is the partial derivative of )(xf  with respect to jx : 
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From Equation 4.11, we have 
l

clj

j

l

S
xx

x
S 



  when lNetj . 

From Equation A.1, we have: 












)(

2)])(,([
lfanouti

sli
jj

l xxislcrit
xx

T  














 

 



)(

2

)(

2
)])(,([

)])(,([2
1

lfanouti
sli

j
lfanouti

sli

xxislcrit
xxxislcrit

 


















 

 



)(

2

)(

2
)])(,([

)])(,([2
1

lfanouti
sli

j
lfanouti

sli

xxislcrit
xxxislcrit

 




















 
 



)(

2

)(

2
)]()(),([2

)])(,([2
1

lfanouti
sli

j
sli

lfanouti
sli

xx
x

xxislcrit
xxislcrit

 























 
 



)(

2

)(

2
)])((),([

)])(,([
1

lfanouti j

sl

j

i
sli

lfanouti
sli

x
x

x
xxxislcrit

xxislcrit
 



APPENDIX A: Timing-Driven Placement 

 164 




















 
 )(

2 )])((),([1
lfanouti j

sl

j

i
sli

l x
x

x
xxxislcrit

T
  (From Equation A.1) 

 

When j is a sink of net l (i.e., slj   or )(lfanoutj ), we have 0
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When j is the source (or driver) of net l (i.e., slj   or )(lfaninj ), we have 1
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To summarize,  
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By replacing Equation 4.11 and Equation A.6 in Equation A.5, we have: 
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To implement the Gauss-Seidel iteration, we need to update clx , lS  and lT  immediately 

after jx  moves from )(k
jx  to )1( k

jx . From Section 3.2 in Chapter 3, we know clx  and lS  

can be updated in a constant time. Fortunately, lT  can also be updated in a constant time. 

This feature makes it possible to build a time-efficient Gauss-Seidel method for SOR 

timing-driven placement. For the sake of simplicity, we introduce five new variables lU , 

lV , lP , lQ  and lR , and let 
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l islcritR .  Then, Equation A.1 can be 

transformed into: 
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lsllsll RxQxP 22     (By the definition of lP , lQ  and lR ) 

 

Therefore, the Gauss-Seidel iteration for placement is defined as: 
2)0( )(




lNeti

il xU  

)0(



lNeti

il xV  





)(

2)0(2 )(),(
lfanouti

il xislcritP  



APPENDIX A: Timing-Driven Placement 

 168 

)0(

)(

2),(



lfanouti

il xislcritQ  





)(

2),(
lfanouti

l islcritR  

l
l

cl V
k

x 1
  

12
 cllll xkUS  

lsllslll RxQxPT 22   

 



















 








 





















 








 


 

 

 



 



)(:

2

)(: )(

2

:

1

)(: )(:

2

)(

2

:

)1(

),(1),(1

),(1),(1

lfanoutjl
sl

llfaninjl lfanouti
i

lNetjl l

cl

lfaninjl lfanoutjl llfanoutilNetjl l

k
j

xjslcrit
T

xijcrit
TS

x

jslcrit
T

ijcrit
TS

x

l

l





 

(Equation A.7) 
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To advance to SOR iteration from the Gauss-Seidel iteration, we introduce a relaxation 

factor  ω  into  Equation  A.7.  The  SOR  iteration  for  placement  is  summarized  as  following: 
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Figure A.2 gives the pseudo code of SOR timing-driven placement as a summary 

of the whole procedure. The first line initializes the x-coordinates. The second line sorts 

the order that will be used to calculate all the xis. The next four lines initialize the middle 

variables lU , lV , lP , lQ , lR , the center of gravity clx , the Star+ estimate lS , and time 

cost lT  for each net l. Within the while loop, each iteration computes new x, and updates 

lU , lV , lP , lQ , clx , lS  and lT  for each affected net l. The iterations terminate when i 

reaches the maximum number of iterations. 
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Figure A.2: The pseudo-code of SOR timing-driven placement 
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}    //end of while 
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