

Gaia: A Middleware Infrastructure to Enable Active Spaces

Revised Paper #20 (2nd Revision)

7/1/2002

Gaia: A Middleware Infrastructure to Enable Active Spaces1
Manuel Román, Christopher Hess, Renato Cerqueira, Anand Ranganat, Roy H. Campbell, Klara Nahrstedt

{mroman1, ckhess, rcerq, ranganat, rhc, klara}@cs.uiuc.edu
Digital Computer Lab

University of Illinois at Urbana-Champaign

Abstract
We envision a future where people’s living spaces are interactive and programmable. Users interact with
their offices, homes, cars, malls and airports to request information, benefit from the resources available,
and configure the habitat’s behavior. Data and tasks are always accessible and are mapped dynamically to
convenient resources present in the current location. Users may extend the habitat with personal devices
that seamlessly integrate with the environment. Such user-oriented interactive environments may require a
novel software infrastructure to operate their resources, sense context properties, and assist in the
development and execution of applications. In this article, we present an experimental middleware
infrastructure called Gaia that we have used to prototype the resource management of and provide the user-
oriented interfaces for such physical spaces populated with network-enabled computing resources. To limit
the scope of our research, we focus on physical spaces used for teaching; classrooms, offices, and lecture
rooms. The system described in this paper is derived from a series of experiments starting in 1996. We show
how, by applying the concepts of a conventional operating system to middleware, we can manage the
resources, devices and distributed objects in a room, building, or physical space, how a distributed
extension of the model–view–controller that is use in personal computers simplifies and structures practical
applications for these environments, and how, by driving context-sensitivity into its data storage
mechanisms, the system can help satisfy the requirements for user-centricity and mobility.

1. Introduction
Pervasive computing environments encompass a spectrum of computation and communication devices that
seamlessly augment human thought and activity with digital information, processing, and analysis to provide
an observed world that is automated and enhanced by the behavioral context of its users. Large numbers of
heterogeneous computing devices provide new functionality, enhance user productivity, and ease everyday
tasks. In home, office, and public spaces, ubiquitous computing will unobtrusively augment work or
recreational activities with information technology that optimizes the environment for people’s needs.

The motivation behind our research is the lack of a suitable software infrastructure to assist us in the
development of applications for ubiquitous computing habitats or living spaces. Figure 1 presents our
prototype ubiquitous computing environment. In this environment, users interact with a number of devices
simultaneously, register their own devices as a resource of the environment, require application adaptation
according to changes in the environment, access data located in remote spaces, and suspend applications and
restart them later either in the same place or in a different one. Homes, offices, and meeting rooms capable
of sensing user actions and equipped with a large variety of devices will assist users with different tasks. We
refer to these ubiquitous computing environments as Active Spaces, an extension to physical spaces.
Physical spaces (Figure 2a) are geographic regions with limited and well defined physical boundaries,
containing physical objects, heterogeneous networked devices, and users performing a range of activities.
We define an Active Space (Figure 2b) as a physical space coordinated by a responsive context-based
software infrastructure that enhances the ability of mobile users to interact and configure their physical and
digital environment seamlessly. A requirement of Active Spaces is to support the development and
execution of user-centric mobile applications.

1 This research is supported by the National Science Foundation grant NSF 98-70736, NSF 9970139, and
NSF infrastructure grant NSF EIA 99-72884

Figure 1. Experimental Active Space

1.1. Our Vision
We believe that active spaces will become commonplace. People will interact with their physical habitats to
customize their behavior, gain access to a greater amount of information, and benefit from the resources
contained in the space. In this scenario, user data and applications are not confined to any one active space;
they are associated with users using the notion of a “session”. This allows users to move across different
active spaces and have their data and applications always available. When a user enters an active space, their
sessions are dynamically mapped to the active space resources. Users can define different sessions and can
activate and suspend them as required. We refer to the collection of sessions associated to a user and
independent of particular active spaces as the user virtual space. This user virtual space requires support to
locate resources available in the user’s environment and to map the sessions to the existing resources. The
user-centric mobile application requirement of active spaces creates problems in our traditional approaches
to building computer software infrastructure leading to a post-PC era of system software design.

Active spaces such as the one depicted in Figure 1 challenge existing assumptions for traditional PC
applications. As observed by Marc Weiser [1], the problem raised by ubiquitous computing is to develop
systems that vanish into the background. In an active space there is no longer the notion of a one-to-one
relationship between a user and the interfaces of keyboard, mouse and display. Indeed, the complexity of
ubiquitous applications encourages a relationship between a user and an active space. Active space system

15 Pentium IV at 1.2GHz
4 NEC HD Plasma Displays (61”)
1 Sharp HD Projector
2 Sound Web Sound system
4 InfraredBeacons
2 iButton detectors
5 Touchscreen displays
4 Badge detectors
3 Compaq iPaq HandHeld devices
1 Gbit Ethernet network
1 Wavelan wireless network at 11Mbps
 X10 appliance controllers

Laptop
App App

Printer

Sensor

Workstation
App

PDA

App
Storage

PC
App

Network

Person
(User)

Physical
Object

Person
(Administrator)

Person
(User)

Space Physical Boundary

Physical Space

Physical
Space

Software
Infrastructure

Context

Applications Person
(User)

Person
(Hardware Administrator)

Person
(Software Administrator)

Active Space

Figure 2. Physical and Active Space

a) b)

software support should simplify application programming and execution. In a similar manner to the role
that operating systems play in supporting traditional PC applications, active space applications need support
to access and operate the resources contained in the space that hosts their execution.

1.2. Our Approach
We present in this article Gaia OS, a meta-operating system [2, 3] that aims at supporting the development
and execution of portable applications for active spaces. Gaia is a distributed middleware infrastructure that
coordinates software entities and heterogeneous networked devices contained in a physical space. Gaia
exports services to query and utilize existing resources, to access and use current context, and provides a
framework to develop user-centric, resource-aware, multi-device, context-sensitive, and mobile applications.

We believe that extending the concepts of traditional operating systems to ubiquitous computing spaces
simplifies the management of these spaces and the development of applications. The main contribution of
Gaia is not in the individual services, but instead, in the interaction of these services. This interaction allows
users and developers to abstract ubiquitous computing environments as a single reactive and programmable
entity instead of a collection of heterogeneous individual devices. The description we present in this article
is an overview of the overall Gaia architecture. This description focuses on Gaia as a complete system
instead of trying to give all details about Gaia individual services.

Sidebar 1 – Gaia OS Evolution
Gaia OS is the result of six years of research on reflective middleware and meta-operating systems,
middleware for handheld and embedded devices, and ubiquitous computing. Previous to the Gaia project,
our group developed the 2K meta-operating system [2, 4], a reflective middleware operating system built on
top of traditional operating system (e.g. Windows, Linux, Solaris, and PalmOS). 2K was strongly influenced
by previous research on reflective middleware [5-7] and was built on top of a modified version of TAO [8],
the pattern-based CORBA ORB from Douglas Schmidt et al. [9]. 2K hides device and operating system
heterogeneity and can adapt dynamically to changes in the environment while maintaining the integrity of
the overall system. Users in 2K interact with the system using different devices, therefore eliminating the
one-to-one user-to-device traditional mapping. Individual devices in 2K become portals to the system.
Following this approach, we started a new line of research to study how to integrate resource-limited mobile
devices such as handheld and embedded devices into distributed computing environments [10]. These
devices use middleware to interoperate with 2K and leverage the functionality provided by 2K services. As
part of this research we developed an adaptable middleware prototype customized for handheld devices [11],
which evolved into a fully reconfigurable middleware infrastructure [12]. This middleware allows bi-
directional interaction between the handheld devices and the meta-operating system. As a result of our
previous research, and influenced by the research of Georgia Tech [13-15], MIT [16], and Berkeley [17] on
ubiquitous computing, we created Gaia OS [3], a meta-operating system customized for physical spaces that
supports the development of applications customized to these environments. Gaia OS provides a standard
API that abstracts the complexity and heterogeneity associated to ubiquitous computing environments. The
explicit binding between Gaia OS and physical spaces requires new services (not present in 2K) to take into
account issues such as the context of the space and the detection of resources added to and removed from the
space.

3. Gaia: an Active Space System Software Infrastructure
Gaia provides support for mobile user-centric active space applications. It manages the resources and
services of an active space. It provides services for location, context, and events, and repositories with
information about the active space. The system is built as a distributed object system. Figure 3 shows the
three major building blocks of Gaia: the Gaia Kernel, the Gaia Application Framework, and the Applications

The Gaia Kernel contains a management and deployment system for distributed objects and an interrelated
set of basic services that are used by all applications. The Component Management Core dynamically loads,
unloads, transfers, creates, and destroys all the components and applications of Gaia. Gaia components are
distributed objects and require communication middleware to support remote interaction. The current

implementation of Gaia uses CORBA [18]; however, it is possible to port Gaia to other communication
middleware architectures including SOAP, RMI, or customized implementations. CORBA provides a stable
infrastructure for distributed object interaction. However, the dynamism and heterogeneity of active spaces
require extensions to deal with issues such as soft-state to handle crashing components and resources added
to and removed from the space. Gaia’s five basic services are the Event Manager Service, Presence Service,
Context Service, Space Repository Service, and Context File System. The Gaia software infrastructure
implements a bootstrap mechanism that initiates the execution of the Gaia Kernel in any arbitrary physical
space. Some of the services are built on top of existing middleware services (e.g. Event Manager), while
others are extensions to the communication middleware (e.g. Presence Service).

Gaia’s applications use a set of component building blocks, organized as the Gaia Application Framework,
to support applications that execute within an active space. The framework provides mobility, adaptation,
and dynamic binding. The functionality permits commercial off the shelf as well as new applications to run
in the active space. Active Space Application layer contains applications and provides functionality to
register, manage, and control these applications through the Gaia Kernel services.

Figure 3. Gaia Architecture

3.1 Gaia Kernel
Gaia applications are component-based, distributed and mobile, and therefore require support for remote
component execution and management. The Component Management Core (CMC) provides Gaia with
functionality for component creation, destruction, and uploading. Remote execution nodes register with the
active space and host the execution of Gaia components. The Gaia Kernel is composed of five services built
as Gaia components which are described below in more detail.

a) Event Manager
Active spaces are highly dynamic execution environments that require a flexible mechanism to expose
changes in their current state. These changes include components starting, applications moving, users
entering and leaving, component beaconing updates, and contextual changes. The Event Manager Service is
responsible for event distribution in the active space and implements a decoupled communication model
based on suppliers, consumers, and channels. Each channel has one or more suppliers that provide
information to the channel and one or more consumers that receive the information. The event manager has
a single entry point and one or more event channel factories. Each event factory is responsible for creating
event channels with a specific behavior, e.g. high speed events, or persistent events. Gaia defines a default
set of event channels to notify interested Gaia components about new services, applications, people, errors,
and component heartbeats. Applications can also define their own event channels for application state
changes. The event service allows applications to tap into event channels to learn about changes in the
system.

The event manager is particularly convenient to decouple information suppliers from information
consumers, therefore increasing system reliability. Suppliers and consumers can fail without disrupting the
system. A crashing supplier can be automatically replaced with a replica that continues delivering messages
to its assigned channel without the consumers being aware of the failure. Our current implementation of the
event manager uses the CORBA Event Service [18] as the default event factory. More details of the event
manager service can be found in [19].

Component Management Core

Space
Repository

Service

Active Space Applications

 Application Framework

 Event
Manager
Service

Context
File System

Context
Service

Presence
Service

G
aia K

ernel

b) Context Service
Gaia applications may use context information to adapt their behavior to accommodate user behaviors and
activities[20]. Incorporating context into the infrastructure facilitates the adaptation of the computing
environment to the needs of human users [1][2][3][4]. Our context service allows applications to query and
register for particular context information so that they may adapt to their environment. The context
infrastructure consists of a number of components, called context providers that provide information about
the current context. These include sensors that track the location of people, the conditions within a room
(e.g. temperature and sound) and other external conditions, such as weather and current stock prices. In
addition, we also have components that can infer certain higher-level contexts based on sensed information.
For example, we have a component that deduces the kind of activity going on in a room (i.e., meeting,
presentation, or movie screening) based on who is in the room, which applications are running, and other
cues. There exists a registry that maintains a list of the different context providers available and allows
applications to find the providers that supply the contexts in which they are interested.

We use a model for context that is based on first order logic and boolean algebra, which allows us to easily
write various rules to describe context information. These rules may be a combination of lower level context
information. We represent context through a 4-ary predicate, whose structure is borrowed from a simple
clause in the English language of the form <subject><verb><object>. An atomic context predicate is defined
in the following way: Context(<ContextType>, <Subject>, <Relater>, <Object>). The Context Type refers
to the type of context the predicate is describing, the Subject is the person, place or thing with which the
context is concerned, and the Object is a value associated with the Subject. In our implementation, the
ContextType is mapped to an event channel. The Relater relates the Subject and the Object such as a
comparison operator (=, >, or <), a verb, or preposition. Some example context predicates are:
Context(location, chris, entering, room 3231); Context(temperature, room 3231, is, 98 F); Context(social
relationship, venus, sister, serena); Context(stock quote, msft, >, $60); Context(printer status, srgalw1 printer
queue, is, empty); Context(time, , Is, 12:00 01/01/01). In some cases, one or more elements of a predicate
may be empty (e.g., the Time context). It is possible to construct more complex contexts by performing first
order logic operations such as quantification, implication, conjunction, disjunction, and negation of context
predicates. One example of a rule is Context(Number of people, Room 2401, >, 4) AND
Context(Application, Powerpoint, is, Running) => Context(Social Activity, Room 2401, Is, Presentation).

Ideas behind our context infrastructure have been inspired from the Context Toolkit [21]. We structure the
expressive power of contexts with first order logic to frame rules and queries and to infer properties
involving context using mechanisms that are similar to those of Prolog and other automated theorem
provers. High-level context information may be determined from context information, similar to the
aggregators of the Context Toolkit. Our system also formalizes the ways in which context information is
exchanged between different components in the system and allows us to describe the properties of various
components [5].

c) Presence Service
As a resource-aware infrastructure, Gaia needs to maintain updated information about resources present in
the active space. The presence service is responsible for detecting digital (e.g., service and application) and
physical entities (e.g., furniture and people) present in an Active Space. Our current implementation of Gaia
defines four basic types of entities: Application, Service, Device, and Person.

The presence service implements a beaconing mechanism to maintain soft-state about entities present in the
space and it is divided into two main subsystems: Digital Entity Presence and Physical Entity Presence. The
Digital Entity Presence subsystem detects digital entities; these entities periodically send heartbeats to notify
the presence service that they are in the active space. When a digital entity fails to send the heartbeat, the
digital entity presence subsystem assumes that the entity is no longer available – either it was stopped or it
crashed – and therefore notifies the rest of the space that the entity left.

The Physical Entity Presence subsystem is responsible for detecting physical entities present in the active
space. This subsystem uses different types of sensors to proactively detect the presence and, if possible, the
location of physical entities. The physical entity presence subsystem implements the beaconing mechanism

on behalf of the physical entities, acting as a proxy. The physical entity presence subsystem is implemented
as an open infrastructure where different sensor device drivers and algorithms such as [21] can be
incorporated. Our presence service differs from other existing context infrastructures (e.g. [21]) in that it
provides functionality to detect and maintain soft-state information about software components, devices, as
well as people.

d) Space Repository
Active space entities require functionality to learn about the properties of the resources available in the
active space. For example, when an application starts executing, it uses the space repository to find
appropriate resources (e.g., execution nodes, displays, and speakers). The space repository stores
information about all software and hardware entities contained in the space (e.g., name, type, and owner)
and provides functionality to browse and retrieve entities based on specific attributes. The space repository
learns about entities entering and leaving the active space by subscribing to the channels defined by the
presence service. Applications use the space repository during their instantiation to find suitable resources.
This level of indirection allows us to describe applications in a generic manner (active space independent)
and map them to the resources contained in different active spaces. All active space resources have an XML
description associated that lists their properties (e.g., type and location). When new resources are introduced
in the active space, the space repository contacts them to obtain the XML description and stores the
information. The current version of the space repository uses a CORBA Trader [18] to store the data about
entities. We are currently using the constraint query language defined by the trader, although we plan to
extend this language in the future with a generic language that could be mapped either to the CORBA Trader
constraint language or to standard SQL. For example, the following query: Category = = 'Device’ and Type
= = ‘Display’ returns a list of all displays present in the active space.

e) Context File System
Active spaces are often designated for specific tasks. The context of these tasks can determine the
information that is meaningful and can be used to prune out irrelevant material. Long running processes
may not have the luxury of human intervention to locate required data, which may vary over time due to
changes in context. If relevant information is known to exist in a particular location, the application is
relieved from performing costly searches over the entire collection of data. In addition, users are highly
mobile in active spaces and should not be burdened with manually transferring files or data, be it
configurations, preferences, or application data from one environment to another. The environment should
assist in making personal storage automatically available in the users' present location.

To address the foregoing issues, we have developed a context-aware file system (CFS) that uses context to
alleviate many of the tasks that are traditionally performed manually or require additional programming
effort. More specifically, context is used to 1) automatically make personal data available to applications,
conditioned on user presence, 2) organize data to simplify the location of data important for applications and
users, and 3) retrieve data in a format based on the context of user preferences or device characteristics
through dynamic data types. CFS constructs a virtual directory hierarchy [22] based on the types of context
that have been associated with particular files and aggregates related material. The layout of the directory
hierarchy is implemented using a mounting mechanism, where mount points are owned by users and contain
context tags. Users may merge their personal mount points into a space to make their data available to
applications and other users. CFS is aware of different types of context, which are defined by the context
service as well as by the users and applications.

Context is presented as directories, where path components represent context types and values. The file
system path syntax uses the 4-ary predicate structure from the context service, where the relater defaults to
equality. Context may be attached to files and directories by copying data to a context directory, which
associates the particular context to the data. The virtual directory hierarchy forms a simple query language
to determine what types of contexts are attached to files. For example, to determine which files have the
context of location == RM2401 && situation == meeting associated with them, one may
enter the /location:/RM2401/situation:/meeting directory.

CFS uses the current context properties of the environment (e.g., location, time, situation, weather) together
with user specified properties to display the correct application data. For example, a seminar application
may require all papers that are to be discussed during a seminar. This application may be automatically
started when the seminar is started, triggered from a calendar or when the moderator arrives, and therefore
must be able to locate the correct files to display. The application simply opens the directory for the current
papers, e.g., /type:/papers/current:. The file system will use the current location, situation, and
time information along with the fact that “papers” are requested to find the correct files for the application.
The contents of this directory may automatically change every week, as papers are added and old papers
time out. However, from the application point of view, it simply opens the same directory every week and
finds the relevant material.

The queries that are performed are not simply a combination of the current context and the application
requested material; the space may define a context that is irrelevant to the current task. For example, the
context “the weather is sunny” may be meaningless to the seminar application, but may make sense for a
tele-presence application. The system resolves this issue by ignoring any context that is valid in the
environment, but that is not explicitly associated with the data. Although the context directory structure is
viewed as a hierarchy, context directories impose no fixed ordering, resulting in a forest rather than a tree
structure; context paths can be traversed in any order.

The CFS architecture is composed of mount and file servers. Each active space has a namespace that is
maintained by one mount server. The namespace changes as users physically move in and out of the space.
File servers may be located locally or remotely to export storage to the local space. Our servers are
implemented at application-level and leverage existing native file systems to access files and directories.
More details about the CFS can be found in [23].

3.2 Application Framework
Active spaces entail a user-centric, resource-aware, multi-device, context-sensitive, mobile application
model. Applications are partitioned among a group of coordinated devices [24], receive input events from
different devices, present their state using different types of devices (e.g., sound system, display, and device
to control temperature), and adapt to changes in the environment. Active spaces allow users to decide how to
interact with applications using a number of inputs, outputs, and processing devices. However, development
of applications for active spaces becomes a challenge. For example, an application may require moving the
output data from one display to another, duplicating the output to different displays, transforming a visual
representation into speech, and switching from a mouse to a voice input sensor, all of which must be
performed providing application consistency guarantees.

We have developed an application framework that provides mechanisms to construct, run or adapt existing
applications to active spaces. The framework is composed of a distributed component-based infrastructure, a
mapping mechanism, and a group of policies to customize different aspects of the applications. The
application framework infrastructure reuses the application partitioning proposed by the traditional Model–
View–Controller [25] and introduces new functionality to export and manipulate the bindings of the
application components; the mapping mechanism customizes applications to different active spaces; finally,
the policies define different sets of rules to customize several aspects of applications including instantiation,
mobility, reliability, and composition (number of components and their bindings).

The application infrastructure is composed of four components: model, presentation (generalization of
view), controller, and coordinator. The first three components constitute the building blocks for any
application. The last component, the coordinator, is responsible for the management of the other three
components. The model implements the application logic, the presentation exports the application data, and
the controller maps input events (e.g. touch screen events and context changes) into method requests for the
model. These input events are generated by input sensors, which are the hardware and software entities that
trigger changes in the application. The model, presentation, and controller are strictly related to application
domain functionality (e.g., music jukebox functionality), while the coordinator provides the meta-level
functionality of the application. Figure 4 illustrates the framework infrastructure.

Figure 4. Application Model Infrastructure.

The heterogeneity of active spaces requires a mechanism to customize applications to different scenarios.
For example, a calendar application running in an active office may use simultaneously a plasma display to
present the appointments for the week, the handheld to display the appointments for the day, and an input
sensor running in the desktop PC to enter data. However, the same calendar running in an active car may use
the sound system of the car to broadcast information about the next appointment, and an input sensor based
on speech recognition to query the calendar as well as to enter and delete data. The mapping mechanism
defines two application description files: Application Generic Description (AGD) and Application
Customized Description (ACD). The AGD is an active space independent description created by the
developer that lists the application components, the minimum and maximum number of instances allowed,
and their requirements (e.g., audio output, and Windows OS). The ACD consists of a list of application
components, including their associated execution nodes (chosen according to the component requirements)
and initialization parameters. The ACD is implemented as a script that coordinates the instantiation and
assembly of the different components. The specialization mechanism generates ACDs using an AGD and the
space repository service of the target active space. The mapping mechanism uses the space repository to find
the appropriate devices and services according to the requirements stored in the AGD.

The application framework infrastructure and the mapping mechanism provide the tools to build and
instantiate applications. The policies customize different aspects of the application including reliability, how
to react to changes in the environment (e.g., context changes), and how to implement mobility. The
application framework relies on policies to address all these issues. Users can define their own policies or
can use default policies provided by the framework.

We have introduced four changes to the original MVC to accommodate the requirements for environmental-
awareness, application partitioning, context-sensitivity, user-centrism, and mobility. First, we define a new
component called presentation that models any output representation, not only graphical as proposed by the
MVC view. Second, we generalize the definition of the MVC's input sensor (hardware device) to incorporate
software components (e.g., context input sensor). Third, we introduce a new component called the
coordinator to manage the composition of the application components (meta-level). Finally, we generalize
the input sensor time-sharing model defined by the MVC into a space-time-sharing model. According to
MVC, all applications' views and controllers share the same input sensors (e.g., mouse and keyboard) and
therefore the input sensors must be scheduled. Graspable interfaces [26] introduce the concept of space-
sharing, where different input sensors are assigned to different functional aspects of the application,
therefore avoiding the need for scheduling them. We combine both approaches into space-time-sharing to
model the type of applications we consider. For example, a music application running in an active space uses
a PDA to control the current song, and speech recognition to control the sound level (space-sharing),
however the same space may host a calendar application that uses the PDA to browse appointments, and
speech recognition to control the calendar's functionality (time-sharing). Space-time-sharing allows more
than one controller and presentation to be active at the same time, which contrasts with MVC where only

Presentation

Model

Coordinator

Application
Base Level

Application Meta-Level

MPCC Application

Input Sensor

Controller Controller Controller

PresentationPresentationPresentationInput Sensor Input Sensor

one controller-view pair can be active at anytime. More details of the application framework can be found in
[27].

4. Gaia Management Tools
In this section we describe the scripting language we use in Gaia and the bootstrap mechanism.

4.1 Lua: Gaia’s scripting language
Gaia uses a high level scripting language, called LuaOrb [28], to program and configure active spaces and to
coordinate the active entities they contain. LuaOrb is based on the interpreted language Lua [29], which
simplifies management and configuration tasks and allows for rapid prototyping and testing. The interpreter
for Lua is fast and has a small memory footprint, which makes it suitable for resource-constrained devices.
LuaOrb implements language bindings between Lua and CORBA, COM, and Java. The ability of LuaOrb to
communicate with various component models directly allows it to easily interact with the components in our
system. We use Lua to implement the bootstrap algorithm, to instantiate applications, to interact with
execution nodes to create components and easily glue them together, and to quickly test components and
applications.

Table 1 presents an example script that instantiates and assembles an MP3 application. The script uses the
Gaia space repository to obtain a handle to an audio output device (line 1), an execution node for the model
(line 2), an execution node for the coordinator (line 3), and a touch screen called plasma 1 for the input
sensor. Then, it uses the component management core functionality to create the coordinator (line 5), the
model (line 6), the presentation (line 7), and the input sensor (line 8). Finally it assigns the model to the
coordinator (line 9) and registers the presentation (line 10) and the input sensor (line 11) with the application
using the interface exported by the coordinator.

Table 1. Lua Script Example: Application instantiation and assembly.

Although the same result can be accomplished with languages such as C++ and Java, it requires more code,
time, and user effort. Lua effectively simplifies the manipulation and coordination of entities.

4.2 Bootstrap
Gaia implements a bootstrap protocol that interprets a configuration file (Lua script) and starts the kernel
services accordingly. The configuration file contains information about the Gaia Kernel services, such as the
name of the service, the name of the interface of the service, the Gaia node or nodes that will host the
service, the service instantiation policy (i.e., instantiate the service in all Gaia nodes or only in the first
available Gaia node), and start parameters. Individual Gaia Kernel services can also specify additional
configuration parameters. Currently, the active space administrator is responsible for providing the list of
devices contained in the space. However, in the future we expect automatic device discovery by means of
different sensor technologies.

1. local presentationExNode = Gaia.getEntity("Category == 'Device' and Type == 'AudioOut' ")
2. local modelExNode = Gaia.getEntity("Category == 'Device' and Type == 'ExecutionNode'
 and Name == 'aspc1.uiuc.edu'")
3. local coordinatorExNode = Gaia.getEntity("Category == 'Device' and Type == 'ExecutionNode'
 and Name == 'aspc2.uiuc.edu'")
4. local inputSensorExNode = Gaia.getEntity("Category == 'Device' and Type == 'Touchscreen'
 and Name == 'plasma1'")
5. local coordinator = coordinatorExNode:createComponent("Coordinator", "-name MP3Coordinator")
6. local model = modelExNode:createComponent("MP3Model", "-name MP3Model")
7. local presentation = presentationExNode:createComponent("MP3Presentation", "-name MP3Player")
8. local inputsensor = inputSensorExNode:createComponent(“VCRInputSensor”,”-name MP3InputSensor”)
9. coordinator:setModel(model)
10. coordinator:registerPresentation(presentation)
11. coordinator:registerInputSensor(inputsensor)

Figure 5 illustrates a state transition diagram with the instantiation order of the Gaia Kernel services. Solid
circles denote Gaia Kernel services, while dotted circles denote middleware specific services (CORBA in
our current Gaia version).

Figure 5. Gaia Kernel Bootstrap sequence.

The configuration file contains a list of primary and backup Gaia Nodes for each Gaia Kernel service; the
bootstrap process uses the dependencies diagram and the configuration file to decide whether or not to start a
service in a particular Gaia Node. Gaia uses a timeout mechanism and a probing protocol to ensure that each
Gaia Service is started in at most one machine (as specified in the configuration file).

Sidebar 2 – Gaia OS: Extending Traditional Operating Systems to Physical
Spaces
The motivation behind Gaia OS is to abstract a space and all the resources it contains as a single
programmable entity. However, this motivation is not new; it is the same motivation behind traditional
operating systems. According to Silberschatz et al, “the purpose of an operating system is to provide an
environment in which a user can execute programs in a convenient and efficient manner” [30]. Gaia OS
provides such environment at the space level (i.e. room, car, and home).

Silberschatz et al. define a group of seven services that are common for every operating system, namely: (1)
program execution, (2) I/O operations, (3) File-system manipulation, (4) Communications, (5) Error
detection, (6) Resource allocation, (7) Accounting and Protection.

Gaia OS provides functionality that covers the first six services defined by Silberschatz, and we are currently
finishing a security prototype that provides functionality for accounting and protection. We provide next a
comparison between the six traditional services and their Gaia OS counterpart.

Program Execution
The Gaia OS Component Management Core (CMC) provides functionality to create, destroy, and upload
components in any execution node present in the a ctive space. The CMC uses the program execution
facilities of the execution node’s OS, which includes memory, thread, and process management.

I/O Communications
Gaia OS leverages the low-level OS I/O functionality and provides device drivers (implemented as
distributed objects) that export this functionality to the rest of the active space. Gaia OS also defines default

Interface
Repository

Remote
Execution

Node

Naming
Service

Event
Manager

Presence
Service

Space
Repository

Component
Repository

Context
File System

Gaia Service CORBA Required Service

For every device capable of
hosting Gaia Components

Context
Service

Gaia Kernel
Configuration
File

I/O channels (i.e. input, output, and error), which are mapped to event channels. This allows creating a
default “console” for the space.

File-System Manipulation
CFS provides functionality to manipulate files in active spaces. CFS interacts with the devices’ low-level
operating systems’ file-systems to access and export the data to the active space. The specific location of the
files is hidden from users and files can be accessed from any device in the active space. CFS extends
traditional operating systems with functionality to transform data to different formats dynamically and to use
context to organize the data based on different properties.

Communications
Gaia OS supports both direct and indirect communication mechanisms. Direct communication is similar to
synchronous low-level OS IPC mechanisms, while indirect communication is the counterpart to
asynchronous low-level OS IPC. Gaia OS provides RPC support for direct communication, and events (i.e.
suppliers and consumers) for indirect communication. In both cases, Gaia OS leverages standard
communication middleware. Events are similar to Unix signals and we use them in Gaia to notify entities in
the active space about new resources added and removed, error conditions, changes in the file-system, and
application state changes. The use of asynchronous events improves the reliability of the system by
decoupling event producers from event listeners. While Gaia events are used mostly for signaling purposes,
Gaia entities use other mechanisms such as RPC –for remote method invocations– and non-blocking
streaming –for audio and video transmission.

Error Detection
Error detection includes both software and hardware errors that affect the execution of applications. Gaia OS
uses the event service to report errors. Users register services that receive the error notifications and react
accordingly (e.g. notify users, restart components, and suspend applications).

Resource Allocation
In traditional operating systems, resource allocation is related to the functionality required to manage
hardware resources including memory, CPU, and disk. Gaia OS leverages this functionality and extends the
notion of resource allocation to resources (i.e. devices, services, and applications) present in the active space.
The Gaia SR stores information about resources present in the space, their owner, status (i.e. free, used,
available, and malfunctioning), and properties specific to each resource. Applications use the SR to obtain
the resources they require to execute. Gaia OS implements the presence service that provides functionality
that is conceptually similar to “plug and play” mechanisms offered by most modern operating systems. The
heterogeneity and large number of resources contained in an active space require the presence services to
maintain soft-state about existing resources for reliability reasons.

5. Gaia Utilization Example: The Presentation Manager
We present in this section an application based on Gaia (Presentation Manager [31]) that we use regularly to
present slideshows in our prototype active meeting room (Figure 1). The application exports functionality to
present slides in multiple displays simultaneously, supports moving and duplicating slides to different
displays during the presentation, and allows moving and duplicating the input sensor that controls the
presentation to different devices. The presentation manager is based on the Gaia application framework and
uses Microsoft’s Power Point to manipulate the slides (using the COM interface).

According to our experience using the application, most of the users edit the presentation in their offices and
use CFS to automatically import the data in the active meeting room. The most usual interaction mechanism
is a wireless enabled handheld device running a software input sensor consisting of start, stop, next, and
previous push buttons. The rest of the section consists of three subsections that summarize how the
slideshow presenter enters and registers with the space, starts the presentation, and interacts with the
application. We will focus primarily on the interaction between the application and the Gaia services.

Speaker Registering with the Active Space
The speaker enters the room carrying a handheld device and an RF active badge. The presence service
detects the badge and sends an event to the “person/presence” channel. This event contains information
about the user, including a reference to his or her profile. The space repository receives the event, retrieves
an XML description for the user entity and stores the information. The context file system also receives the
event about the new user, accesses the user profile, obtains the user’s mount points, and mounts the data in
the space. The slideshow file stored in the speaker’s active office is now accessible from the active meeting
room.

Next, the user registers the handheld with the space, so he or she can use it to control the presentation. The
room is equipped with infrared beacons that broadcast the name of the space and a handle to a directory
service. This directory service (a CORBA naming context) contains references to the Gaia kernel services.
The handheld device picks up the infrared beacon, resolves the event manager from the directory, and
initiates the beaconing mechanism that periodically sends a heartbeat event to the “device/heartbeat”
channel. The presence service receives the event and sends a new event to the “device/presence” channel to
notify the rest of the space about the new device. The space repository receives the event, contacts the device
to retrieve the XML description, and stores the information. Both the user and the handheld device are now
entities of the active space; they are stored in the space repository, can be contacted by other entities, and
can use the resources present in the space.

Starting the Application
The active meeting room runs an application that triggers specific actions according to user specified
conditions. We configure this application so it automatically starts the presentation manager application
when the speaker is present in the room. This application registers with the context service to be notified
when the room context meets the previously mentioned condition. The entry in the trigger service is a Lua
script that gets the name of the presentation file from the “/type:/presentation/current:” context directory and
starts the presentation manager. The context associated to the slideshow presentation file includes the
following entry: “location=2401”. Therefore, when the user data is mounted in the Active Meeting Room
2401, the file is visible from /type:/presentation/current:. The Lua script stored in the trigger service requires
a valid ACD to start the application. The script uses the file system and accesses
“/type:/lua/acd:/gpm/current:”. This directory contains presentation manager ACDs specifically customized
for 2401. The Lua script chooses an ACD named “default”.

The ACD is also a Lua script that interacts with the component management core to instantiate the
components. Next, the ACD contacts the coordinator of the application and registers the model, the
presentations, the controllers, and the input sensors. The model interacts with the event manager to create a
channel that it uses to send the update messages to the presentations and registers the presentations with the
channel. The coordinator assigns the model’s reference to the presentations, and the controller’s reference to
the input sensors. All the application components initiate the beaconing mechanism and therefore are
detected by the presence service, are introduced to the space using an “entered” event, and are registered in
the space repository.

Interacting with the Application
The default presentation manager ACD creates the application input sensor in one of the room’s touch
screens. However, the speaker decides to move the input sensor to his or her handheld device. In order to
move application components we provide a library that interacts with the space repository to locate the
handheld and create a new instance of the input sensor using the component management core. Next, it
locates the coordinator of the application in the space repository, registers the new input sensor and
unregisters the original one. Finally, the library uses the component management core to delete the original
input sensor. The presence service stops receiving heartbeats from the original input sensor and therefore
sends an event to the “service/presence” channel to notify that the entity left. The space repository
automatically removes the information about the entity. Using the functionality provided by the library, the

speaker can move the presentations (i.e. the slides) to new displays in the middle of a presentation.
Examples of new displays are the PDAs of people entering the meeting room.

The presentation manager uses four plasma displays simultaneously. When the user selects start on the input
sensor running on the handheld, the input sensor sends a request to the application controller, which sends a
“startPresentation” request to the model. The model sends a “start” event to the application updates channel.
As a result, all presentations contact the model to obtain a handle to the presentation file. The model
leverages the context file system to open the file and returns a handle to the file. The presentations get the
file and display the first slide of the presentation. When the users selects “next”, the input sensor sends a
request to the controller, which sends a “nextSlide” request to the model. The model sends a “next” event to
the application channel, which instructs presentations to display the next slide.

6. Related Work
There are several projects that address issues similar to Gaia. In this section we present some of these
projects and explain how they compare to Gaia.

 The Microsoft Easy Living project [32] focuses on home and work environments and states that computing
must be as natural as lighting. The main properties of their environments are self-awareness, casual access,
and extensibility. The infrastructure allows interfaces to move, according to user location. The project uses
computer vision to recognize gestures and users, and to detect user location. The system uses this
information to customize the room accordingly. We differ in that we fundamentally change the way in which
applications are built, moving away from the desktop paradigm, and allowing application partitioning on
different devices.

The i-Land [33] and Roomware [34] research projects present an infrastructure that digitally augments
meeting rooms. The goal is to offer an environment where it is easy to exchange ideas, digitally record the
results of the meetings, search in knowledge bases, and provide tools for group collaboration focusing on
multimedia data exchange. The Interactive Wokspaces [35] from Stanford presents an augmented meeting
room that promotes group work. The room contains wall-sized touch screens, several projectors, arrays of
microphones, speakers, laptops and PDAs. The project identifies the importance of a high level operating
system to coordinate the entities contained in the room. Roomware, i-Land, and Interactive Workspaces are
interested in the interaction with physical spaces (mostly meeting rooms) and collaborative work groups.
Our work is similar to Roomware and Interactive Workspaces in that we believe there is a need for a
supporting infrastructure. However, we focus on generic spaces (e.g. office and house) which may or may
not imply collaborative work. We consider that while some active spaces define a collaborative environment
(e.g. meeting room and classroom), other active spaces are mostly single-user based (e.g. office and car).
Furthermore, Gaia defines the notion of mobile users that can move their applications and data across
different active spaces.

Aura [36] shares several common design goals with Gaia. Aura emphasizes the notion of mobile users
moving around different environments. Their definition of environment is similar to our proposed notion of
Active Space. Aura uses the term task to identify applications associated to users capable of migrating from
one environment to another. Aura defines a software infrastructure to support the execution of these tasks,
which maximizes the use of available resources, and minimizes user distraction. The main difference
between Gaia and Aura is that Gaia emphasizes the notion of space programmability. Gaia provides
mechanisms to allow users configure their applications to benefit from the resources contained in their
current space. Users can interact with multiple devices simultaneously, can reconfigure applications
dynamically, can suspend and resume groups of applications, and can program the behavior of applications
based on context attributes. Gaia emphasizes the interaction between users and active spaces.

7. Conclusions, Contributions, and future work.
We present in this paper Gaia, a middleware infrastructure capable of managing resources contained in
physical spaces. The functionality exported by Gaia simplifies the development of portable applications that

can be dynamically partitioned and mapped to a variety of devices, can be customized based on the space
context, are bound to users, and can move across different spaces.

Gaia encapsulates the heterogeneity of active spaces, and presents them as a programmable environment,
instead of a collection of individual and disconnected heterogeneous devices. Gaia’s application framework
provides functionality to build applications that exploit the resources of active spaces. Furthermore, Gaia
emphasizes the interaction between users and active spaces by providing functionality to customize
applications in a variety of ways. User data and applications are abstracted into a user virtual space and can
be mapped dynamically to the resources located in the current environment. Users can move across different
active spaces and have their virtual space always available.

Gaia contributes to ubiquitous computing in four aspects:

1. It extends the concepts of traditional operating systems to ubiquitous computing environments.
2. It provides an application framework that supports the development of applications for ubiquitous

computing environments.
3. It implements a file system that uses context to organize the data according to the user activities.
4. It abstracts users’ data and applications into the user virtual space that can be moved across and

mapped to different active spaces.

As part of our future work we plan to develop new applications to validate different aspects of Gaia. We also
plan to extend the infrastructure with a security service that is currently under development, and expand our
current implementation of the services that support the user virtual space abstraction. Finally, we are also
studying how to federate Gaia services in order to aggregate different active spaces.

References
[1] M. Weiser, "The Computer for the Twenty-First Century," in Scientific American, 1991, pp. 94-

101.
[2] F. Kon, A. Singhai, R. H. Campbell, D. Carvalho, R. Moore, and F. J. Ballesteros, "2K: A

Reflective, Component-Based Operating System for Rapidly Changing Environments," presented at
ECOOP'98 Workshop on Reflective Object-Oriented Programming and Systems, Brussels,
Belgium, 1998.

[3] M. Roman and R. H. Campbell, "GAIA: Enabling Active Spaces," presented at 9th SIGOPS
European Workshop, Kolding, Denmark, 2000.

[4] F. Kon, R. H. Campbell, M. D. Mickunas, K. Nahrstedt, and F. J. Ballesteros, "2K: A Distributed
Operating System for Dynamic Heterogeneous Environments," presented at 9th IEEE International
Symposium on High Performance Distributed Computing, Pittsburgh, 2000.

[5] A. Singhai, A. Sane, and R. H. Campbell, "Quarterware for Middleware," presented at 18th IEEE
International Conference on Distributed Computing Systems (ICDCS 1998), Amsterdam, The
Netherlands, 1998.

[6] G. Coulson, G. Blair, N. Davies, P. Robin, and T. Fitzpatrick, "Supporting Mobile Multimedia
Applications through Adaptive Middleware," IEEE Journal on selected areas in Communications,
vol. 17, pp. 1651-1659, 1999.

[7] F. Kon, F. Costa, R. Campbell, and G. Blair, "The Case for Reflective Middleware,"
Communications of the ACM, vol. 45, pp. 33-38, 2002.

[8] F. Kon, M. Roman, P. Liu, J. Mao, T. Yamane, L. C. Magalhaes, and R. H. Campbell, "Monitoring,
Security, and Dynamic Configuration with the dynamicTAO Reflective ORB," presented at
IFIP/ACM International Conference on Distributed Systems Platforms and Open Distributed
Processing (Middleware'2000), New York, 2000.

[9] D. C. Schmidt, D. L. Levine, and S. Mungee, "The Design of the TAO Real-Time Object Request
Broker," Computer Communications. Elsevier Science, vol. 21, 1998.

[10] M. Roman, A. Singhai, D. Carvalho, C. Hess, and R. H. Campbell, "Integrating PDAs into
Distributed Systems: 2K and PalmORB," presented at International Symposium on Handheld and
Ubiquitous Computing (HUC'99), Karlsruhe, Germany, 1999.

[11] M. Roman, D. Mickunas, F. Kon, and R. H. Campbell, "LegORB and Ubiquitous CORBA,"
presented at IFIP/ACM Middleware'2000 Workshop on Reflective Middleware, IBM Palisades
Executive Conference Center, NY, 2000.

[12] M. Roman, F. Kon, and R. H. Campbell, "Reflective Middleware: From Your Desktop to Your
Hand," IEEE Distributed Systems Online. Special Issue on Reflective Middleware, 2001.

[13] G. D. Abowd, "Classroom 2000: An experiment with the instrumentation of a living educational
environment," IBM Systems Journal, vol. 38, pp. 508-530, 1999.

[14] A. K. Dey, "CyberDesk: A Framework for Providing Self-Integrated Context-Aware Services,"
Knowledge-Based Systems, vol. 11, pp. 3-13, 1998.

[15] A. K. Dey, G. D. Abowd, and D. Salber, "A Context-Based Infrastructure for Smart
Environments," presented at Workshop on Managing Interactions in Smart Environments
(MANSE), 1999.

[16] M. L. Dertouzos, "The Future of Computing," in Scientific American, 1999.
[17] A. Fox, "Building Scalable, Composable, Adaptive Internet Services with TACC," in PhD Thesis in

EECS. Berkeley: University of Berkeley, 1998.
[18] M. Henning and S. Vinosky, Advanced CORBA Programming with C++: Addison-Wesley, 1999.
[19] B. Borthakur, "Distributed and Persistend Event System For Active Spaces," in Master Thesis in

Computer Science. Urbana-Champaign: University of Illinois at Urbana-Champaign, 2002, pp. 67.
[20] B. N. Schilit, N. Adams, and R. Want, "Context-Aware Computing Applications," presented at

IEEE Workshop on Mobile Computing Systems and Applications, 1994.
[21] A. K. Dey and G. D. Abowd, "The Context Toolkit: Aiding the Development of Context-Aware

Applications," presented at Workshop on Software Engineering for Wearable and Pervasive
Computing, Limerick, Ireland, 2000.

[22] D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. W. O. T. Jr., "Semantic File Systems," presented
at SOSP13, 1991.

[23] C. K. Hess, "A Context File System for Ubiquitous Computing Environments," University of
Illinois at Urbana-Champaign, Urbana-Champaign, CS Technical Report UIUCDCS-R-2002-2285
UILU-ENG-2002-1729, July 2002 2002.

[24] B. A. Myers, "Using Hand-Held Devices and PCs Together," in Communications of the ACM, vol.
44, 2001, pp. 34-41.

[25] G. E. Krasner and S. T. Pope, "A Description of the Model-View-Controller User Interface
Paradigm in the Smalltalk-80 System," ParcPlace Systems, Inc., Mountain View 1988.

[26] G. W. Fitzmaurice, "Graspable User Interfaces," in PhD Thesis in Computer Science. Toronto:
University of Toronto, 1996.

[27] M. Roman and R. H. Campbell, "A User-Centric, Resource-Aware, Context-Sensitive, Multi-
Device Application Framework for Ubiquitous Computing Environments," University of Illinois at
Urbana-Champaign, Urbana, CS Technical Report UIUCDCS-R-2002-2284 UILU-ENG-2002-
1728, July 2002 2002.

[28] R. Cerqueira, C. Cassino, and R. Ierusalimschy, "Dynamic component gluing across different
componentware systems," presented at Internationa Symposium on Distributed Objects and
Applications (DOA'99), Edinburgh, 1999.

[29] R. Ierusalimschy, L. Figuereido, and W. Celes, "Lua: An Extensible extension language," presented
at Software: Practice and Experience, 1996.

[30] A. Silbershatz and P. Galvin, Operating System Concepts, 5 ed: Addison Wesley, 1998.
[31] C. K. Hess, M. Roman, and R. H. Campbell, "Building Applications for Ubiquitous Computing

Environments," presented at Pervasive 2002 - International Conference of Pervasive Computing,
Zurich, Switzerland, 2002.

[32] B. Brumitt, B. Meyers, J. Krumm, A. Kern, and S. Shafer, "EasyLiving: Technologies for
Intelligent Environments," presented at Handheld and Ubiquitous Computing (HUC), Bristol,
England, 2000.

[33] P. Tandler, "Software Infrastructure for Ubiquitous Computing Environments: Supporting
Synchronous Collaboration with Heterogeneous Devices," presented at Ubicomp 2001: Ubiquitous
Computing, Atlanta, Georgia, 2001.

[34] N. Streitz, J. Geissler, and T. Holmer, "Roomware for Cooperative Buildings: Integrated Design of
Architectural Spaces and Information Spaces," presented at Workshop on Cooperative Buildings
(CoBuild'98), Darmstad, Germany, 1998.

[35] A. Fox, B. Johanson, P. Hanrahan, and T. Winograd, "Integrating Information Appliances into an
Interactive Workspace," IEEE Computer Graphics & Applications, vol. 20, 2000.

[36] J. P. Sousa and D. Garlan, "Aura: an Architectural Framework for User Mobility in Ubiquitous
Computing Environments," presented at IEEE Conference on Software Architecture, Montreal,
2002.

