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Abstract 
We envision a future where people’s living spaces are interactive and programmable. Users interact with 
their offices, homes, cars, malls and airports to request information, benefit from the resources available, 
and configure the habitat’s behavior. Data and tasks are always accessible and are mapped dynamically to 
convenient resources present in the current location. Users may extend the habitat with personal devices 
that seamlessly integrate with the environment.  Such user-oriented interactive environments may require a 
novel software infrastructure to operate their resources, sense context properties, and assist in the 
development and execution of applications. In this article, we present an experimental middleware 
infrastructure called Gaia that we have used to prototype the resource management of and provide the user-
oriented interfaces for such physical spaces populated with network-enabled computing resources.  To limit 
the scope of our research, we focus on physical spaces used for teaching; classrooms, offices, and lecture 
rooms. The system described in this paper is derived from a series of experiments starting in 1996.  We show 
how, by applying the concepts of a conventional operating system to middleware, we can manage the 
resources, devices and distributed objects in a room, building, or physical space, how a distributed 
extension of the model–view–controller that is use in personal computers simplifies and structures practical 
applications for these environments, and how, by driving context-sensitivity into its data storage 
mechanisms, the system can help satisfy the requirements for user-centricity and mobility. 

1. Introduction 
Pervasive computing environments encompass a spectrum of computation and communication devices that 
seamlessly augment human thought and activity with digital information, processing, and analysis to provide 
an observed world that is automated and enhanced by the behavioral context of its users. Large numbers of 
heterogeneous computing devices provide new functionality, enhance user productivity, and ease everyday 
tasks. In home, office, and public spaces, ubiquitous computing will unobtrusively augment work or 
recreational activities with information technology that optimizes the environment for people’s needs.  
 
The motivation behind our research is the lack of a suitable software infrastructure to assist us in the 
development of applications for ubiquitous computing habitats or living spaces. Figure 1 presents our 
prototype ubiquitous computing environment. In this environment, users interact with a number of devices 
simultaneously, register their own devices as a resource of the environment, require application adaptation 
according to changes in the environment, access data located in remote spaces, and suspend applications and 
restart them later either in the same place or in a different one.   Homes, offices, and meeting rooms capable 
of sensing user actions and equipped with a large variety of devices will assist users with different tasks. We 
refer to these ubiquitous computing environments as Active Spaces, an extension to physical spaces. 
Physical spaces (Figure 2a) are geographic regions with limited and well defined physical boundaries, 
containing physical objects, heterogeneous networked devices, and users performing a range of activities. 
We define an Active Space (Figure 2b) as a physical space coordinated by a responsive context-based 
software infrastructure that enhances the ability of mobile users to interact and configure their physical and 
digital environment seamlessly. A requirement of Active Spaces is to support the development and 
execution of user-centric mobile applications. 
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Figure 1. Experimental Active Space 

 

1.1. Our Vision 
We believe that active spaces will become commonplace. People will interact with their physical habitats to 
customize their behavior, gain access to a greater amount of information, and benefit from the resources 
contained in the space. In this scenario, user data and applications are not confined to any one active space; 
they are associated with users using the notion of a “session”. This allows users to move across different 
active spaces and have their data and applications always available. When a user enters an active space, their 
sessions are dynamically mapped to the active space resources. Users can define different sessions and can 
activate and suspend them as required. We refer to the collection of sessions associated to a user and 
independent of particular active spaces as the user virtual space. This user virtual space requires support to 
locate resources available in the user’s environment and to map the sessions to the existing resources. The 
user-centric mobile application requirement of active spaces creates problems in our traditional approaches 
to building computer software infrastructure leading to a post-PC era of system software design.   
 
Active spaces such as the one depicted in Figure 1 challenge existing assumptions for traditional PC 
applications. As observed by Marc Weiser [1], the problem raised by ubiquitous computing is to develop 
systems that vanish into the background. In an active space there is no longer the notion of a one-to-one 
relationship between a user and the interfaces of keyboard, mouse and display. Indeed, the complexity of 
ubiquitous applications encourages a relationship between a user and an active space. Active space system 
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software support should simplify application programming and execution.  In a similar manner to the role 
that operating systems play in supporting traditional PC applications, active space applications need support 
to access and operate the resources contained in the space that hosts their execution.  

1.2. Our Approach 
We present in this article Gaia OS, a meta-operating system [2, 3] that aims at supporting the development 
and execution of portable applications for active spaces. Gaia is a distributed middleware infrastructure that 
coordinates software entities and heterogeneous networked devices contained in a physical space. Gaia 
exports services to query and utilize existing resources, to access and use current context, and provides a 
framework to develop user-centric, resource-aware, multi-device, context-sensitive, and mobile applications.  
 
We believe that extending the concepts of traditional operating systems to ubiquitous computing spaces 
simplifies the management of these spaces and the development of applications. The main contribution of 
Gaia is not in the individual services, but instead, in the interaction of these services. This interaction allows 
users and developers to abstract ubiquitous computing environments as a single reactive and programmable 
entity instead of a collection of heterogeneous individual devices. The description we present in this article 
is an overview of the overall Gaia architecture. This description focuses on Gaia as a complete system 
instead of trying to give all details about Gaia individual services.  
 

Sidebar 1 – Gaia OS Evolution 
Gaia OS is the result of six years of research on reflective middleware and meta-operating systems, 
middleware for handheld and embedded devices, and ubiquitous computing. Previous to the Gaia project, 
our group developed the 2K meta-operating system [2, 4], a reflective middleware operating system built on 
top of traditional operating system (e.g. Windows, Linux, Solaris, and PalmOS). 2K was strongly influenced 
by previous research on reflective middleware [5-7] and was built on top of a modified version of TAO [8], 
the pattern-based CORBA ORB from Douglas Schmidt et al. [9]. 2K hides device and operating system 
heterogeneity and can adapt dynamically to changes in the environment while maintaining the integrity of 
the overall system. Users in 2K interact with the system using different devices, therefore eliminating the 
one-to-one user-to-device traditional mapping. Individual devices in 2K become portals to the system. 
Following this approach, we started a new line of research to study how to integrate resource-limited mobile 
devices such as handheld and embedded devices into distributed computing environments [10]. These 
devices use middleware to interoperate with 2K and leverage the functionality provided by 2K services. As 
part of this research we developed an adaptable middleware prototype customized for handheld devices [11], 
which evolved into a fully reconfigurable middleware infrastructure [12]. This middleware allows bi-
directional interaction between the handheld devices and the meta-operating system. As a result of our 
previous research, and influenced by the research of Georgia Tech [13-15], MIT [16], and Berkeley [17] on 
ubiquitous computing, we created Gaia OS [3], a meta-operating system customized for physical spaces that 
supports the development of applications customized to these environments. Gaia OS provides a standard 
API that abstracts the complexity and heterogeneity associated to ubiquitous computing environments. The 
explicit binding between Gaia OS and physical spaces requires new services (not present in 2K) to take into 
account issues such as the context of the space and the detection of resources added to and removed from the 
space. 

3. Gaia: an Active Space System Software Infrastructure 
Gaia provides support for mobile user-centric active space applications. It manages the resources and 
services of an active space. It provides services for location, context, and events, and repositories with 
information about the active space.  The system is built as a distributed object system.  Figure 3 shows the 
three major building blocks of Gaia: the Gaia Kernel, the Gaia Application Framework, and the Applications 
 
The Gaia Kernel contains a management and deployment system for distributed objects and an interrelated 
set of basic services that are used by all applications. The Component Management Core dynamically loads, 
unloads, transfers, creates, and destroys all the components and applications of Gaia. Gaia components are 
distributed objects and require communication middleware to support remote interaction. The current 



 

implementation of Gaia uses CORBA [18]; however, it is possible to port Gaia to other communication 
middleware architectures including SOAP, RMI, or customized implementations. CORBA provides a stable 
infrastructure for distributed object interaction. However, the dynamism and heterogeneity of active spaces 
require extensions to deal with issues such as soft-state to handle crashing components and resources added 
to and removed from the space. Gaia’s five basic services are the Event Manager Service, Presence Service, 
Context Service, Space Repository Service, and Context File System. The Gaia software infrastructure 
implements a bootstrap mechanism that initiates the execution of the Gaia Kernel in any arbitrary physical 
space. Some of the services are built on top of existing middleware services (e.g. Event Manager), while 
others are extensions to the communication middleware (e.g. Presence Service).  
 
Gaia’s applications use a set of component building blocks, organized as the Gaia Application Framework, 
to support applications that execute within an active space.  The framework provides mobility, adaptation, 
and dynamic binding. The functionality permits commercial off the shelf as well as new applications to run 
in the active space. Active Space Application layer contains applications and provides functionality to 
register, manage, and control these applications through the Gaia Kernel services. 
 

 
Figure 3. Gaia Architecture 

3.1 Gaia Kernel 
Gaia applications are component-based, distributed and mobile, and therefore require support for remote 
component execution and management. The Component Management Core (CMC) provides Gaia with 
functionality for component creation, destruction, and uploading.  Remote execution nodes register with the 
active space and host the execution of Gaia components. The Gaia Kernel is composed of five services built 
as Gaia components which are described below in more detail. 

a) Event Manager 
Active spaces are highly dynamic execution environments that require a flexible mechanism to expose 
changes in their current state. These changes include components starting, applications moving, users 
entering and leaving, component beaconing updates, and contextual changes. The Event Manager Service is 
responsible for event distribution in the active space and implements a decoupled communication model 
based on suppliers, consumers, and channels. Each channel has one or more suppliers that provide 
information to the channel and one or more consumers that receive the information. The event manager has 
a single entry point and one or more event channel factories. Each event factory is responsible for creating 
event channels with a specific behavior, e.g. high speed events, or persistent events. Gaia defines a default 
set of event channels to notify interested Gaia components about new services, applications, people, errors, 
and component heartbeats. Applications can also define their own event channels for application state 
changes. The event service allows applications to tap into event channels to learn about changes in the 
system. 
 
The event manager is particularly convenient to decouple information suppliers from information 
consumers, therefore increasing system reliability. Suppliers and consumers can fail without disrupting the 
system. A crashing supplier can be automatically replaced with a replica that continues delivering messages 
to its assigned channel without the consumers being aware of the failure. Our current implementation of the 
event manager uses the CORBA Event Service [18] as the default event factory. More details of the event 
manager service can be found in [19]. 
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b) Context Service 
Gaia applications may use context information to adapt their behavior to accommodate user behaviors and 
activities[20]. Incorporating context into the infrastructure facilitates the adaptation of the computing 
environment to the needs of human users [1][2][3][4].  Our context service allows applications to query and 
register for particular context information so that they may adapt to their environment.  The context 
infrastructure consists of a number of components, called context providers that provide information about 
the current context.  These include sensors that track the location of people, the conditions within a room 
(e.g. temperature and sound) and other external conditions, such as weather and current stock prices. In 
addition, we also have components that can infer certain higher-level contexts based on sensed information. 
For example, we have a component that deduces the kind of activity going on in a room (i.e., meeting, 
presentation, or movie screening) based on who is in the room, which applications are running, and other 
cues. There exists a registry that maintains a list of the different context providers available and allows 
applications to find the providers that supply the contexts in which they are interested. 
 
We use a model for context that is based on first order logic and boolean algebra, which allows us to easily 
write various rules to describe context information. These rules may be a combination of lower level context 
information. We represent context through a 4-ary predicate, whose structure is borrowed from a simple 
clause in the English language of the form <subject><verb><object>. An atomic context predicate is defined 
in the following way: Context(<ContextType>, <Subject>, <Relater>, <Object>).  The Context Type refers 
to the type of context the predicate is describing, the Subject is the person, place or thing with which the 
context is concerned, and the Object is a value associated with the Subject.  In our implementation, the 
ContextType is mapped to an event channel.  The Relater relates the Subject and the Object such as a 
comparison operator (=, >, or <), a verb, or preposition.  Some example context predicates are: 
Context(location, chris, entering, room 3231); Context(temperature, room 3231, is, 98 F); Context(social 
relationship, venus, sister, serena); Context(stock quote, msft, >, $60); Context(printer status, srgalw1 printer 
queue, is, empty); Context(time, , Is, 12:00 01/01/01).  In some cases, one or more elements of a predicate 
may be empty (e.g., the Time context). It is possible to construct more complex contexts by performing first 
order logic operations such as quantification, implication, conjunction, disjunction, and negation of context 
predicates. One example of a rule is Context(Number of people, Room 2401, >, 4) AND 
Context(Application, Powerpoint, is, Running) => Context(Social Activity, Room 2401, Is, Presentation). 
 
Ideas behind our context infrastructure have been inspired from the Context Toolkit [21]. We structure the 
expressive power of contexts with first order logic to frame rules and queries and to infer properties 
involving context using mechanisms that are similar to those of Prolog and other automated theorem 
provers.  High-level context information may be determined from context information, similar to the 
aggregators of the Context Toolkit.  Our system also formalizes the ways in which context information is 
exchanged between different components in the system and allows us to describe the properties of various 
components [5].  

c) Presence Service 
As a resource-aware infrastructure, Gaia needs to maintain updated information about resources present in 
the active space. The presence service is responsible for detecting digital (e.g., service and application) and 
physical entities (e.g., furniture and people) present in an Active Space. Our current implementation of Gaia 
defines four basic types of entities: Application, Service, Device, and Person.  
 
The presence service implements a beaconing mechanism to maintain soft-state about entities present in the 
space and it is divided into two main subsystems: Digital Entity Presence and Physical Entity Presence. The 
Digital Entity Presence subsystem detects digital entities; these entities periodically send heartbeats to notify 
the presence service that they are in the active space. When a digital entity fails to send the heartbeat, the 
digital entity presence subsystem assumes that the entity is no longer available – either it was stopped or it 
crashed – and therefore notifies the rest of the space that the entity left. 
  
The Physical Entity Presence subsystem is responsible for detecting physical entities present in the active 
space. This subsystem uses different types of sensors to proactively detect the presence and, if possible, the 
location of physical entities. The physical entity presence subsystem implements the beaconing mechanism 



 

on behalf of the physical entities, acting as a proxy. The physical entity presence subsystem is implemented 
as an open infrastructure where different sensor device drivers and algorithms such as [21] can be 
incorporated. Our presence service differs from other existing context infrastructures (e.g. [21]) in that it 
provides functionality to detect and maintain soft-state information about software components, devices, as 
well as people. 

d) Space Repository 
Active space entities require functionality to learn about the properties of the resources available in the 
active space. For example, when an application starts executing, it uses the space repository to find 
appropriate resources (e.g., execution nodes, displays, and speakers). The space repository stores 
information about all software and hardware entities contained in the space (e.g., name, type, and owner) 
and provides functionality to browse and retrieve entities based on specific attributes.  The space repository 
learns about entities entering and leaving the active space by subscribing to the channels defined by the 
presence service. Applications use the space repository during their instantiation to find suitable resources. 
This level of indirection allows us to describe applications in a generic manner (active space independent) 
and map them to the resources contained in different active spaces. All active space resources have an XML 
description associated that lists their properties (e.g., type and location). When new resources are introduced 
in the active space, the space repository contacts them to obtain the XML description and stores the 
information. The current version of the space repository uses a CORBA Trader [18] to store the data about 
entities. We are currently using the constraint query language defined by the trader, although we plan to 
extend this language in the future with a generic language that could be mapped either to the CORBA Trader 
constraint language or to standard SQL. For example, the following query: Category = = 'Device’ and Type 
= = ‘Display’  returns a list of all displays present in the active space. 
  

e) Context File System 
Active spaces are often designated for specific tasks.  The context of these tasks can determine the 
information that is meaningful and can be used to prune out irrelevant material.  Long running processes 
may not have the luxury of human intervention to locate required data, which may vary over time due to 
changes in context.  If relevant information is known to exist in a particular location, the application is 
relieved from performing costly searches over the entire collection of data.  In addition, users are highly 
mobile in active spaces and should not be burdened with manually transferring files or data, be it 
configurations, preferences, or application data from one environment to another.  The environment should 
assist in making personal storage automatically available in the users' present location.   
 
To address the foregoing issues, we have developed a context-aware file system (CFS) that uses context to 
alleviate many of the tasks that are traditionally performed manually or require additional programming 
effort.  More specifically, context is used to 1) automatically make personal data available to applications, 
conditioned on user presence, 2) organize data to simplify the location of data important for applications and 
users, and 3) retrieve data in a format based on the context of user preferences or device characteristics 
through dynamic data types.  CFS constructs a virtual directory hierarchy [22] based on the types of context 
that have been associated with particular files and aggregates related material.  The layout of the directory 
hierarchy is implemented using a mounting mechanism, where mount points are owned by users and contain 
context tags.  Users may merge their personal mount points into a space to make their data available to 
applications and other users.  CFS is aware of different types of context, which are defined by the context 
service as well as by the users and applications. 
  
Context is presented as directories, where path components represent context types and values.  The file 
system path syntax uses the 4-ary predicate structure from the context service, where the relater defaults to 
equality. Context may be attached to files and directories by copying data to a context directory, which 
associates the particular context to the data.  The virtual directory hierarchy forms a simple query language 
to determine what types of contexts are attached to files.  For example, to determine which files have the 
context of location == RM2401 && situation == meeting associated with them, one may 
enter the /location:/RM2401/situation:/meeting directory.    
 



 

CFS uses the current context properties of the environment (e.g., location, time, situation, weather) together 
with user specified properties to display the correct application data.  For example, a seminar application 
may require all papers that are to be discussed during a seminar.  This application may be automatically 
started when the seminar is started, triggered from a calendar or when the moderator arrives, and therefore 
must be able to locate the correct files to display.  The application simply opens the directory for the current 
papers, e.g., /type:/papers/current:.  The file system will use the current location, situation, and 
time information along with the fact that “papers” are requested to find the correct files for the application.  
The contents of this directory may automatically change every week, as papers are added and old papers 
time out.  However, from the application point of view, it simply opens the same directory every week and 
finds the relevant material.   
 
The queries that are performed are not simply a combination of the current context and the application 
requested material; the space may define a context that is irrelevant to the current task.  For example, the 
context “the weather is sunny” may be meaningless to the seminar application, but may make sense for a 
tele-presence application.  The system resolves this issue by ignoring any context that is valid in the 
environment, but that is not explicitly associated with the data.  Although the context directory structure is 
viewed as a hierarchy, context directories impose no fixed ordering, resulting in a forest rather than a tree 
structure; context paths can be traversed in any order. 
 
The CFS architecture is composed of mount and file servers. Each active space has a namespace that is 
maintained by one mount server. The namespace changes as users physically move in and out of the space.  
File servers may be located locally or remotely to export storage to the local space.  Our servers are 
implemented at application-level and leverage existing native file systems to access files and directories. 
More details about the CFS can be found in [23]. 

3.2 Application Framework 
Active spaces entail a user-centric, resource-aware, multi-device, context-sensitive, mobile application 
model. Applications are partitioned among a group of coordinated devices [24], receive input events from 
different devices, present their state using different types of devices (e.g., sound system, display, and device 
to control temperature), and adapt to changes in the environment. Active spaces allow users to decide how to 
interact with applications using a number of inputs, outputs, and processing devices. However, development 
of applications for active spaces becomes a challenge. For example, an application may require moving the 
output data from one display to another, duplicating the output to different displays, transforming a visual 
representation into speech, and switching from a mouse to a voice input sensor, all of which must be 
performed providing application consistency guarantees.  
 
We have developed an application framework that provides mechanisms to construct, run or adapt existing 
applications to active spaces. The framework is composed of a distributed component-based infrastructure, a 
mapping mechanism, and a group of policies to customize different aspects of the applications. The 
application framework infrastructure reuses the application partitioning proposed by the traditional Model–
View–Controller [25] and introduces new functionality to export and manipulate the bindings of the 
application components; the mapping mechanism customizes applications to different active spaces; finally, 
the policies define different sets of rules to customize several aspects of applications including instantiation, 
mobility, reliability, and composition (number of components and their bindings). 
 
The application infrastructure is composed of four components: model, presentation (generalization of 
view), controller, and coordinator. The first three components constitute the building blocks for any 
application. The last component, the coordinator, is responsible for the management of the other three 
components. The model implements the application logic, the presentation exports the application data, and 
the controller maps input events (e.g. touch screen events and context changes) into method requests for the 
model. These input events are generated by input sensors, which are the hardware and software entities that 
trigger changes in the application. The model, presentation, and controller are strictly related to application 
domain functionality (e.g., music jukebox functionality), while the coordinator provides the meta-level 
functionality of the application. Figure 4 illustrates the framework infrastructure. 
 



 

 

 
Figure 4. Application Model Infrastructure. 

 
The heterogeneity of active spaces requires a mechanism to customize applications to different scenarios. 
For example, a calendar application running in an active office may use simultaneously a plasma display to 
present the appointments for the week, the handheld to display the appointments for the day, and an input 
sensor running in the desktop PC to enter data. However, the same calendar running in an active car may use 
the sound system of the car to broadcast information about the next appointment, and an input sensor based 
on speech recognition to query the calendar as well as to enter and delete data. The mapping mechanism 
defines two application description files: Application Generic Description (AGD) and Application 
Customized Description (ACD). The AGD is an active space independent description created by the 
developer that lists the application components, the minimum and maximum number of instances allowed, 
and their requirements (e.g., audio output, and Windows OS).  The ACD consists of a list of application 
components, including their associated execution nodes (chosen according to the component requirements) 
and initialization parameters. The ACD is implemented as a script that coordinates the instantiation and 
assembly of the different components. The specialization mechanism generates ACDs using an AGD and the 
space repository service of the target active space. The mapping mechanism uses the space repository to find 
the appropriate devices and services according to the requirements stored in the AGD. 
 
The application framework infrastructure and the mapping mechanism provide the tools to build and 
instantiate applications. The policies customize different aspects of the application including reliability, how 
to react to changes in the environment (e.g., context changes), and how to implement mobility. The 
application framework relies on policies to address all these issues. Users can define their own policies or 
can use default policies provided by the framework. 
 
We have introduced four changes to the original MVC to accommodate the requirements for environmental-
awareness, application partitioning, context-sensitivity, user-centrism, and mobility. First, we define a new 
component called presentation that models any output representation, not only graphical as proposed by the 
MVC view. Second, we generalize the definition of the MVC's input sensor (hardware device) to incorporate 
software components (e.g., context input sensor). Third, we introduce a new component called the 
coordinator to manage the composition of the application components (meta-level). Finally, we generalize 
the input sensor time-sharing model defined by the MVC into a space-time-sharing model. According to 
MVC, all applications' views and controllers share the same input sensors (e.g., mouse and keyboard) and 
therefore the input sensors must be scheduled. Graspable interfaces [26] introduce the concept of space-
sharing, where different input sensors are assigned to different functional aspects of the application, 
therefore avoiding the need for scheduling them. We combine both approaches into space-time-sharing to 
model the type of applications we consider. For example, a music application running in an active space uses 
a PDA to control the current song, and speech recognition to control the sound level (space-sharing), 
however the same space may host a calendar application that uses the PDA to browse appointments, and 
speech recognition to control the calendar's functionality (time-sharing). Space-time-sharing allows more 
than one controller and presentation to be active at the same time, which contrasts with MVC where only 
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one controller-view pair can be active at anytime. More details of the application framework can be found in 
[27]. 

4. Gaia Management Tools 
In this section we describe the scripting language we use in Gaia and the bootstrap mechanism. 

4.1 Lua: Gaia’s scripting language 
Gaia uses a high level scripting language, called LuaOrb [28], to program and configure active spaces and to 
coordinate the active entities they contain. LuaOrb is based on the interpreted language Lua [29], which 
simplifies management and configuration tasks and allows for rapid prototyping and testing. The interpreter 
for Lua is fast and has a small memory footprint, which makes it suitable for resource-constrained devices. 
LuaOrb implements language bindings between Lua and CORBA, COM, and Java. The ability of LuaOrb to 
communicate with various component models directly allows it to easily interact with the components in our 
system. We use Lua to implement the bootstrap algorithm, to instantiate applications, to interact with 
execution nodes to create components and easily glue them together, and to quickly test components and 
applications.  
 
Table 1 presents an example script that instantiates and assembles an MP3 application. The script uses the 
Gaia space repository to obtain a handle to an audio output device (line 1), an execution node for the model 
(line 2), an execution node for the coordinator (line 3), and a touch screen called plasma 1 for the input 
sensor. Then, it uses the component management core functionality to create the coordinator (line 5), the 
model (line 6), the presentation (line 7), and the input sensor (line 8). Finally it assigns the model to the 
coordinator (line 9) and registers the presentation (line 10) and the input sensor (line 11) with the application 
using the interface exported by the coordinator. 
 

 
Table 1. Lua Script Example: Application instantiation and assembly. 

Although the same result can be accomplished with languages such as C++ and Java, it requires more code, 
time, and user effort. Lua effectively simplifies the manipulation and coordination of entities.  

4.2 Bootstrap 
Gaia implements a bootstrap protocol that interprets a configuration file (Lua script) and starts the kernel 
services accordingly. The configuration file contains information about the Gaia Kernel services, such as the 
name of the service, the name of the interface of the service, the Gaia node or nodes that will host the 
service, the service instantiation policy (i.e., instantiate the service in all Gaia nodes or only in the first 
available Gaia node), and start parameters. Individual Gaia Kernel services can also specify additional 
configuration parameters. Currently, the active space administrator is responsible for providing the list of 
devices contained in the space. However, in the future we expect automatic device discovery by means of 
different sensor technologies. 
  

1. local presentationExNode = Gaia.getEntity("Category == 'Device' and Type == 'AudioOut' ") 
2. local modelExNode =           Gaia.getEntity("Category == 'Device'  and Type == 'ExecutionNode' 
     and Name == 'aspc1.uiuc.edu'") 
3. local coordinatorExNode =   Gaia.getEntity("Category == 'Device'  and Type == 'ExecutionNode' 
     and Name == 'aspc2.uiuc.edu'") 
4. local inputSensorExNode =  Gaia.getEntity("Category == 'Device'  and Type == 'Touchscreen' 
     and Name == 'plasma1'") 
5. local coordinator =   coordinatorExNode:createComponent("Coordinator", "-name MP3Coordinator") 
6. local model =           modelExNode:createComponent("MP3Model", "-name MP3Model") 
7. local presentation = presentationExNode:createComponent("MP3Presentation", "-name MP3Player") 
8. local inputsensor = inputSensorExNode:createComponent(“VCRInputSensor”,”-name MP3InputSensor”) 
9. coordinator:setModel(model) 
10. coordinator:registerPresentation(presentation) 
11. coordinator:registerInputSensor(inputsensor) 



 

Figure 5 illustrates a state transition diagram with the instantiation order of the Gaia Kernel services. Solid 
circles denote Gaia Kernel services, while dotted circles denote middleware specific services (CORBA in 
our current Gaia version). 
 

 
Figure 5. Gaia Kernel Bootstrap sequence. 

 
The configuration file contains a list of primary and backup Gaia Nodes for each Gaia Kernel service; the 
bootstrap process uses the dependencies diagram and the configuration file to decide whether or not to start a 
service in a particular Gaia Node. Gaia uses a timeout mechanism and a probing protocol to ensure that each 
Gaia Service is started in at most one machine (as specified in the configuration file). 

Sidebar 2 – Gaia OS: Extending Traditional Operating Systems to Physical 
Spaces 
The motivation behind Gaia OS is to abstract a space and all the resources it contains as a single 
programmable entity. However, this motivation is not new; it is the same motivation behind traditional 
operating systems. According to Silberschatz et al, “the purpose of an operating system is to provide an 
environment in which a user can execute programs in a convenient and efficient manner” [30]. Gaia OS 
provides such environment at the space level (i.e. room, car, and home). 
 
Silberschatz et al. define a group of seven services that are common for every operating system, namely: (1) 
program execution, (2) I/O operations, (3) File-system manipulation, (4) Communications, (5) Error 
detection, (6) Resource allocation, (7) Accounting and Protection. 
 
Gaia OS provides functionality that covers the first six services defined by Silberschatz, and we are currently 
finishing a security prototype that provides functionality for accounting and protection. We provide next a 
comparison between the six traditional services and their Gaia OS counterpart. 
 
Program Execution 
The Gaia OS Component Management Core (CMC) provides functionality to create, destroy, and upload 
components in any execution node present in the a ctive space. The CMC uses the program execution 
facilities of the execution node’s OS, which includes memory, thread, and process management. 
 
I/O Communications 
Gaia OS leverages the low-level OS I/O functionality and provides device drivers (implemented as 
distributed objects) that export this functionality to the rest of the active space. Gaia OS also defines default 
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I/O channels (i.e. input, output, and error), which are mapped to event channels. This allows creating a 
default “console” for the space. 
 
File-System Manipulation 
CFS provides functionality to manipulate files in active spaces. CFS interacts with the devices’ low-level 
operating systems’ file-systems to access and export the data to the active space. The specific location of the 
files is hidden from users and files can be accessed from any device in the active space. CFS extends 
traditional operating systems with functionality to transform data to different formats dynamically and to use 
context to organize the data based on different properties.  
 
Communications 
Gaia OS supports both direct and indirect communication mechanisms. Direct communication is similar to 
synchronous low-level OS IPC mechanisms, while indirect communication is the counterpart to 
asynchronous low-level OS IPC. Gaia OS provides RPC support for direct communication, and events (i.e. 
suppliers and consumers) for indirect communication. In both cases, Gaia OS leverages standard 
communication middleware. Events are similar to Unix signals and we use them in Gaia to notify entities in 
the active space about new resources added and removed, error conditions, changes in the file-system, and 
application state changes. The use of asynchronous events improves the reliability of the system by 
decoupling event producers from event listeners. While Gaia events are used mostly for signaling purposes, 
Gaia entities use other mechanisms such as RPC –for remote method invocations– and non-blocking 
streaming –for  audio and video transmission. 
 
Error Detection 
Error detection includes both software and hardware errors that affect the execution of applications. Gaia OS 
uses the event service to report errors. Users register services that receive the error notifications and react 
accordingly (e.g. notify users, restart components, and suspend applications). 
 
Resource Allocation 
In traditional operating systems, resource allocation is related to the functionality required to manage 
hardware resources including memory, CPU, and disk. Gaia OS leverages this functionality and extends the 
notion of resource allocation to resources (i.e. devices, services, and applications) present in the active space.  
The Gaia SR stores information about resources present in the space, their owner, status (i.e. free, used, 
available, and malfunctioning), and properties specific to each resource. Applications use the SR to obtain 
the resources they require to execute. Gaia OS implements the presence service that provides functionality 
that is conceptually similar to “plug and play” mechanisms offered by most modern operating systems. The 
heterogeneity and large number of resources contained in an active space require the presence services to 
maintain soft-state about existing resources for reliability reasons. 

5. Gaia Utilization Example: The Presentation Manager 
We present in this section an application based on Gaia (Presentation Manager [31]) that we use regularly to 
present slideshows in our prototype active meeting room (Figure 1). The application exports functionality to 
present slides in multiple displays simultaneously, supports moving and duplicating slides to different 
displays during the presentation, and allows moving and duplicating the input sensor that controls the 
presentation to different devices. The presentation manager is based on the Gaia application framework and 
uses Microsoft’s Power Point to manipulate the slides (using the COM interface). 
 
According to our experience using the application, most of the users edit the presentation in their offices and 
use CFS to automatically import the data in the active meeting room. The most usual interaction mechanism 
is a wireless enabled handheld device running a software input sensor consisting of start, stop, next, and 
previous push buttons. The rest of the section consists of three subsections that summarize how the 
slideshow presenter enters and registers with the space, starts the presentation, and interacts with the 
application. We will focus primarily on the interaction between the application and the Gaia services. 



 

Speaker Registering with the Active Space 
The speaker enters the room carrying a handheld device and an RF active badge. The presence service 
detects the badge and sends an event to the “person/presence” channel. This event contains information 
about the user, including a reference to his or her profile. The space repository receives the event, retrieves 
an XML description for the user entity and stores the information. The context file system also receives the 
event about the new user, accesses the user profile, obtains the user’s mount points, and mounts the data in 
the space. The slideshow file stored in the speaker’s active office is now accessible from the active meeting 
room. 
 
Next, the user registers the handheld with the space, so he or she can use it to control the presentation. The 
room is equipped with infrared beacons that broadcast the name of the space and a handle to a directory 
service. This directory service (a CORBA naming context) contains references to the Gaia kernel services. 
The handheld device picks up the infrared beacon, resolves the event manager from the directory, and 
initiates the beaconing mechanism that periodically sends a heartbeat event to the “device/heartbeat” 
channel. The presence service receives the event and sends a new event to the “device/presence” channel to 
notify the rest of the space about the new device. The space repository receives the event, contacts the device 
to retrieve the XML description, and stores the information. Both the user and the handheld device are now 
entities of the active space; they are stored in the space repository, can be contacted by other entities, and 
can use the resources present in the space. 
 

Starting the Application 
The active meeting room runs an application that triggers specific actions according to user specified 
conditions. We configure this application so it automatically starts the presentation manager application 
when the speaker is present in the room. This application registers with the context service to be notified 
when the room context meets the previously mentioned condition. The entry in the trigger service is a Lua 
script that gets the name of the presentation file from the “/type:/presentation/current:” context directory and 
starts the presentation manager. The context associated to the slideshow presentation file includes the 
following entry: “location=2401”. Therefore, when the user data is mounted in the Active Meeting Room 
2401, the file is visible from /type:/presentation/current:. The Lua script stored in the trigger service requires 
a valid ACD to start the application. The script uses the file system and accesses 
“/type:/lua/acd:/gpm/current:”. This directory contains presentation manager ACDs specifically customized 
for 2401. The Lua script chooses an ACD named “default”. 
  
The ACD is also a Lua script that interacts with the component management core to instantiate the 
components. Next, the ACD contacts the coordinator of the application and registers the model, the 
presentations, the controllers, and the input sensors. The model interacts with the event manager to create a 
channel that it uses to send the update messages to the presentations and registers the presentations with the 
channel. The coordinator assigns the model’s reference to the presentations, and the controller’s reference to 
the input sensors. All the application components initiate the beaconing mechanism and therefore are 
detected by the presence service, are introduced to the space using an “entered” event, and are registered in 
the space repository.  
 

Interacting with the Application 
The default presentation manager ACD creates the application input sensor in one of the room’s touch 
screens. However, the speaker decides to move the input sensor to his or her handheld device. In order to 
move application components we provide a library that interacts with the space repository to locate the 
handheld and create a new instance of the input sensor using the component management core. Next, it 
locates the coordinator of the application in the space repository, registers the new input sensor and 
unregisters the original one. Finally, the library uses the component management core to delete the original 
input sensor. The presence service stops receiving heartbeats from the original input sensor and therefore 
sends an event to the “service/presence” channel to notify that the entity left. The space repository 
automatically removes the information about the entity. Using the functionality provided by the library, the 



 

speaker can move the presentations (i.e. the slides) to new displays in the middle of a presentation. 
Examples of new displays are the PDAs of people entering the meeting room. 
 
The presentation manager uses four plasma displays simultaneously. When the user selects start on the input 
sensor running on the handheld, the input sensor sends a request to the application controller, which sends a 
“startPresentation” request to the model. The model sends a “start” event to the application updates channel. 
As a result, all presentations contact the model to obtain a handle to the presentation file. The model 
leverages the context file system to open the file and returns a handle to the file. The presentations get the 
file and display the first slide of the presentation. When the users selects “next”, the input sensor sends a 
request to the controller, which sends a “nextSlide” request to the model. The model sends a “next” event to 
the application channel, which instructs presentations to display the next slide. 

6. Related Work 
There are several projects that address issues similar to Gaia. In this section we present some of these 
projects and explain how they compare to Gaia. 
 
 The Microsoft Easy Living project [32] focuses on home and work environments and states that computing 
must be as natural as lighting. The main properties of their environments are self-awareness, casual access, 
and extensibility. The infrastructure allows interfaces to move, according to user location. The project uses 
computer vision to recognize gestures and users, and to detect user location. The system uses this 
information to customize the room accordingly. We differ in that we fundamentally change the way in which 
applications are built, moving away from the desktop paradigm, and allowing application partitioning on 
different devices. 
 
The i-Land [33] and Roomware [34] research projects present an infrastructure that digitally augments 
meeting rooms. The goal is to offer an environment where it is easy to exchange ideas, digitally record the 
results of the meetings, search in knowledge bases, and provide tools for group collaboration focusing on 
multimedia data exchange. The Interactive Wokspaces [35] from Stanford presents an augmented meeting 
room that promotes group work. The room contains wall-sized touch screens, several projectors, arrays of 
microphones, speakers, laptops and PDAs. The project identifies the importance of a high level operating 
system to coordinate the entities contained in the room. Roomware, i-Land, and Interactive Workspaces are 
interested in the interaction with physical spaces (mostly meeting rooms) and collaborative work groups. 
Our work is similar to Roomware and Interactive Workspaces in that we believe there is a need for a 
supporting infrastructure. However, we focus on generic spaces (e.g. office and house) which may or may 
not imply collaborative work. We consider that while some active spaces define a collaborative environment 
(e.g. meeting room and classroom), other active spaces are mostly single-user based (e.g. office and car). 
Furthermore, Gaia defines the notion of mobile users that can move their applications and data across 
different active spaces. 
 
Aura [36] shares several common design goals with Gaia. Aura emphasizes the notion of mobile users 
moving around different environments. Their definition of environment is similar to our proposed notion of 
Active Space. Aura uses the term task to identify applications associated to users capable of migrating from 
one environment to another. Aura defines a software infrastructure to support the execution of these tasks, 
which maximizes the use of available resources, and minimizes user distraction. The main difference 
between Gaia and Aura is that Gaia emphasizes the notion of space programmability. Gaia provides 
mechanisms to allow users configure their applications to benefit from the resources contained in their 
current space. Users can interact with multiple devices simultaneously, can reconfigure applications 
dynamically, can suspend and resume groups of applications, and can program the behavior of applications 
based on context attributes. Gaia emphasizes the interaction between users and active spaces. 
 

7. Conclusions, Contributions, and future work. 
We present in this paper Gaia, a middleware infrastructure capable of managing resources contained in 
physical spaces. The functionality exported by Gaia simplifies the development of portable applications that 



 

can be dynamically partitioned and mapped to a variety of devices, can be customized based on the space 
context, are bound to users, and can move across different spaces. 
 
Gaia encapsulates the heterogeneity of active spaces, and presents them as a programmable environment, 
instead of a collection of individual and disconnected heterogeneous devices. Gaia’s application framework 
provides functionality to build applications that exploit the resources of active spaces. Furthermore, Gaia 
emphasizes the interaction between users and active spaces by providing functionality to customize 
applications in a variety of ways. User data and applications are abstracted into a user virtual space and can 
be mapped dynamically to the resources located in the current environment. Users can move across different 
active spaces and have their virtual space always available.  
 
Gaia contributes to ubiquitous computing in four aspects: 

1. It extends the concepts of traditional operating systems to ubiquitous computing environments. 
2. It provides an application framework that supports the development of applications for ubiquitous 

computing environments. 
3. It implements a file system that uses context to organize the data according to the user activities. 
4. It abstracts users’ data and applications into the user virtual space that can be moved across and 

mapped to different active spaces. 
 

As part of our future work we plan to develop new applications to validate different aspects of Gaia. We also 
plan to extend the infrastructure with a security service that is currently under development, and expand our 
current implementation of the services that support the user virtual space abstraction. Finally, we are also 
studying how to federate Gaia services in order to aggregate different active spaces. 
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