
1536-1268/02/$17.00 © 2002 IEEE PERVASIVEcomputing 33

Reconfigurable Context-
Sensitive Middleware for
Pervasive Computing

A
principal goal of pervasive computing
is to make the actual computing part of
it and its enabling technologies essen-
tially transparent.1–3 This transparency
is partially possible because a pervasive

computing environment is a collection of embedded,
wearable, and handheld devices wirelessly connected,
possibly to fixed network infrastructures such as the
Internet. Devices in such environments have serious
resource constraints and high vulnerability, and they
form numerous webs of short-range and low-power
mobile ad hoc networks to exchange information. This
networking characteristic distinguishes pervasive com-

puting environments from existing
wireless and mobile phone net-
works, where fixed infrastructures
enable communication.

Existing system prototypes and
literature indicate that pervasive
computing applications operating

in ad hoc network environments usually exhibit two
characteristics: context sensitivity and ad hoc com-
munication.3–7An application software system’s con-
text is any detectable and relevant attribute of the
software’s host device, the software’s user, the host
device’s surrounding environment, and the interac-
tion between the host device and other devices.8–10

Context sensitivity (or context awareness) is an appli-
cation software system’s ability to sense and analyze
context from various sources; it lets application soft-
ware take different actions adaptively in different con-
texts. Ad hoc communication describes the links

among application software in various devices
because they tend to be spontaneously established
and terminated due to changing contexts, device
mobility, and resource fluctuation.

Context sensitivity and ad hoc communication cut
across system and application layers. Sometimes,
applications need to exploit their context sensitivity
to communicate with other devices.11 A middleware-
oriented approach can effectively address such issues
by providing development and runtime support and
by striking a balance between awareness and trans-
parency to the application software.12,13 In this arti-
cle, we present Reconfigurable Context-Sensitive
Middleware to show how to achieve this balance (see
www.eas.asu.edu/~rcsm).10,14

What is RCSM?
We can divide currently available middleware for per-

vasive computing applications into two main categories
based on how that middleware supports interaction
among devices. The first category lets application soft-
ware indirectly communicate with each other by writing
to and reading from one or more shared (but structured)
spaces.15,16 Such middleware only treats contexts based
on the data stored in tuple spaces, thereby ignoring the
device’s state (where the application software executes),
network layers, and the surrounding environment as
part of the overall context. The second category pro-
vides message-oriented semantics where application soft-
ware objects see each other through mechanisms simi-
lar to remote procedure calls.17–19

Our RCSM (see the “Glossary”for this and other

Context-sensitive applications need data from sensors, devices, and
user actions, and might need ad hoc communication support to
dynamically discover new devices and engage in spontaneous
information exchange. Reconfigurable Context-Sensitive Middleware
facilitates the development and runtime operations of context-sensitive
pervasive computing software.

C O N T E X T - A W A R E C O M P U T I N G

Stephen S. Yau, Fariaz Karim, Yu
Wang, Bin Wang, and Sandeep
K.S. Gupta
Arizona State University

terms) is a middleware designed to facili-
tate applications that require context-
awareness or spontaneous and ad hoc com-
munication. However, the mechanisms in
RCSM that provide these two properties
are not completely independent. In other
words, we support these two characteris-
tics in RCSM in such a way that it becomes
possible to facilitate a third type of applica-
tions that exhibits more complex behavior
than context-aware applications or ad hoc
collaborative applications do individually.

As Figure 1 shows, we characterize the
property of this type of application as con-
text-sensitive ad hoc communication. We

consider all three types of application to
be equally important for pervasive com-
puting environments. Although finding
examples of simply context-aware or sim-
ply ad hoc collaborative applications is
easy, we have observed that context-aware
ad hoc collaborative applications, such as
context-aware messaging applications, are
steadily emerging.11,20,21

RCSM also has several major features
that address important middleware char-
acteristics (see the related sidebar).

Object-based development framework
Similar to mature middleware stan-

dards and prototypes such as CORBA,
COM (Component Object Model), and
TAO (the ACE ORB, Advanced Comput-
ing Environment Object Request Bro-
ker)22 for fixed networks, RCSM provides
an object-based framework for support-
ing context-sensitive applications. Taking
an object-based approach in RCSM pre-
sents additional leverage beyond the ben-
efits that simple object orientation pro-
vides. RCSM models context-sensitive
application software as context-sensitive
objects, which consist of two parts: a con-
text-sensitive interface and a context-
independent implementation. The inter-
face encapsulates the description of the
application’s context awareness, whereas
the implementation remains context free.

Application-specific adaptive object
containers

For context-sensitive application soft-
ware, RCSM provides adaptive object
containers (ADCs) for runtime context
data acquisition, monitoring, and detec-
tion. Each application object needs dif-
ferent contexts. Thus, as Figure 2 shows,
RCSM’s context-aware interface descrip-
tion language (CA-IDL) compiler gener-
ates a custom-made ADC tailored for a
particular context-sensitive object. Dur-
ing runtime, the ADC communicates with
the underlying system to acquire context
data and then performs periodic context
analysis as specified in the context-sensi-
tive interface. It also communicates with
the object implementation to activate dif-
ferent actions whenever the ADC detects

suitable contexts as a result of the context
analysis.

Context-sensitive object request broker
For pervasive application software that

needs ad hoc communication support, we
provide RCSM a context-sensitive object
request broker (R-ORB) as the key mech-
anism for providing communication trans-
parency for context-sensitive application
software. R-ORB hides the intricacies of
ad hoc networking. It also performs device
and service discovery on the behalf of the
context-sensitive objects whenever the
objects’ context specifications become true.
We use a symmetric communication model
in R-ORB to allow ad hoc and application-
transparent information exchange between
a pair of remote context-sensitive objects.

A classroom example: Two
scenarios

Consider an instructor and his students
using their PDAs to collaborate in a class-
room. In one scenario, when the instruc-
tor is near the projection screen and the
light in the classroom is turned down, the
context indicates that the instructor is
about to present some teaching material,
which triggers the instructor’s PDA to dis-
tribute the presentation material to the stu-
dents’ PDAs. In another scenario, students
are divided into small groups to collabo-
ratively solve a specific in-class problem.
During group discussion, the instructor
moves from one group to another to check
the students’ progress. When the instruc-
tor is near a particular group of students
and he is facing the group, the instructor’s
PDA interprets this activity as an interest in
that group. This context data lets the
instructor’s PDA join the student group for
a short duration to download that group’s
discussion material.

These two scenarios show the following
three common characteristics of pervasive
computing applications.

Context sampling and detection
The facts that the instructor is near the

projection screen and that the classroom
becomes dark are two key pieces of data
that the application software in the first

34 PERVASIVEcomputing http://computer.org/pervasive

C O N T E X T - A W A R E C O M P U T I N G

Context sensitivity (1)

Ad hoc communication (2)

Context-sensitive ad hoc
communication (3)

Figure 1. Pervasive computing
applications with properties one, two,
and three facilitated by our
Reconfigurable Context-Sensitive
Middleware (RCSM).

ADC Adaptive object container

CA-IDL Context-aware interface

definition language

CAEG Context-aware ephemeral

group

CTC Context-triggered

communication channel

FPGA Field programmable

gate array

RCSM Reconfigurable Context-

Sensitive Middleware

R-ORB RCSM object request

broker

R-GIOP RCSM general inter-ORB

protocol

Glossary

JULY–SEPTEMBER 2002 PERVASIVEcomputing 35

M iddleware addresses two broad characteristics of perva-

sive computing: the trade-off between awareness and

transparency and cooperation between development support

and runtime services. However, it must address specific charac-

teristics as well.

Broad characteristics
Looking into other research,1–5 we learn an important lesson about

building effective middleware for pervasive computing environments:

how to provide a balance between awareness and transparency.6 This

contrasts with middleware for traditional computing environments,

where providing complete transparency of the underlying technology

and the surrounding environments is the ultimate goal. Such an ap-

proach does not work for pervasive computing applications because

being aware of the surrounding environment is the key to their effec-

tiveness. However, emerging applications for pervasive computing

indicate that an appropriate level of transparency is a desirable feature

to reduce the application software’s complexity and to optimize the

use of system resources in adverse conditions.

Although we mostly see the real benefits of middleware during soft-

ware execution, the difference between just good and widely success-

ful middleware is how easily it lets the application software developers

exploit its various capabilities. Well-defined development processes

and programming environments are equally important to developers.

Specific characteristics
In light of these broad characteristics, middleware for pervasive

computing should also demonstrate specific characteristics to

facilitate pervasive computing applications.

Uniform development support. Almost all the commonly

used programming languages that exist today do not have basic

support for expressing context awareness. Even if context-aware

languages exist in the future, support for expressing context aware-

ness on a conceptual level will most likely differ across different lan-

guages. This poses a problem when developers of context-sensitive

application software need to reuse their designs in a different lan-

guage, hardware, or operating system. As such, middleware must

provide a uniform and common way to express the software’s con-

text awareness without restricting itself to a specific language,

operating system, or environment.

Application-specific context acquisition, analysis, and

detection. Providing a uniform and platform-independent inter-

face for applications to express their need for different context

data without knowing how that data is acquired is beneficial.

Application software is often concerned with observing multiple

contexts that follow a specific pattern of occurrence. Achieving

this requires continuous data acquisition, analysis, and pattern

detection. Middleware can help developers focus mainly on devel-

oping the applications’ functionality rather than diverting their

effort to hardware-specific issues.

Context-triggered action. Application software often decides

what action to take based on the current context. The action

could involve adapting to the new environment, notifying the

user, communicating with another device to exchange informa-

tion, or performing any other task. Middleware should provide the

facilities for application software to define such context-triggered

actions so as to transparently invoke them whenever the

corresponding contexts are valid.

Transparent support for ad hoc communication. We need

middleware to abstract the details of ad hoc communication from

applications to facilitate interoperability independent of network

type. The topologies in ad hoc networks change dynamically, and

devices might not know each other a priori. On the other hand, a

device in an ad hoc network could connect to a previously known

computer (via a file or a Web server) in a wired network. Thus, mid-

dleware should transparently facilitate a task-oriented or publish-sub-

scribe communication model so that application software can flexi-

bly interact in different network environments. This middleware

should also proactively discover new devices and functionalities,

establish new communication links, and notify the application layer

whenever it finds a compatible device. Furthermore, to let multiple

devices transparently join and communicate in short-lived groups,

the middleware should proactively check whether it should create

new groups or continue to maintain existing ones, depending on

application-specific criteria.

REFERENCES

1. A. Murphy, G. Picco, and G.-C. Roman, “LIME: A Middleware for Physi-
cal and Logical Mobility,” Proc. 21st Int’l Conf. Distributed Computing
Systems, IEEE CS Press, Los Alamitos, Calif., 2001, pp. 524–533.

2. C. Mascolo et al., “XMIDDLE: A Data-Sharing Middleware for Mobile
Computing,” J. Wireless Personal Comm., vol. 21, no. 1, Apr. 2002, pp.
77–103.

3. T. Kindberg and A. Fox, “System Software for Ubiquitous Computing,”
IEEE Pervasive Computing, vol. 1, no. 1, Jan.–Mar. 2002, pp. 70–81.

4. D. Garlan et al., “Project Aura: Toward Distraction-Free Pervasive Com-
puting,” IEEE Pervasive Computing, vol. 1, no. 2, Apr.–June 2002, pp.
22–31.

5. B. Schilit, N. Adams, and R. Want, “Context-Aware Computing Applica-
tions,” Proc. IEEE Workshop Mobile Computing Systems and Applications,
IEEE CS Press, Los Alamitos, Calif., 1994, pp. 85–90.

6. L. Capra, W. Emmerich, and C. Mascolo, “Middleware for Mobile Com-
puting: Awareness vs. Transparency,” Proc. 8th Workshop Hot Topics in
Operating Systems, IEEE CS Press, Los Alamitos, Calif., 2001, pp. 164-
169.

Middleware Characteristics

scenario needs. The second scenario
requires the analysis of two context attrib-
utes: the instructor’s location and direction.

Spontaneous context-aware ad hoc
communication

The first scenario indicates that the
instructor’s PDA distributes the lecture mate-
rials to the students’ PDAs as soon as appro-
priate contexts are valid. This also implies
that the instructor’s PDA must discover other
PDAs in the vicinity, check that they do
indeed “need” the lecture material, and
establish temporary communication links.

Ad hoc ephemeral group establishment
The second scenario indicates that stu-

dents’ PDAs dynamically form a group,
which is valid only for the class’s duration.
Moreover, the instructor’s PDA dynami-
cally joins a particular group of students
for a short duration to download the
group’s solutions to the in-class problem.

RCSM’s key capabilities
Although contexts can conceptually

cover all aspects of a pervasive computing
application’s environment, the context cap-
tured by a specific application software is
limited by the scope and capabilities of the
host device’s sensors and operating system.

Using context information is sometimes
difficult due to complex sensor handling,

context abstraction, and heterogeneous con-
text sources.23 How to incorporate context
awareness into an application to make it
more intelligent is also a practical problem.
Moreover, because pervasive computing
applications can have different requirements
for using contexts, the current development
process of such applications lacks a uniform
and standard procedure for developers to
follow.

Several research groups have tried to
overcome the difficulties in developing con-
text-sensitive applications. In the Context
Toolkit, a predefined context is acquired and
processed in context widgets and then
reported to the application through appli-
cation-initiated queries and callback func-
tions.23 The Tea project provides query
primitives for applications to acquire con-
text information.24

We chose to design our context-pro-
cessing system to directly trigger the appro-
priate actions in an application object
rather than have the object itself decide
which method (or action) to activate based
on context. Our primary motivation was
to extend existing context-sensitive appli-
cations by adding new context sources. We
also wanted to easily let multiple concur-
rent contexts trigger a specific action. As
we mentioned earlier, we divide context-
sensitive application software into two sep-
arate parts as shown in Figure 2. The first

is an interface that encapsulates the appli-
cation’s context sensitivity. More specifi-
cally, this interface lists the contexts the
application uses, a list of actions (func-
tionality) the application provides, and a
mapping between the specified contexts
and these actions that clearly indicates
when an action should be completed based
on specific context values. The second part
is the actual implementation of the actions
that the application software must provide.

The important characteristic of this struc-
ture is that the implementation is com-
pletely isolated from context specification,
meaning it is context independent. This is
where RCSM’s strength becomes visible.
Using the context-sensitive interface,
RCSM determines which context to mon-
itor and which of the applications’ actions
to activate whenever a specified context is
valid. The developer simply focuses on
implementing the actions in his or her
favorite language without worrying about
context monitoring, detection, and analysis.
Our CA-IDL lets application developers
uniformly specify the context-sensitive
object interface. Instead of being static con-
text-processing mechanisms, the type of
ADCs that can be generated by the CA-IDL
compiler is virtually unlimited. For a dif-
ferent requirement, the application devel-
oper just needs to specify a different inter-
face in the CA-IDL file and compile it to
generate a new ADC. Figure 3 shows an
example of a context-sensitive interface in
CA-IDL. In this interface, three context
variables are defined from our first scenario
example: the instructor’s being near the
screen, darkness, and light. The expression
C1 ̂ (C2 → C3) uses our operators to spec-
ify the temporal relationships among C1,
C2, and C3. This particular expression indi-
cates that C1 (instructor is near the screen)
and C3 follows C2 (darkness follows light)
must occur to transparently activate the dis-
tribute method.

36 PERVASIVEcomputing http://computer.org/pervasive

C O N T E X T - A W A R E C O M P U T I N G

CA-IDL compiler
(can generate ADCs in

different languages, such as
C++, Java, or C#)

Context-independent implementation of
object O (for example, C++, C, C#, or Java)

Context-sensitive interface for object O
(expressed in CA-IDL)

Context
expression

Method
signature

+

Custom ADC for object O

Context-sensitive application object O
Figure 2. RCSM’s context-aware interface
description language (CA-IDL) compilers
build application-specific adaptive object
containers (ADCs) based on a context-
sensitive interface description.

If multiple context triggers occur for
methods in the same object, the corre-
sponding ADC invokes the corresponding
methods in the order in which they appear
in the object’s interface. If these context trig-
gers correspond to different objects, no con-
flict occurs because each object has its own
ADCs that run independently of each other.

Spontaneous interaction support in
R-ORB

Several challenges exist to letting appli-
cation objects easily participate in sponta-
neous interaction. First, network connec-
tions in mobile ad hoc networks—the usual
network technologies for enabling sponta-
neous networking—are often instanta-
neously established and terminated due to
device mobility. Second, changes in the var-
ious contexts cause application objects to
adapt their operations continuously. This
adaptation also affects communication,
thereby demanding a seamless interopera-
tion between context detection, triggering,
and communication establishment mecha-
nisms. Third, the heterogeneity of devices,
network technologies, network types, inte-
gration with the physical objects, and the
breadth of functional heterogeneity make
achieving interoperability among applica-
tion objects difficult.5 Fourth, a set of core
reusable services (such as service discovery,
resource management, and object persis-
tence) is usually required for any system sup-
port to provide more practical solutions for
distributed collaboration.

Some notable client-server middleware
technologies for both enterprise and mobile
networks support an asymmetric commu-
nication model in which the ORB propa-
gates a method invocation request from a
client to a particular server object. Clearly,
connecting to a server implies that a client
must discover the server dynamically or use
prior information. Application objects exe-
cuting in ad hoc environments are com-
pletely autonomous and thus, characteriz-
ing them as either clients or servers is hard.
Moreover, there is no guarantee that they
have any prior knowledge of each other. We
need a symmetric communication model
that lets a pair of remote objects commu-
nicate without really knowing or seeing

each other. Other middleware technologies
promote such communication models. For
example, Lime15 and Tspaces16 use tuple
spaces to let objects transparently commu-
nicate with each other.

We prefer a message-oriented and appli-
cation-transparent communication model
because it lets us take a publish-subscribe
approach, easily support more complex
communication patterns, and allow context-
sensitive communications. We adopted this
approach in RCSM and call it a context-trig-
gered communication model. The RCSM
ORB supports communication in this fash-
ion. However, having a context-triggered
communication protocol, which is internal
to the R-ORB, does not suffice. We still need
a good “packaging” solution to uniformly
ease both the development and runtime
aspects between the context-processing layer
(the ADCs) and the communication layer
(the context-triggered communication
mechanism). We chose this (the CORBA,
ORB-oriented) approach because the ORB
functions as a single gathering point for

• Appropriately isolating the intricacies of
various transport protocols from the
application objects by providing plat-
form-independent interfaces

• Providing uniform interfaces to deploy
and use various distributed services in
the middleware for enhancing the appli-
cation objects’ capabilities

• Providing reusable mechanisms to facili-
tate object and service discovery, object
registration, object activation and method
invocation, and data marshalling over
distributed environments

Without an ORB, these capabilities are dif-
ficult and often cumbersome to provide in
the transport layer, operating system, and
application layer.

Context-triggered point-to-point com-
munication channel management. A con-
text-triggered communication channel
(CTC) between two devices is a type of
communication link between two remote
R-ORBs. Such an inter-ORB link is estab-
lished and terminated primarily based on
application-specific context specification.
During application execution, the R-ORB
performs proactive device discovery and
uses its R-GIOP (RCSM General Inter-
ORB Protocol) to establish and maintain
a CTC with a remote device. The proto-
col establishes a new channel based on the
following conditions:

• Reachability. Two devices—A and B—
exist such that they are in each other’s
transmission range.

• Existence of context-aware objects. A
and B each have at least one context-
sensitive object.

• Suitability of activation in the current
context. There exists at least one ADC
component in both A and B that has
recently generated a context-match event,
implying that the application object asso-
ciated with such an ADC has at least one
method that can be invoked currently
based on its context specification. Let
these objects be Oa and Ob and their
methods be Ma and Mb for A and B,
respectively.

• Compatibility. Ma and Mb are suitable to
exchange data with each other in the sense
of matching interface signatures, includ-
ing the number and types of parameters,

JULY–SEPTEMBER 2002 PERVASIVEcomputing 37

Figure 3. A context-sensitive interface
that uses CA-IDL in a classroom scenario.

//context source
RCSMContext dc {

char [] string location;
boolean light;

};

//beginning of context-sensitive interface
interface instructor_object {

//context variables
RCSMContext_var dc C1

where location=”screen”;
RCSMContext_var dc C2

where light=true;
RCSMContext_var dc C3

where light=false;

//context-sensitive method
[outgoing]
[activate when C1^(C2->C3)]
void distribute (string lectures);

};

//end of context-sensitive interface

or other application-specific criteria, such
as compatibility of radio-frequency iden-
tifiers, security attributes, and so on.

To perform channel establishment, the
R-ORB provides an adaptive device and
service discovery mechanism. As such, if
no object in the device is currently suitable
to be activated, then the device and service
discovery services are completely turned
off to save bandwidth.

Ad hoc ephemeral group communication
using the R-ORB. In the second scenario
example described earlier, students form
dynamic groups only for the class’s dura-
tion, and the instructor joins and leaves
these groups for even shorter durations. As
opposed to groups in traditional distributed
systems, these student groups are dynami-
cally formed and ephemeral. We call this
kind of group a context-aware ephemeral
group. CAEG management and communi-
cation use context as the collaboration
agreement among several devices. The
CAEG communication mechanism is an
optional module of RCSM and relies on the
R-ORB for ad hoc communication and on
the ADCs for context analysis.

RCSM component integration
Figure 4 shows how all of RCSM’s com-

ponents are layered inside a device. The
R-ORB assumes the availability of reli-

able transport protocols; only one R-ORB
per device is sufficient. The number of
ADCs depends on the number of context-
sensitive objects in the device. ADCs
periodically collect the necessary “raw
context data” through the R-ORB, which
in turn collects the data from sensors and
the operating system. Initially, each ADC
registers with the R-ORB to express its
needs for contexts and to publish the cor-
responding context-sensitive interface.
RCSM is called reconfigurable because it
allows addition or deletion of individual
ADCs during runtime (to manage new or
existing context-sensitive application
objects) without affecting other runtime
operations inside RCSM.

To show how the integrated components
in RCSM work together, consider the first
scenario in the earlier example. When the
instructor is near the screen, the ADC gen-
erated from Figure 3’s interface finds that
the new location is screen. At the same time,
the light intensity is high, thus the ADC sees
that light value as true. Then, the instructor
turns off the light in the classroom at the
beginning of the lecture, so the ADC sees
this light value as false. Thus, the context
expression specified in Figure 3, C1 ̂ (C2 →
C3), is found to be true. The ADC conveys
this context-match event immediately to the
R-ORB, which then looks for a communi-
cation partner—that is, a remote context-
aware object that has a matched interface.

When the R-ORB finds that partner (an
object on a student’s PDA, for example), it
sets up a communication channel with that
partner and notifies the ADC. The ADC
then activates the associated action to down-
load the materials. Both objects in the
instructor’s and the students’ PDAs are
invoked transparently through their respec-
tive ADCs while the R-ORB addresses the
actual information exchange. This, in
effect, achieves transparent and peer-to-
peer interactions.

To evaluate RCSM, we are cur-
rently implementing a project
called Smart Classroom as a
testbed. Smart Classroom mon-

itors the classroom context (location of stu-
dents or instructor, noise, light, and mobil-
ity) and uses this context to trigger
communication activity among the students
and the instructor. Related work in this area
is based on different infrastructures and has
different objectives. For example, Smart
Kindergarten uses sensor data on children
or toys to make a record for the instructor
to review children’s activities and track their
learning progress.25 Smart Kindergarten
analyzes and stores context data in a wired
infrastructure. Classroom 2000 captures
classroom context (teaching material or stu-
dent notes) to automatically generate Web-
accessible multimedia class files for the
instructor and students.26 Both projects con-
vert context information and the analysis of
context to permanent data (a record or an
output file) for later use—neither uses con-
text dynamically.

All the RCSM components in Figure 4
could be implemented in software. How-
ever, we have chosen a software-hardware
codesign approach to explore the possibil-
ity of providing some of RCSM’s function-
ality in commodity hardware cards and to
identify the unique issues related to RCSM’s
hardware implementation. We are also
building a software-only version of RCSM
to quantify the potential performance ben-
efits of the software-hardware codesigned

38 PERVASIVEcomputing http://computer.org/pervasive

C O N T E X T - A W A R E C O M P U T I N G

RCSM

Optional components

Context-sensitive application objects

RCSM ephemeral group
communication service

Core components

Adaptive object containers (ADCs)
(providing awareness of context)

RCSM object request broker (R-ORB)
(providing transparency over ad hoc communication)

Other services

O
p
e
r
a
t
i
n
g

s
y
s
t
e
m

Transport layer protocols for ad hoc networks Sensors

Figure 4. RCSM’s integrated components.

version. In the software-only version, the
ADCs, CAEG, and R-ORB run as separate
processes on a Windows CE operating sys-
tem. In the software-hardware codesigned
version, the R-ORB runs on hardware.
Field programmable gate arrays facilitate
our hardware design, because we can eas-
ily load alternative gate-level designs of the
R-ORB onto the same FPGA without fab-
ricating custom hardware. We are using the
Celoxica DK-1 tool to write the R-ORB
behavior in HandelC, a parallel version of
the C language. The VHDL (or Verilog)
code generated by DK-1 is fed into a Syn-
opsis FPGAExpress synthesis tool to gen-
erate the FPGA’s gate-level design.

In our current design, each node in the
testbed has the configuration in Figure 5,
which consists of the following components:
a Casio E-200 PDA; a Radiometrix radio
packet controller (RPC); a Trenz Electronic
USB-compatible Xilinx Spartan II FPGA
board; a noise, light, and motion sensor; and
a location-tracking component. We have
also developed simple location-beaconing
boards by integrating an FPGA with the
RPC controller. The current CA-IDL com-
piler generates the ADCs in C++ for the
Windows CE operating system. Each ADC
takes on the average 3 Kbytes. The R-ORB’s
initial hardware prototype runs on a Spar-
tan II FPGA. A particular version of the R-
ORB designed to support 16 application
objects (with 16 context-sensitive methods)

and 16 concurrent communication chan-
nels currently occupies approximately
31,000 logic gates in this FPGA. The FPGA
with this particular version of the R-ORB
has a maximum clock cycle of 150 MHz.
In each cycle, this version of the R-ORB can
process 1 byte of data to and from the appli-
cation layer and other devices. The current
design only represents one particular imple-
mentation of RCSM. Figure 6 shows the
future configuration, which will have a
much more compact layout and can be
used as a plug-in module on a PDA.

ACKNOWLEDGMENTS
This research is supported in part by the National
Science Foundation under grants ANI-0123980 and
ANI-0196156. Microsoft Research and Tektronix
donated part of the equipment used in the testbed’s
development. We thank the anonymous reviewers
for their comments and suggestions. We especially
thank Guerney Hunt of IBM T.J. Watson Research for
providing valuable assistance in improving this arti-
cle. We also appreciate the assistance of Siddharth
Seth, Pavankumar Nallamothu, and Deepak Chan-
drasekar in the development of the testbed.

REFERENCES
1. M. Weiser, “The Computer for the Twenty-

First Century,” Scientific Am., vol. 265, no.
3, Sept. 1991, pp. 66–75.

2. S.K.S. Gupta et al., “An Overview of Per-
vasive Computing,” IEEE Personal Comm.,
vol. 8, no. 4, Aug. 2001, pp. 8–9.

3. G. Abowd and E.D. Mynatt, “Charting

Past, Present, and Future Research in Ubiq-
uitous Computing,” ACM Trans. Com-
puter Human Interaction, vol. 7, no. 1,
Mar. 2000, pp. 29–58.

4. G. Chen and D. Kotz, A Survey of Context-
Aware Mobile Computing Research, tech.
report TR2000-381, Dept. of Computer
Science, Dartmouth College, Hanover,
N.H., 2000.

5. T. Kindberg and A. Fox, “System Software
for Ubiquitous Computing,” IEEE Perva-
sive Computing, vol. 1, no. 1, Jan.–Mar.
2002, pp. 70–81.

6. D. Garlan et al., “Project Aura: Toward Dis-
traction-Free Pervasive Computing,” IEEE
Pervasive Computing, vol. 1, no. 2,
Apr.–June 2002, pp. 22–31.

7. M.L. Dertouzos, “The Future of Comput-
ing,” Scientific Am., vol. 281, no. 2, Aug.
1999, pp. 52–55.

JULY–SEPTEMBER 2002 PERVASIVEcomputing 39

Figure 5. A PDA, equipped with our current RCSM prototype, for the Smart Classroom
testbed. A software-only version of RCSM is currently under development.

Figure 6. (a) An expected future RCSM
prototype and its use as a plug-in module
at the (b) back of a PDA.

FPGA

(a)

(b)

PROM

Sensors

USB

8. B. Schilit, N. Adams, and R. Want, “Con-
text-Aware Computing Applications,”
Proc. IEEE Workshop Mobile Computing
Systems and Applications, IEEE CS Press,
Los Alamitos, Calif., 1994, pp. 85–90.

9. A.K Dey, “Understanding and Using Con-
text,” J. Personal and Ubiquitous Com-
puting, vol. 5, no. 1, Feb. 2001, pp. 4–7.

10. S.S. Yau and F. Karim, “Context-Sensitive
Middleware for Real-Time Software in
Ubiquitous Computing Environments,”
Proc. 4th IEEE Int’l Symp. Object-Ori-
ented Real-Time Distributed Computing,
IEEE CS Press, Los Alamitos, Calif., 2001,
pp. 163–170.

11. N. Marmasse and C. Schmandt, “Location-
aware Information Delivery with comMo-
tion,” Proc. 2nd Int’l Symp. Handheld and
Ubiquitous Computing (HUC 2K), Lecture
Notes in Computer Science, P. Thomas and
H.-W. Gellersen, eds., vol. 1927, no. 1,
Springer-Verlag, Berlin, 2000, pp. 157–171.

12. P.A. Bernstein, “Middleware: A Model for
Distributed Services,” Comm. ACM, vol.
39, no. 2, Feb. 1996, pp. 86–97.

13. K. Geihs, “Middleware Challenges Ahead,”
Computer, vol. 34, no. 6, June 2001, pp.
24–31.

14. S.S. Yau and F. Karim, “Context-Sensitive
Object Request Broker for Ubiquitous
Computing Environments,” Proc. 8th IEEE
Workshop Future Trends Distributed Com-
puting Systems, IEEE CS Press, Los Alami-
tos, Calif., 2001, pp. 34–40.

15. A. Murphy, G. Picco, and G.-C. Roman,
“LIME: A Middleware for Physical and
Logical Mobility,” Proc. 21st Int’l Conf.
Distributed Computing Systems, IEEE CS
Press, Los Alamitos, Calif., 2001, pp.
524–533.

16. T.J. Lehman et al., “Hitting the Distributed
Computing Sweet Spot with TSpaces,”
Computer Networks, vol. 35, no. 4, Mar.
2001, pp. 457–472.

17. C. Mascolo et al., “XMIDDLE: A Data-
Sharing Middleware for Mobile Comput-
ing,” J. Wireless Personal Comm., vol. 21,
no. 1, Apr. 2002, pp. 77–103.

18. M. Haahr, R. Cunningham, and V. Cahill,
“Supporting CORBA Applications in a
Mobile Environment,” Proc. 5th Int’l Conf.
Mobile Computing and Networking
(Mobicom 99), ACM Press, New York,
1999, pp. 36–47.

19. C. Hess, M. Roman, and R.H. Campbell,
“Building Applications for Ubiquitous
Computing Environments,” to be published
in Proc. Int’l Conf. Pervasive Computing,
2002; http://choices.cs.uiuc.edu/gaia.

20. Y. Nakanishi et al., “Context-Aware Mes-
saging Service,” J. Personal and Ubiquitous
Computing, vol. 4, no. 4, Sept. 2000, pp.
221–224.

21. N. Sawhney and C. Schmandt, “Nomadic
Radio: Speech and Audio Interaction for
Contextual Messaging in Nomadic Envi-
ronments,” ACM Trans. Computer Human
Interaction, vol. 7, no. 3, Sept. 2000, pp.
353–383.

22. D.C. Schmidt et al., “Software Architec-
tures for Reducing Priority Inversion and
Non-Determinism in Real-Time Object
Request Brokers,” Real-Time Systems, vol.
21, nos. 1–2, July–Sept. 2001, pp. 77–125.

23. A.K. Dey and G. Abowd, “The Context-
Toolkit: Aiding the Development of Con-
text-Aware Applications,” Proc. Conf.
Human Factors in Computing Systems
(CHI), ACM Press, New York, 1999, pp.
434–441.

24. A. Schmidt et al., “Advanced Interaction in
Context,” Proc. 1st Int’l Symp. Handheld
and Ubiquitous Computing (HUC 99), Lec-
ture Notes in Computer Science, G. Goos,
J. Hartmanis, and J. van Leeuwen, eds., vol.
1707, no. 1, Springer-Verlag, Berlin, 1999,
pp. 89–101.

25. A. Chen et al., “A Support Infrastructure
for Smart Kindergarten,” IEEE Pervasive
Computing, vol. 1, no. 2, Apr.–June 2002,
pp. 49–57.

26. G.D. Abowd, “Classroom 2000: An Exper-
iment with the Instrumentation of a Living
Educational Environment,” IBM Systems
J., vol. 38, no. 4, Oct. 1999, pp. 508–530.

For more information on this or any other comput-
ing topic, please visit our Digital Library at http://
computer.org/publications/dlib.

40 PERVASIVEcomputing http://computer.org/pervasive

C O N T E X T - A W A R E C O M P U T I N G

the AUTHORS

Stephen S. Yau is a profes-
sor in the Department of
Computer Science and Engi-
neering at Arizona State Uni-
versity. He has served as the
president of the IEEE Com-
puter Society and the editor-
in-chief of Computer maga-

zine. His research is in distributed computing
systems, software engineering, mobile comput-
ing, and adaptive middleware. He received a BS
from National Taiwan University, and an MS
and PhD from the University of Illinois, Urbana,
all in electrical engineering. He is a life fellow of
the IEEE and a fellow of American Association
for the Advancement of Science. Contact him
at yau@asu.edu; www.eas.asu.edu/~ssyau.

Fariaz Karim is a PhD can-
didate in the Computer Sci-
ence and Engineering
Department at Arizona State
University. His research inter-
ests include middleware,
software–hardware codesign
of embedded systems,
mobile and pervasive com-

puting, wireless networks, and component-
based software development. He received a BS
in computer science from Arizona State Univer-
sity. He is a member of the ACM, IEEE, and UPE.
Contact him at karim@asu.edu; www.fariakarim.
com.

Yu Wang is a PhD candidate
in the Department of Com-
puter Science and Engineer-
ing at Arizona State Univer-
sity. Her research interests
include context-sensitive
and situation-aware applica-
tions, mobile and distri-
buted computing, pervasive

computing, and software engineering. She re-
ceived her BS in computer science from Wuhan
University in China. She is a member of Upsilon
Pi Epsilon. Contact her at wangyu@asu.edu;
www.eas.asu.edu/~cse355s.

Bin Wang is a PhD student
in the Department of Com-
puter Science and Engineer-
ing at Arizona State Univer-
sity. His research interests
include wireless networks,
mobile computing, pervasive
and ubiquitous computing,
and group communication.

He received his BEng in computer engineering
and an MS in computer science from the Beijing
University of Post & Telecommunications, China.
Contact him at bin.wang@asu.edu; http://
enws849.eas.asu.edu/~bwang.

Sandeep K.S. Gupta is an
associate professor in the
Department of Computer
Science and Engineering at
Arizona State University. His
research interests include
wireless networks, mobile
and pervasive computing,
middleware, and embedded

sensor networks. He received the BTech in
computer science and engineering from the
Institute of Technology, Banaras Hindu Univer-
sity, India, his Mtech in computer science and
engineering from the Indian Institute of Tech-
nology, Kanpur, and his MS and PhD in com-
puter and information science from Ohio State
University. He is a member of the ACM and a
senior member of the IEEE. Contact him at
sandeep.gupta@asu.edu; www.eas.asu.edu/
~gupta.

