
0018-9162/02/$17.00 © 2002 IEEE34 Computer

Jini Home Networking: A Step
toward Pervasive Computing

I
nternetworking services have come a long
way since their inception in basic communi-
cation between two homogeneous comput-
ers located not far from each other. Today,
intelligent devices can interact with each

other anytime and anywhere in the world. Recent
advances in technology—especially in wireless
communication—have fueled the market for such
devices. At the same time, decreasing processor
costs and size let engineers endow ever more
devices with application-specific processing power.
These trends are moving toward the vision of per-
vasive computing.

Home networks represent a step along this path.
As the name suggests, a home network intercon-
nects various electronic devices within a house. In
cases where the home network connects to a broad-
band local loop, it can also make these devices
accessible over the Internet, opening the door to
new applications that rely on remote network
administration.

The requirements that drive a home network dif-
fer from those for an enterprise network. For one
thing, a home network must handle interference
from household appliances such as microwave ovens
and cordless phones. Second, given the lack of sys-
tem administrators in the home, the network must
operate with little or no user intervention. At the
same time, it must meet the challenge of structure
and usage variances among in-home devices.
Current devices vary greatly from each other and
from one household to another with respect to mod-

els, make, and quantity. Their purposes range from
washing clothes to controlling room humidity.

A home network allows all such appliances to
communicate with one another. Thus, it needs a
technology that can seamlessly integrate assorted
devices into a monolithic communication network.

JINI OVERVIEW
Jini network technology is middleware that pro-

vides a set of application programming interfaces
(APIs) as well as network protocols that can meet
home network requirements. It establishes a soft-
ware platform enabling all devices that form the
network to talk to each other, irrespective of their
operating systems or interface constraints. In a Jini
environment, each device provides a service to other
devices in the network. Each device publishes its
own interfaces, which other devices can use to com-
municate with it and thereby access its particular
service. This approach ensures compatibility and
standardized access among all devices.

A Jini environment is not housed on a single com-
puter nor is it a network of computers. Jini tech-
nology provides a distributed environment for
devices to communicate with each other. Each device
provides a set of services to the network, creating a
federation of services for the constituent devices. No
central authority controls federation services.

As Figure 1 shows, a Jini environment imple-
ments the connection technology below the net-
work application layer, building on top of the Java
platform. The technology accepts all sorts of

Rahul Gupta
Sumeet
Talwar
Dharma P.
Agrawal
University of
Cincinnati

Jini connection technology forms
a network of devices on the fly,
without manual connection
or configuration. It can also
complement other technologies
that strive for “anytime,
anywhere” connectivity.

C O M P U T I N G P R A C T I C E S

devices, including electronic home appliances,
musical instruments, and other devices that are not
part of a conventional computer network. Each
device can act as a client or server depending on
whether it is requesting a service or providing one.
A service in a home network might be as small as
requesting the room temperature from an air con-
ditioner or as big as transferring a file from a lap-
top to a printer.

A Java object represents each device. The object’s
interfaces expose the services offered to the net-
work. Accessing a particular service involves using
the published interfaces to invoke a remote proce-
dure on the appropriate device object.

Jini uses Java’s remote method invocation for
accessing a particular service. RMI, the Java equiv-
alent of a remote procedure call, enables clients to
obtain handles to the desired remote objects. Jini
can also use RMI to pass objects as arguments and
to return values, making it easy to move code as
well as data across the network.

Figure 1 also shows Jini’s two basic services:
lookup and discovery. These services manage the
processes of first making a network service avail-
able to devices and subsequently using it.

Lookup and discovery services
Figure 2 shows the event sequence for Jini lookup

and discovery services. Each server creates a remote
object, essentially a software implementation of ser-
vices being offered. A device wanting to offer a ser-
vice first announces its presence to the lookup
service. In this service registration process, the
device uploads the serialized Java object, called a
service proxy, to the Jini lookup service. Thus, the
lookup service is the common repository of the ser-
vices offered by a network. Clients use this reposi-
tory, which can run on any device in the network,
to gain access to a particular service.

The basic discovery service lets a new device
obtain a reference to the lookup service. The dis-
covery service identifies a lookup service that can
handle the particular client request. When the client
device wishes to use the network service, it sends the
request to that lookup service, which in turn sends
a service proxy object to the requesting client. Once
the client obtains the proxy, it interacts directly with
the network service via the proxy, thereby estab-
lishing a client-server communication channel.

Reliability and scalability
To handle network failures, Jini leases a resource

to a client for a fixed amount of time. After this
period expires, the client must renew the lease to

continue accessing that service. The lease auto-
matically expires for all authorized users when a
service goes down.

Jini also supports redundancy in the infrastruc-
ture and resilience against failure. The network
may have several lookup services distributed
throughout it. Servers register their proxy service
objects with all the lookup services they can dis-
cover using the discovery protocol. Clients may
obtain the reference of the desired service from any
of those lookup services. This keeps services avail-
able, even if key machines crash.

Jini addresses scalability by incorporating the
notions of “communities” and “federations.”
Groups of Jini services, which are completely aware
of each other, come together to form a community.
Jini communities can link together, or federate, into
larger groups. Ideally, a Jini community is about
the size of a work group. For example, in an office
environment a community might include the print-
ers, PDAs, and other such devices needed by a
group of 10 to 100 people.

The Jini lookup service for a particular commu-
nity can register itself in other communities, thereby

August 2002 35

Application Service

Jini technology

Java technology

Lookup

Discovery

Operating system

Network transport

Figure 1. A typical Jini network architecture implements the connection
technology below the application layer and atop a Java platform.

Service provider (server)

Discovery for
lookup service

Lookup service
reference

Service
proxy

registration Discovery for
lookup service
Lookup service

reference

Service
proxy
object

Request for
service

Communication between devices

 ClientJini lookup service

Figure 2. Jini event sequence diagram. The Jini lookup service is the common
repository of services offered by the network.

36 Computer

acting as the interface for sharing its resources
with other communities’ clients.

JINI ARCHITECTURAL REQUIREMENTS
In other distributed computing technolo-

gies like the common object request broker
architecture (Corba) and the Distributed
Component Object Model (DCOM), a client-
side stub and server-side skeleton support
communication between the client entity that
requests a particular service and the server

entity that provides it. The stub and skeleton agree
upon a protocol for information exchange—argu-
ments from the client and return values from the
server. A programming-language-neutral interface
definition language specifies the interfaces for
accessing a service. The Interface Definition Lan-
guage compiler produces the stub and skeleton
source code. A native compiler then compiles the
stub and skeleton on the machine.

The main disadvantage of this approach is the
tight coupling between the stub and skeleton. Any
change in one must be appropriately reflected in the
other. Java RMI overcomes the problem by allow-
ing a client to obtain the stub from the server at run-
time. In Jini, this stub is the service proxy object that
the server uploads to the lookup service. Hence, the
server implementation can be altered automatically
and transparently to the client. This concept of
downloading code at runtime gives Jini a significant
advantage over Corba and DCOM, and it resembles
object-oriented programming’s dynamic binding.

A Jini network is Java-centric. It relies on Java fea-
tures such as object serialization and code portability
to provide a distributed computing environment.
Developers can write service implementations in other
programming languages, but they must encapsulate
each object in a Java Native Interface wrapper so that
the Java environment can still dynamically load the
objects. Work is also under way to implement RMI
over Corba’s Internet inter-orb protocol.

This approach requires that each device run a Java
virtual machine (JVM), which in turn requires pro-
cessing power and memory that may not always be
feasible. Nor do all devices necessarily have direct
access to the Jini network—for example, a printer
connected to a computer via a universal serial bus.
This configuration precludes moving an object
across the network and further limits this approach.

SERVICE FOR NON-JINI DEVICES
The Jini architecture allows non-Jini-capable

devices to join the service federation, even if they
lack enough memory and processing power to

implement a JVM. There are several alternatives,
but the Jini surrogate architecture is a prominent
method that lets limited-capability devices deliver
their code to an entity called a surrogate host.

A surrogate host has the memory and comput-
ing power to support a full Java 2 Standard Edition
(J2SE) environment. Each device has a surrogate
Java proxy object, similar to the service proxy.
These surrogates represent and act on behalf of the
device. When a non-Jini device joins the Jini net-
work, it first registers its surrogate with the surro-
gate host, which in turn registers it with the lookup
service on the device’s behalf. Communication with
other services takes place through this surrogate,
thus integrating the device seamlessly into the sys-
tem. The device communicates with its surrogate
using a predefined protocol that is private and
transparent to other entities.

The Jini surrogate architecture can be suitably
extended to support wireless mobile devices. When
two non-Jini-capable mobile devices want to com-
municate, each device registers its respective sur-
rogate with the surrogate host. The surrogate host,
in turn, registers the device’s surrogate with the
lookup service. Each surrogate object then down-
loads the other device’s proxy object using the
lookup service. The devices and their respective sur-
rogates communicate wirelessly with each other,
whereas the surrogates talk to the lookup service
over the wired network.

The Jini surrogate architecture’s main limitation
is its dependence on the surrogate host and the
lookup service, which require a complete Jini run-
time environment. To operate a full JVM requires
substantial computing resources, prevalent only in
fixed devices such as workstations or PCs. Such an
approach is not helpful in ad hoc networks that use,
for example, Bluetooth or IrDA transport and peer-
to-peer communication with no fixed infrastructure.

JINI MOBILE EDITION FOR WIRELESS DEVICES
Researchers at the Rochester Institute of

Technology developed a mobile edition of Jini that
targets wireless mobile devices.1 JiniME addresses
the limited size, computing power, and storage of
such devices, as well as their independence from
any fixed infrastructure. The most significant
change is in the JiniME-capable device architecture.
Instead of J2SE, JiniME devices use an environment
based on Java 2 Micro Edition, Connected Limited
Device Configuration, and Mobile Information
Device Profile (J2ME CLDC MIDP). In J2SE, mov-
ing an object from one JVM to another requires
marshaling the object—that is, serializing its state

JiniME addresses
the limited size,

computing power,
and storage of

wireless mobile
devices.

into a sequence of bytes and annotating the serial-
ization with the object’s Java codebase URL. At the
destination, a special Java classloader accesses the
object’s codebase URL, downloads the object’s Java
classfiles, if necessary, and loads them for the des-
tination JVM to use. J2ME CLDC lacks object seri-
alization, marshaled objects, and classloaders.
Rather than rely on the Java libraries to marshal
an object automatically, JiniME connection tech-
nology relies on the programmer to do it manually.
Hence, JiniME incorporates some additional
classes and interfaces to accommodate the essen-
tial Jini technology features.

To obviate infrastructure dependencies, each
JiniME device houses its own lookup service and
classfile server. Figure 3 shows a complete device
architecture with a bridge between two federations.
Figure 4 shows the services in a JiniME-capable
device. Each device registers all its offered services
with its own lookup service. The device can add or
delete services anytime. Its lookup service has a ser-
vice proxy object that other devices can download
for access to the lookup service and, subsequently,
to the network services offered.

Clients can search for a service according to a
service identifier or attributes. A JiniME mobile
device acts as its own classfile server. This avoids
the need for a fixed-infrastructure HTTP server for
exporting object codebases.

A Jini bridge joins a standard Jini federation with
the JiniME federation, allowing smooth service
exchanges between the two network types. The
bridge provides the glue between mobile and fixed
hosts, talking to the mobile devices on one side and
to the fixed devices on the other. It runs a full J2SE
environment to host the standard Jini federation
and also the J2SE implementation of the CLDC
generic connection framework. A component of
the Jini bridge periodically looks up the services
available on the wireless side and creates a corre-
sponding service object—that is, one that has the
same interface. The created object transfers the
remote fixed host request to the mobile host ser-
vice proxy object.

The bridge maintains similar service objects for
mobile host requests.

JINI IMPLEMENTATIONS
The market does not yet include many Jini-

enabled products, but many companies use Jini con-
nection technology for application-specific needs.
For example, Eko Systems (http://www.ekosystems.
com) uses Jini in its Frontiers anesthesiology infor-
mation management system for connecting to a

August 2002 37

JiniME
federation

Jini
federation

Mobile
to-

fixed-
client

service
bridge

Fixed-
client

to
mobile
service
bridge

Jini
bridge

Ethernet

Figure 3. JiniME federation with a Jini bridge to a
standard Jini federation. A bridge component creates
and maintains service objects for available wireless
devices.

A service item
A service ID

A proxy

A attributes

B service item
B service ID

B proxy

B attributes

Lookup service item
Lookup service ID

Lookup service proxy

Lookup service attributes

HTTP server
A codebase

B codebase

Lookup service codebase

Service A

Service B

Figure 4. Services in a JiniME-capable device. Each
device houses its own lookup service and classfile
server.

38 Computer

range of medical equipment such as monitors
and ventilators.

Zucotto Systems (http://www.zucotto. com)
develops semiconductor solutions for wireless
Internet applications. The company’s Xpresso
Java native processors target embedded sys-
tems in the network service and consumer
device markets. Xpresso combines Sun’s
CLDC K virtual machine for resource-con-
strained devices with Zucotto’s own exten-

sions to significantly improve performance com-
pared with traditional JVM architectures. It also pro-
vides a strong platform for the Jini surrogate archi-
tecture, as it supports both Java and Bluetooth.

With Jini technology at these higher speeds, wire-
less devices natively executing Java programming
language code can spontaneously communicate
with other Java technology-enabled devices
through various protocols. Bluetooth, for example,
provides a way for mobile devices to discover and
communicate with other nearby devices, thus meet-
ing the Jini surrogate architecture requirement to
provide a means of detecting when a device is added
to or removed from the network.

PsiNaptic (http://www.Psinaptic.com) has imple-
mented a small footprint (100 Kbytes) Jini imple-
mentation for standalone embedded processors. The
software is called JMatos and has passed the Jini
Technology compatibility tests. It extends Jini tech-
nology to J2ME CLDC MIDP resource-constrained
devices. Also, PsiNaptic is working with Symbian to
port this software to the Nokia 9200 Communicator
series of mobile phones (which use the Symbian OS).
A Software Development Kit for JMatos is also
available for Windows and Linux platforms.

Other such applications include Echelon’s Lon-
Works products for home networking (http://www.
echelon.com).

COMPETING AND RELATED TECHNOLOGIES
Jini has come a long way since it was officially

introduced in the beginning of 1999. Jini has
already been seen as a solution to a number of chal-
lenging issues. Though Jini technology is relatively
mature, it is not the only technology available to
meet home networking requirements.

UPnP
Universal Plug and Play is Microsoft’s peer-to-

peer networking initiative. The UPnP Forum (http://
www.upnp.org) currently consists of more than
470 companies from the home consumer electron-
ics, computing, and network industries. Recently,
Sun Microsystems also joined the forum.

UPnP is an open, distributed architecture being
developed for proximity networking—networks
available to all clients in the same geographical area
as the service they desire. Like Jini, UPnP requires no
service-specific code on the client to use the service.
Independent of the media and network technology
below the transport layers, UPnP is transparent to
the operating system implementation as well. Further,
it has minimal configuration requirements, and its
automatic discovery process uses IP addresses.

The UPnP strategy hinges on the use of existing
standards wherever possible, especially Internet and
Web protocols such as TCP/IP, UDP, HTTP, and
XML.

The main distinction between UPnP and Jini lies
in the API strategy. Jini uses its APIs as a contract
between vendors. UPnP allows vendors to build their
own APIs, modeled on protocol standards and tar-
geted for specific features of the operating system.
Also, Jini follows a code download model, which
connects devices through a common application that
developers must use to test their devices’ operation.

HAVI
Leading audio-video electronics manufacturers

have developed the home audio-video interoper-
ability specification. The HAVI open-license speci-
fication focuses specifically on the transfer and
processing of digital audio-video content among
in-home digital appliances. It does not address
home networking functions such as controlling
lights or monitoring temperatures.

Based on the IEEE 1394 bus standard, HAVI sup-
ports isochronous communication, which guaran-
tees packet delivery at fixed intervals. Hence, HAVI
meets the real-time constraints of audio and video
streams.

HAVI categorizes each home appliance according
to its resource capacity. It distinguishes controllers
from controlled appliances. A controller has
enough network resources to store data and home
networking applications. For example, an intelli-
gent TV could contain a software program that
builds a customized user interface for a controlled
appliance such as a washing machine.

HAVI models home networking services as soft-
ware elements. Each of these objects has a unique
name and identifier. An object makes itself known to
other objects via a registry, a systemwide naming ser-
vice that stores information about the HAVI objects.
Objects use messaging to request services from other
objects. The messaging mechanism is based on a suite
of network and transport layer protocols that pro-
vide HAVI software elements with communication

The main
distinction

between UPnP
and Jini lies in

the API strategy.

facilities. The actual messaging system implementa-
tion may differ from vendor to vendor.

HAVI allows devices to join and leave the network
on the fly through an event manager that detects and
announces changes in the network configuration.

In a HAVI network, a device control module rep-
resents an interface to a physical appliance. The
DCM, a HAVI object stored in the registry, uses the
messaging system to communicate with other objects.
Each DCM has one or more functional control mod-
ules associated with it. FCMs represent different func-
tional components within a networked device.

HAVI has specified the Java programming lan-
guage for DCM development and in-home appli-
ance applications. This makes it easy for HAVI
services to work with Jini technology. A bridge pro-
tocol could provide a way for HAVI and Jini devices
to share services. Applications using Jini connec-
tion software could access HAVI devices such as
VCRs. Likewise, a television on the HAVI network
could connect to remote services enabled by Jini
technology, such as video-on-demand.

JetSend
Hewlett-Packard developed JetSend, a peer-to-

peer communication protocol that lets two devices
connect, negotiate data types, and exchange infor-
mation. JetSend fully describes the content being
exchanged so that the data transfer is both
machine- and operating-system-independent.

Jini has focused on coordinating device-to-device
communication. By contrast, JetSend concentrates
on data content encoding, negotiation, and conver-
sion. This difference reveals a major distinction
between the two technologies. Jini does not define
the data content types nor the negotiations that can
take place between devices. A JetSend-enabled device
can communicate with any other JetSend-enabled
device, negotiate and encode data in the best form of
representation, and transfer this data over the net-
work. However, JetSend does not support federation.

A Jini-JetSend Gateway can bridge the two tech-
nologies.2 Its main task is to register the JetSend
devices with the Jini lookup service and enumerate
these devices from the lookup service to other
JetSend devices. Hence, once Jini technology con-
nects the two devices, they can use the JetSend pro-
tocol to exchange information with each other.

TSpaces
The IBM Almaden Research Center is developing

the TSpaces technology (http://www.almaden.
ibm.com/cs/Tspaces), which it describes as “intelli-
gent connectionware.” The technology essentially

combines communication middleware with
database functionality. The middleware helps
resolve format differences, mask the periodic
disconnection of network components, and
synchronize multiple components. TSpaces is
implemented in Java, which restricts its porta-
bility to Java-supported devices and environ-
ments. Developers must code TSpaces ser-
vices, which limits the technology’s scalability.

Proposed TSpaces services include univer-
sal printing services, URL-based file transfer,
indexing, group communication, and database ser-
vices. The universal printing service, for example,
supports the “any printer to any computer” con-
cept, regardless of platform, operating system, file
format, or printer language. TSpaces does not
require device drivers, thus obviating the problem
of installing them for every new device discovered.
When a client computer wants to print, TSpaces
sends driver information from the printer space as
an XML file to the client.

Inferno
Lucent Technologies’ Bell Labs created the

Inferno network operating system for distributed
computing. Currently, Vita Nuova, a United
Kingdom-based company, has the exclusive global
rights for Inferno (http://www.vitanuova.com/
inferno/). Bell Labs, however, continues to support
Inferno’s evolution.

The operating system’s base is written in Limbo,
an efficient programming language with features
such as advanced interprocess synchronization and
communication facilities. The real advantage of
Inferno lies in its 500-Kbyte kernel, making it highly
scalable. It can operate in two modes: host and
native. As a host, Inferno runs as an application
over a base operating system, like Windows or
Unix, providing an environment suitable for rapidly
developing distributed systems. In the native mode,
it runs as a complete operating system on embedded
systems, requiring as little as 1 Mbyte of memory.

Inferno’s design is hierarchical, where resources
appear as files. Devices access these resources via
a secure network-level protocol called Styx, which
hides service locations from the user. Current
Inferno services support public key infrastructure,
POP3, SMTP, HTML, Ethernet, cable, satellite,
sound cards, and video cards.

Bluetooth
A computing and telecommunications industry

specification, Bluetooth (http://www.bluetooth.
com) describes how mobile phones, computers, per-

August 2002 39

Applications
using Jini

connection software
could access
HAVI devices
such as VCRs.

40 Computer

sonal digital assistants (PDAs), and other
portable devices can interconnect using a
short-range radio link connection. Bluetooth’s
key features are robustness with low com-
plexity, low power requirements, and low
cost. Bluetooth technology can combine a cel-
lular phone, pager, and PDA into a three-in-
one device that doubles as a portable phone at
home or in the office. Users can quickly syn-
chronize with information in a desktop or
notebook computer, send or receive a fax, ini-
tiate a printout, and, in general, coordinate
all mobile and fixed computer devices.

Bluetooth provides a global specification for short-
range wireless technology based on a frequency-hop-
ping protocol in the Industrial Scientific and Medical
frequency band (2.4 GHz). Bluetooth provides short-
range wireless connectivity in three areas: data and
voice access points, cable replacement, and ad hoc
networking. Bluetooth specifications address hard-
ware, software, and interoperability system require-
ments.

In the simplest sense, the relationship between
Bluetooth and Jini is one between hardware and soft-
ware. Bluetooth can enable communication, whereas
Jini defines the data flow in the communication pipe.
The Bluetooth model fits the OSI seven-layer net-
work reference model; Jini, when incorporated, sits
at the session and presentation layers.

Enhancing Bluetooth with Jini gives it the security
features that accompany the Java Development Kit.
The combination of Jini and Bluetooth technologies
under the Jini surrogate architecture can enable the
sharing of services between wireless devices.

J ini’s strengths lie in its object-oriented roots: It
transports code and data together to perform
tasks. Jini integrates distributed computing, net-

work-based services, and reliable smart devices in
a scalable network without administrative over-
head. It provides simple mechanisms for devices to
form an instant community without planning,
installation, or human intervention.

Sun makes Jini source code available to the devel-
oper community at no cost under the Sun Com-
munity Source License (http://wwws.sun.com/
software/communitysource/). The Jini community
(http://www.jini.org) is currently working on new
projects, including the Davis project on security.
Links to university projects worldwide are avail-
able through Jini in Academia (http://www.ecs.
soton.ac.uk/~ra00r/jinidemia/).

Jini has reached the implementation phase of its

technological development, where manufacturers
must come up with ways to use it effectively. Despite
Jini’s advantages, Microsoft’s UPnP remains a
strong competitor offering a powerful vehicle for
technology transport—the Windows operating sys-
tem. The marketplace will ultimately determine the
direction home networking products take toward
pervasive computing. �

References
1. A. Kaminsky, “JiniME: JiniTM Connection Tech-

nology for Mobile Devices,” white paper, Informa-
tion Technology Laboratory, Rochester Inst. of
Technology, Aug. 2000; http://www.cs.rit.edu/
~anhinga/whitepapers/JiniMEWhitePaper/.

2. J. Rekesh, “Integrating Disparate Communication
Technologies,” white paper, California Software Co.
Ltd., Oct. 1998; http://www.calsoft.co.in/techcenter/
hp/sunhp. html.

Rahul Gupta is a graduate student in computer sci-
ence at the University of Cincinnati. His research
interests include ad hoc routing protocols, TCP
over wireless, mobile wireless networks, and sensor
networks. He received a BE in electronics and com-
munication from the University of Roorkee, India.
Contact him at rgupta@ececs.uc.edu.

Sumeet Talwar is a graduate student in computer
engineering at the University of Cincinnati. His
research interests include mobile and wireless ad
hoc networks and MAC-layer protocols. He
received a BE in electronics from the University of
Mumbai, India. Contact him at stalwar@ececs.
uc.edu.

Dharma P. Agrawal is the Ohio Board of Regents
Distinguished Professor of Computer Science and
Computer Engineering at the University of Cincin-
nati. He is the founding director of the Research
Center for Distributed and Mobile Computing. His
research interests include energy-efficient routing
and information retrieval in ad hoc and sensor net-
works, effective handoff and multicasting in inte-
grated wireless networks, interference analysis in
piconets and routing in scatternets, use of direc-
tional antennas for enhanced QoS, scheduling of
periodic real-time applications, and automatic load
balancing in heterogeneous workstation environ-
ments. He received a DSc in electrical engineering
from the Federal Institute of Technology, Lausanne,
Switzerland. He is a Fellow of the IEEE and the
ACM. Contact him at dpa@ececs.uc.edu.

Enhancing
Bluetooth with
Jini gives it the

security features
that accompany

the Java
Development Kit.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

