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One.world: 
Experiences with a
Pervasive Computing
Architecture

P
ervasive computing provides an attrac-
tive vision for accessing information
anywhere and anytime.1 However, a
considerable obstacle to realizing this
vision is the development of applica-

tions that continually adapt to an ever-changing
computing environment and still function when
people move through the physical world or
switch devices. In the one.world project,2 we’ve
tried to create the appropriate system support so
that developers can effectively build and deploy
adaptable applications. We designed our archi-
tecture from the ground up to address the needs

of pervasive applications. This
architecture includes services
that simplify the task of coping
with constant change. Notably,
discovery helps developers build

applications that locate and connect to services
on other devices, and migration helps with appli-
cations that follow users as they move through
the physical world.

To better understand pervasive computing’s
potential and challenges, consider researchers
working in a biology laboratory. Their goal is to
perform reproducible experiments. Yet today they
still manually log individual steps in their paper
notebooks, easily leading to incomplete experi-
mental records. The use of notebooks also com-
plicates the sharing of results with other

researchers unless biologists explicitly enter the
data in their PCs. In contrast, a digital laboratory
employs radio frequency identification (RFID)
and barcode scanners to easily capture data, loca-
tion sensors to track researchers’ movements in
the laboratory, and touch screens to display
experimental data close to the researchers. Thus,
biologists working in a digital laboratory have
more complete records of their experiments and
can more easily share results with their colleagues.

However, implementing the digital biology lab-
oratory with contemporary system services is dif-
ficult because such services typically assume a rel-
atively static and well-administered computing
environment. Furthermore, technologies such as
remote procedure call (RPC) and distributed
objects tend to hide distribution from applica-
tions, so if changes occur, people must manually
adapt the system instead of applications adapt-
ing for them. For example, with contemporary
systems, it’s hard for researchers to move between
devices in the digital laboratory. Every time, they
must manually log in, start their applications, and
load their documents. Similarly, it’s hard to inte-
grate visiting researchers’ devices because people
must first configure them—for example, to use
the correct wireless network. Finally, it’s difficult
to share experimental data because researchers
must explicitly manage shared files and convert
between different formats.

A new architecture, one.world, provides an integrated, comprehensive
framework for building pervasive applications. It targets applications
that automatically adapt to highly dynamic computing environments,
and it includes services that make it easier for developers to manage
constant change.

Robert Grimm 
New York University
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Overview of one.world
To overcome the limitations of con-

temporary distributed systems, we’ve
identified three requirements for system
support for pervasive applications. First,
as people move through the physical
world, either carrying their own portable
devices or switching between devices, an
application’s location and execution con-
text constantly changes. So, system sup-
port must embrace contextual change, not
hide it from applications. Second, users
expect that their devices and applications
will just plug together. Thus, system sup-
port must encourage ad hoc composition
and not assume a static computing envi-
ronment with just a few interactions.
Third, as users collaborate, they must
easily share information. Hence, system
support must facilitate sharing between
applications and between devices.

Our architecture is centered around
meeting these three requirements. It
employs a classic user/kernel split: Foun-
dation and system services run in the ker-
nel; libraries, system utilities, and appli-
cations run in user space. One.world’s
foundation services directly address
these individual requirements. They also
provide the basis for our architecture’s
system services, which in turn serve as
common building blocks for pervasive
applications.

The four foundation services are a vir-
tual machine, tuples, asynchronous
events, and environments. First, all code
in one.world runs in a virtual machine—
namely, the Java virtual machine (JVM).
Because of pervasive computing envi-
ronments’ inherent heterogeneity, devel-

opers can’t possibly predict all the
devices that their applications will run
on, so the JVM ensures that applications
and devices are composable. Second,
one.world represents all data as tuples,
which define a common data model,
including a type system, for all applica-
tions and thus simplify data sharing.
Tuples are records with named and
optionally typed fields. Moreover, each
tuple is self-describing, so an application
can dynamically inspect its structure and
contents. Third, one.world expresses all
communication, whether local or remote,
through asynchronous events. These
events serve to explicitly notify applica-
tions of changes in their runtime context.

Finally, environments are one.world’s
main structuring mechanism. Like tra-
ditional operating system processes,
environments host running applications
and isolate them from one another. They
also serve as containers for persistent
data, providing associative tuple storage

and thus making it possible to group
running applications with their persis-
tent data. Furthermore, environments
nest within one another, making it easy
to extend and compose applications. An
outer environment has complete control
over all nested environments, including
the ability to easily intercept and mod-
ify events sent by inner environments to
one.world’s kernel (which runs in a
device’s root environment) and to other
devices. This interposition facility lets
developers and users dynamically change
an application’s behavior without chang-
ing the application itself. Moreover, it’s
particularly useful for complex and
reusable behaviors, such as replicating an
application’s data or deciding when to
migrate an application. Figure 1 shows
an example environment hierarchy.

One.world’s system services build on
the foundation services and serve as
common building blocks for pervasive
applications. Table 1 summarizes spe-
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Figure 1. Example environment hierarchy.
The User environment hosts Emcee,
one.world’s user and application 
management utility. User has one child,
robert, which stores several tuples
representing that user’s preferences. The
robert environment also has two children:
Clock contains only active event handlers;
Chat hosts the instant-messaging applica-
tion and stores tuples representing the
music that this application broadcasts.

TABLE 1
Application needs and one.world’s corresponding system services.

Application need One.world service

Search Query engine

Store data Structured I/O

Communicate Remote events

Locate Discovery

Fault-protect Check-pointing

Move Migration



cific application needs and one.world’s
corresponding system services. Of these
services, discovery and migration are
probably the most interesting.

Discovery locates resources—that is,
event handlers—by their descriptions. It
leverages one.world’s uniform data
model, in which all data, including
events and queries, are tuples. Using this
data model, discovery supports a rich set

of options, including early and late bind-
ing, anycast, and multicast, with only
three simple operations. Furthermore,
because discovery is an essential ser-
vice—without it, applications can’t
adapt to a new or changing runtime con-
text—it’s also self-managing. One device
acts as the discovery server, providing the
mapping between descriptions and event
handlers. All devices running one.world
that are visible on the local broadcast
network automatically elect the server
from among themselves. To ensure avail-
ability, one.world calls elections aggres-
sively, and these elections complete after
a fixed time period. The individual
devices tolerate any resulting inconsis-
tencies by exporting their discoverable
resources to all visible servers while look-
ing up resources on only one server.

Migration moves or copies an envi-
ronment and all its contents to a differ-
ent device, thus simplifying the imple-
mentation of applications that follow a
person through the physical world.
Unlike traditional process migration,3

one.world’s migration isn’t transparent,
and the migrated application’s state is
limited to the environments being
migrated. During migration, one.world

automatically nulls out references to
resources outside the environment tree.
This practice is acceptable because appli-
cations already expect change. Further-
more, one.world’s migration is eager in
that it moves the entire state between the
devices in one atomic operation. This
avoids residual dependencies and
requires connectivity between the devices
only during migration. The result is that

one.world’s migration avoids many of
the complexities of traditional process
migration, and migration across the
Internet becomes practical.

We specifically designed one.world to
help developers build applications that
automatically adapt to an ever-changing
computing environment. Discovery helps
in locating and connecting to services on
other devices, and migration helps in
implementing applications that follow a
user through the physical world. The
advantage of our architecture’s services
over other services is that they’re built
from the ground up to embrace change,
encourage ad hoc composition, and facil-
itate sharing.

Evaluation criteria
In evaluating one.world, we tried to

determine whether focusing on the three
requirements has led to a practical archi-
tecture for pervasive applications. How-
ever, because this question is rather gen-
eral and difficult to answer, we relied on
four more specific criteria and corre-
sponding questions:

• Completeness. Can we build useful
programs using one.world’s primi-

tives? This criterion determines
whether our architecture is sufficiently
powerful and extensible to support
interesting user-space programs,
including additional services and util-
ities akin to the Unix shell.

• Complexity. How hard is it to write
code in one.world? This criterion
determines the effort involved in
developing programs for our archi-
tecture. We’re especially interested in
how making applications adaptable
impacts programmer productivity.

• Performance. Is system performance
acceptable? This criterion determines
whether our architecture performs
well enough to support actual appli-
cation workloads. Because our goal is
to make applications adaptable, we’re
especially interested in whether appli-
cations respond quickly to changes in
their runtime context.

• Utility. Have we fostered success for
others? This criterion determines
whether others can build real perva-
sive applications atop one.world. It
also represents the most important cri-
terion. After all, a system architecture
is only as useful as the programs run-
ning on top of it.

Services and applications atop
one.world.

To answer these questions, we and oth-
ers have built several services, utilities,
and applications atop one.world. In par-
ticular, we’ve built a replication service,
a user and application manager called
Emcee, and a text-and-audio-messaging
system called Chat. We’ve also supported
the University of Washington’s Labscape
project in porting their digital biology
laboratory assistant to one.world.4 The
Labscape team deployed this laboratory
assistant as part of the Cell Systems Ini-
tiative. Besides these primary programs,
students have built, atop our architecture,
a music-sharing system; a messaging sys-
tem for future, intelligent home appli-
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ances; a graphical debugger; and a Web
server. We now summarize our own
applications and the Labscape digital
biology laboratory assistant, and also the
corresponding experimental results; an
earlier work provides more details.2

Replication service
To provide ubiquitous access to infor-

mation, pervasive applications must
access the corresponding data items, even
if several people share the same data and
access it from different, possibly discon-
nected devices. Our replication service
helps address this need. We patterned this
service after Jim Gray and his colleagues’
two-tier replication model,5 in which a
master owns all data, and replicas host
copies of that data. The replication ser-
vice runs in user space and exploits
one.world’s environment nesting to inter-
pose on an application’s access to tuple
storage. In connected mode, updates are
final, and the system forwards them
directly to the master. In disconnected
mode, updates are tentative, and the sys-
tem logs them on the replica in a sepa-
rate log environment. When a replica
connects again, it synchronizes with the
master by replaying its log against the
master and receiving any updates from
the master. Synchronization is imple-
mented by migrating a copy of the log
environment to the master, where an
application-specific component replays
the updates and, if necessary, performs
conflict resolution.

User and application manager
Emcee includes support for setting up

users, running applications for a user, and
check-pointing all of a user’s applications.
Emcee also lets users move or copy appli-
cations and their data through a simple
drag-and-drop interface, or move all their
applications between devices. Users can
either push applications from the current
device to another one or pull them from

another device to the current one. As Fig-
ure 1 shows, the implementation struc-
tures the environment hierarchy accord-
ing to the pattern /User/user/application
and directly builds on this environment
nesting to control users’ applications. The
implementation relies on check-pointing
and migration to save, restore, move, and
copy applications, and on discovery to
locate a user’s applications when pulling
them to a new device.

Text-and-audio-messaging system
Chat is based on a simple model under

which users send text and audio messages
to a channel and subscribe to that chan-
nel to see and hear the messages sent to
it. The implementation sends all messages
through late-binding discovery, which
automatically routes messages to all inter-
ested parties by combining the lookup of
matching event handlers with the actual
event delivery; subscribing to a channel
simply translates to exporting an event
handler to discovery. Therefore, Chat
automatically adapts to channel subscrip-
tion and subscriber location changes.
Users can stream audio either from a
microphone or from sound tuples stored
in an environment. One.world provides
utilities that let users import sound files
from a traditional file system and convert
them to a sequence of sound tuples.

Labscape
A fundamental feature of the Lab-

scape application is that experimental
data follows researchers as they move
through the laboratory. At the same
time, there’s no need to move the entire
application, only a small component to
capture and display experimental data.
Eventually, Labscape forwards all data
to a central repository—making it pos-
sible, for example, to mine the data of
several experiments. Figure 2 shows a
snapshot of the capture-and-display
component’s user interface, which is
called a guide. The Labscape team devel-
oped this interface through user inter-
face studies with biology researchers.
The individual icons represent different
experimental steps, and the arrows rep-
resent ordering constraints. Initially, the
guide functions as a plan for performing
the experiment. As researchers perform
a step, they annotate the corresponding
icon with the results of that step. Thus,
the guide eventually becomes a record of
the experiment.

Labscape’s implementation relies on
several services, which all communicate
through one.world’s late-binding dis-
covery and, consequently, are isolated
from other services’ locations and from
transient service and network failures.
The device access service collects exper-
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Figure 2. Labscape’s user interface. An
experimental flowgraph, or guide, 
represents each experiment.



imental data from RFID and barcode
scanners, and collects location updates
from infrared sensors. This service con-
verts the data and the updates into
appropriate one.world events and then
forwards them to the proximity service,
which tracks researchers’ locations. For
experimental data, the proximity service
determines which researcher performed
the scanning operation and then for-

wards the data to the researcher’s guide.
For location updates, the proximity ser-
vice updates its internal data structures
and then directs the researcher’s guide to
move to the closest touch screen, using
one.world’s migration. The state service
is the final repository for all experimen-
tal data, which it receives from the
researchers’ guides. The WebDAV ser-
vice then publishes this data on the Web.

Experimental results
Having described the main programs

built atop our architecture, we now
return to the four criteria and present the
results of our experimental evaluation.

Completeness
The programs just discussed clearly

show that one.world is powerful enough
to support a variety of useful programs.
Furthermore, our replication service and
Emcee demonstrate that it’s possible to
implement services and utilities in user
space. The key feature for enabling user-
space services and utilities is one.world’s
environment hierarchy, which makes it
easy to control other programs and inter-
pose on their event streams.

Complexity
To evaluate the effort involved in writ-

ing adaptable applications, we carefully
tracked the process of implementing
Emcee and Chat. Overall, implementing
the two programs took 256 hours for
4,321 noncommenting source state-
ments (NCSS), yielding a measured pro-
ductivity of 16.5 NCSS/hr. This produc-
tivity is within the range of results
reported in the literature,6,7 suggesting
that writing adaptable applications is not

significantly harder than writing more
conventional applications.

Performance
We conducted measurements with

Emcee and Chat using Sun’s Java
HotSpot Virtual Machine 1.3.1 running
on Dell 800-MHz Pentium III PCs con-
nected through a 100-Mbyte switched
Ethernet. These performance measure-
ments show that service interruptions due
to migration or discovery server elections
last less than 4 seconds, comparing favor-
ably, for example, with the Transmission
Control Protocol (TCP) timing out after
several minutes. Furthermore, although
migration latency generally depends on
the number and size of stored tuples, this
latency is only 7 seconds for an environ-
ment storing 8 Mbytes of audio data,
which is fast enough for a person mov-
ing through the physical world. Finally,
our implementation of discovery per-
forms well enough to route several inde-
pendent streams of uncompressed audio
data. However, its scalability is also lim-
ited, supporting no more than 10 streams
for the PCs on our network.

Utility
The Labscape digital laboratory assis-

tant illustrates the utility of one.world as

a real-world application substrate. Fur-
thermore, in contrast to an earlier ver-
sion, which the Labscape team imple-
mented using Java sockets and the team’s
own application-specific migration
instead of the corresponding one.world
services, the one.world port required less
than half the development time, had an
order-of-magnitude faster migration
time (seconds instead of minutes), had a
two-orders-of-magnitude longer mean
time between failures (days instead of
minutes), and could recover piecemeal
from failures rather than requiring a
restart of the entire lab every time. We
attribute these improvements to two
main factors. First, our architecture’s ser-
vices—including the level of indirection
offered by discovery rather than direct
TCP connections—provide a better
match to the Labscape application’s
needs while also exposing a cleaner API.
Second, by using one.world, Labscape’s
developers could focus on the applica-
tion itself rather than having to create
necessary system support.

Experiences and lessons
learned

On the basis of the results just discussed,
we conclude that one.world does, in fact,
let developers effectively build applications
that adapt to change. Moreover, we con-
clude that our focus on embracing change,
encouraging composition, and facilitating
sharing has led to a practical architecture
for pervasive applications.

Nevertheless, the user-space programs
we and others have built have not only
provided a solid basis for evaluating
one.world, they’ve also helped us gain a
better understanding of our architec-
ture’s strengths and  limitations. We now
focus on the resulting insights and iden-
tify lessons that are applicable beyond
our work.

Clear successes
The central role played by environ-
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ments in our architecture implies a more
general pattern—namely, that nesting is
a powerful paradigm for controlling and
composing applications. Nesting pro-
vides control, as both Emcee and the
graphical debugger illustrate. Moreover,
developers and users can use nesting to
extend applications, as our replication
service illustrates. Nesting thus makes it
possible to easily factor important, pos-
sibly complex behaviors and provide
them as common application building
blocks. Furthermore, nesting is attractive
because it preserves the relationships
among environments. For example,
when we stored audio tuples in a child
environment of Chat’s environment, the
former remained a child, even if Chat’s
environment moved between devices.
This nesting flexibility is also present in
the Ambient Calculus,8 which, similar to
one.world’s environments, groups com-
putations and data in nested containers.

The use of migration in Emcee and
Labscape illustrates that migration pro-
vides a general building block for struc-
turing pervasive systems. Migration can
be an internal tool, as with our replica-
tion service, where it replaces a net-
worked reconciliation protocol. It can
also be an application-level tool—either
controlled from the outside (as with
Emcee) or self-initiated (as with Lab-
scape’s guides). Furthermore, migration
can be used simultaneously as an internal
and application-level building block. For
example, our replication service’s master
and its replicas are migratable. Migrating
the master is useful when, for example,
upgrading the computer on which the
master runs; migrating a replica is useful
when the user is switching devices. How-
ever, migration’s widespread use also
requires support for discovery so that
migrating services and applications can
reconnect after a location change.

Besides representing a central appli-
cation building block, one.world’s
migration service also leverages our

architecture’s other services as much as
possible to avoid complexity and to pro-
vide a clean model for its operation. For
example, it relies on the JVM to provide
a uniform execution environment across
different devices and hardware architec-
tures. It also relies on environments to
clearly delineate which state to move
between devices and which state not to
move. Furthermore, the migration ser-

vice relies on asynchronous events to
capture an application’s execution state
in the form of its event queues and to
notify the application of a completed
move or copy operation. More funda-
mentally, however, one.world’s migra-
tion can avoid many of the complexities
associated with providing such a service
because applications already expect
change.3 In other words, exposing dis-
tribution enables not only more adapt-
able applications but also more power-
ful system services.

Need for user-space support
Consistent with our goal of exposing

change, all communications in one.world,
whether local or remote, occur through
asynchronous events. Furthermore, event
delivery has at-most-once semantics. For
remote communications, at-most-once
semantics are appropriate because, in lieu
of transactional delivery protocols, a
remote device might fail after accepting
an event but before delivering it to the
intended application. For local event han-
dling, exactly-once delivery is the norm.
However, at-most-once semantics let
one.world’s implementation recover from
pathological overload conditions by selec-

tively shedding load.
Although we still believe that best-

effort, asynchronous events are the appro-
priate kernel-level services for pervasive
computing, many applications rely on
synchronous request-and-response inter-
actions. This raises the question of how
to best implement these interactions—a
concern Labscape’s developers specifically
noted. After some experimentation, we

found the following approach, which we
call the logic/operation pattern, particu-
larly successful. Under this pattern, an
application is partitioned into logic and
operations, which are implemented by
separate sets of event handlers. Compu-
tations that don’t fail are logic; interac-
tions that may fail—notably all I/O—are
operations. A user-level operation library
simplifies the implementation of event
handlers representing operations by main-
taining the state associated with request-
and-response interactions and by detect-
ing and recovering from failures through
timeouts and retries. The operation
library conveys a failure condition to the
appropriate logic only if recovery fails
repeatedly or a failure cannot be recov-
ered from in a general way. Although the
operation library can’t hide one.world’s
event-based programming model from
developers, it does enable a more famil-
iar synchronous programming style and
reduces the complexity of building event-
based applications.

To enforce protection, our architec-
ture prevents applications from access-
ing Java’s java.lang.System class, and it makes
select methods (notably arraycopy() to copy
the contents of arrays and getProperty() to
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access system properties) accessible
through its own SystemUtilities class. Using a
different class to access these methods
doesn’t restrict applications written from
scratch; developers can simply use a dif-
ferent class name in the source code.
However, it does prevent existing Java
libraries, which frequently employ these
methods, from running on one.world.
As a result, the Labscape team had dif-

ficulties reusing third-party libraries. To
address this issue, we developed a sim-
ple utility that, using binary rewriting,
transforms existing libraries and replaces
invocations to System’s methods with the
corresponding one.world methods.

The larger lesson behind both our
operation library and the binary rewrit-
ing tool is that, to be effective, a system
architecture should provide a program-
ming environment as close as possible to
familiar development platforms. Other-
wise, application developers will focus
on working around the system architec-
ture’s peculiarities rather than focusing
on their applications.

Overdesigned features
When designing one.world’s interfaces,

we took a cue from Unix and designed
structured I/O to expose the same basic
interface for both storage and communi-
cations (although they’re distinct services,
just like files and sockets are distinct ser-
vices in Unix). However, none of the pro-
grams we and others have built use struc-
tured I/O networking; they all rely on
remote events and discovery for net-
worked communications. Only the
implementation of remote events and dis-

covery in the kernel builds on structured
I/O networking. Developers tend to favor
remote events and discovery because
they’re higher-level, more flexible ser-
vices. So, we believe we overdesigned
structured I/O. We could have omitted
structured I/O networking and instead
used a simpler, internal networking layer
for implementing remote events and dis-
covery. In other words, storage and com-

munications are orthogonal to each other
and best implemented by separate ser-
vices with distinct interfaces.

Because structured I/O storage pro-
vides a record-based interface to persis-
tent storage, we also took a cue from con-
ventional databases and provided
atomicity, isolation, and durability for all
operations. However, our performance
evaluation of the replication service sug-
gests that the durability guarantees can
generate excessive overhead for some
applications. In particular, immediately
forcing each write operation to disk is
unnecessary when logging updates in dis-
connected mode because all updates are
already tentative. To address this prob-
lem, we designed (but have not imple-
mented) a simple extension to structured
I/O, under which applications can request
that the destructive write and delete oper-
ations provide only relaxed durability and
are lazily written to disk. Just as with tra-
ditional file systems, applications using
this option must explicitly perform a flush
to force pending updates to disk. When
we consider our experience with struc-
tured I/O contrasted with operations to
provide reliable event delivery, we con-
clude that, just as with other end-to-end

guarantees, it’s best to provide reliability
guarantees in user space rather than as the
default within the kernel. That way, appli-
cations that don’t need such guarantees
need not pay the overhead.

Limitations
The biggest limitation of our archi-

tecture is that like Jini9 and Lime10 but
unlike iROS11 and L2imbo,12 one.world
implements tuples through Java classes,
using public fields to represent a tuple’s
values. Implementing tuples through
Java classes provides a convenient inter-
face to data for applications because
accessing a value is a simple field access.
However, it also poses a considerable
problem for services such as discovery,
which process many different types of
data for many different applications and
must access the corresponding class files,
in addition to the actual tuples. The fun-
damental problem is that we’ve taken a
single-node programming methodol-
ogy—a programmatic data model—
which expresses data schemas in the form
of code, and applied it to a distributed
system. This suggests that we need to
abandon the programmatic data model
altogether and instead use a data-centric
data model, such as XML Schema, which
expresses schemas as data rather than
code. With a data-centric data model,
applications and services must still access
a data item’s schema to manipulate the
data item. However, because the schemas
are data themselves and not code, they’re
easier to distribute and share, and they
aren’t tied to a specific execution plat-
form. Hence, data-centric data models
provide better interoperability than pro-
grammatic data models.

Defining an appropriate data-centric
data model is an important topic for
future research. The challenge is to define
a data model that meets conflicting
requirements. On the one hand, to sup-
port the pervasive sharing of information,
the data model must be general and sup-

28 PERVASIVEcomputing www.computer.org/pervasive

U B I Q U I T O U S  S Y S T E M S  S O F T W A R E

Defining an appropriate data-centric data model

is an important topic for future research. The

challenge is to define a data model that meets

conflicting requirements.



ported by a wide range of platforms. One
possible starting point is XML Schema.
It already defines the data model for
SOAP, the emerging standard for remote
communications between Web services
that, for example, Microsoft’s .NET plat-
form uses. On the other hand, the data
model must be easy to program and effi-
cient to use. For an XML-based data
model, this means avoiding the com-
plexities of a general data access inter-
face, such as the Document Object
Model, and providing a more efficient
encoding. Ideally, a data-centric data
model should be as easy to program as
field access for tuples in our architecture,
while also avoiding the need for
exchanging class files between devices.

In contrast to iROS, which includes
support for HTTP in addition to its own
tuple-based protocol, one.world exclu-
sively builds on its own networking pro-
tocols in the form of remote events and
discovery. In our experience, these
remote-events and discovery protocols
have clearly simplified the implementa-
tion of pervasive applications running
on our architecture. At the same time,
using nonstandard protocols has made
it harder to integrate one.world with
other distributed systems, notably Web-
based applications.

Although we’ve successfully imple-
mented a Web server atop our architec-
ture, integrating outside applications
with one.world through remote events
or discovery is impractical, especially if
the outside applications aren’t written in
Java. Because of our programmatic data
model, an outside application would
have to reimplement large parts of Java’s
object serialization, which would be
unnecessarily complex. However, to pro-
vide ubiquitous information access, per-
vasive applications must easily interact
with one another and with Internet ser-
vices, independent of the underlying sys-
tem platform. Moving to a data-centric,
XML-based data model and using stan-

dardized communication protocols such
as HTTP will help provide better inter-
operability between pervasive applica-
tions, even if they run on different sys-
tem architectures. To put it differently,
modern distributed systems must be
compatible with Internet protocols first
and offer additional capabilities second.

Metrics
Our experimental evaluation of

one.world certainly represents a first step
toward thoroughly evaluating a perva-
sive computing architecture. But it also
illustrates that we need better metrics for
designing and evaluating pervasive com-
puting systems. In particular, although
we’ve used NCSS/hr as a productivity
metric, we’ve found only a few refer-
ences in the literature to calibrate our
measurements. Furthermore, the soft-
ware engineering community seems to
have adopted function-point counting as
a preferred metric.13 Function-point
counting attempts to capture an appli-
cation’s logical inputs, transformations,
and outputs, requiring the development
of a higher-level model to measure the
software. Thus, function-point counting
precludes the automated collection of
application statistics, which raises the
question of how objective this metric
really is. Consequently, we still believe
that NCSS/hr provides an appropriate
starting point for measuring program-
mer productivity. However, to determine
this metric’s accuracy, we need more
experience using it across a wider range
of applications, system platforms, and
programming languages.

We’ve also characterized one.world’s
adaptability by following the framework
described by Brian Noble and his col-
leagues and measuring how our archi-
tecture’s applications and services react
to different stimuli.14 However, we lack
standardized benchmarks that can cap-
ture the scalability and adaptability
requirements of pervasive computing

environments. We’re especially inter-
ested in the number of people and
devices that pervasive computing envi-
ronments must support, the different
classes of devices people use, and the cor-
responding arrival and departure rates
of people moving through the physical
world. We believe that wireless mobility
studies, such as the one performed at
Dartmouth University,15 can provide a
good starting point for developing such
benchmarks, but there’s clearly a need
for similar studies to characterize mobil-
ity for different organizations and target
audiences, and to track changes as
mobile devices and wireless technologies
develop over the years.

O
ur experiences with one.world
suggest several topics for
future research into system
support for pervasive applica-

tions. Notably, defining data models and
communication protocols to better inte-
grate pervasive systems with one another
and with Internet services remains a chal-
lenge. Additionally, metrics for designing
and evaluating pervasive systems are still
lacking. Our experiences also suggest
that, given appropriate system support,
pervasive applications are fairly stylized
in their implementations, mostly encoding
how to route and transform data and
where to make their services available.
Hence, we envision a different approach
to the development of pervasive appli-

JULY–SEPTEMBER 2004 PERVASIVEcomputing 29

the AUTHOR

Robert Grimm is an assis-
tant professor of computer
science at New York Univer-
sity. His research interests
focus on how to use
programming language and
compiler technologies to
more effectively build distrib-

uted systems that scale and evolve more grace-
fully. Grimm received his PhD in computer sci-
ence and engineering from the University of
Washington. He is a member of the IEEE, the
ACM, and Usenix. Contact him at New York
University, Dept. of Computer Science, 715
Broadway, Room 711, New York, NY 10003;
rgrimm@cs.nyu.edu; www.cs.nyu.edu/rgrimm.



30 PERVASIVEcomputing www.computer.org/pervasive

U B I Q U I T O U S  S Y S T E M S  S O F T W A R E

cations—one that favors higher-level,
declarative specifications rather than
explicitly programming behaviors. For
example, such an approach would let
developers specify data integrity con-
straints for replicated storage and poli-
cies for migrating pervasive applications.
The key insight is that a declarative spec-
ification can concisely describe a system’s
properties, which can then be automat-
ically translated into appropriate actions.
In effect, such an approach would treat
a pervasive systems platform, such as
one.world, as the assembly language for
implementing complex behaviors. As
such, it could significantly simplify the
development of complex systems.
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