
F or the past five years, competing
industries and standards developers

have been hotly pursuing automatic
configuration, now coined the broader
term service discovery. Jini, Universal
Plug and Play (UPnP), Salutation, and
Service Location Protocol are among the
front-runners in this new race. However,
choosing service discovery as the topic
of the hour goes beyond the need for
plug-and-play solutions or support for
the SOHO (small office/home office)
user. Service discovery’s potential in
mobile and pervasive computing envi-
ronments motivated my choice.

Mobility means getting away from con-
figured environments and into foreign
networks with unknown infrastructures.
However, because a mobile computer
can’t predict such infrastructures, it might
not know to take advantage of them or
even have the capabilities to interact with
them. For example, a mobile computer
might not be able to use a nearby printer
because it does not have the appropriate
printer driver, or perhaps a PDA will
experience slow Web access because it is
not aware of a nearby Web proxy caching
server. As mobile computing evolves
beyond the ability to wirelessly connect
to read email or surf the Web anywhere
and on any device, it is bound to exploit
local resources, peers, and services. With
the advent of location-based services and
peer-to-peer computing, service discovery
is taking on a new role as a critical mid-
dleware for mobile computing.

Service discovery can also benefit per-
vasive computing environments, where

numerous computing elements and sen-
sors often must interact to achieve the
desired functionality and intelligence.
In such environments, self-advertise-
ment and peer discovery can enable
the pervasive space to dynamically
change and evolve without major sys-
tem reengineering.

SERVICE DISCOVERY PROTOCOLS
Consider the following three scenarios.

First, imagine finding yourself in a taxi
without your wallet. Fortunately, you have
a Jini technology-enabled cellular phone,
and your cellular provider uses Jini tech-
nology to deliver network-based services
tailored to your community. On your
phone screen, you see a service for the City
Cab Company, so you download the elec-
tronic payment application to authorize
paying your taxi fare. The company’s pay-
ment system instantly recognizes the trans-
action and sends a receipt to the printer in
the taxi. You take the receipt, and
you’re on your way.

Second, consider an insurance
salesman who visits a client’s
office. He wants to brief the client
on new products and their options,
which are stored in his Windows
CE handheld PC. Because his
handheld PC has wireless network
and supports UPnP, it automati-
cally discovers and uses an Ether-
net-connected printer without any
network configuration and setup.
He can print whatever he wants
from his handheld and promote
the new products.

Finally, consider an intelligent, online
overhead projector with a library client.
After being authenticated, the user
might select a set of electronically stored
charts or other documents for viewing.
Rather than bringing transparencies to
a meeting, the user accesses them
through the LAN server in the library.

Scenario 1 is a Jini demo scenario from
Sun Microsystems, Scenario 2 is a UPnP
scenario from Microsoft, and Scenario
3 comes from Salutation. At a glance,
they all seem to talk about the same sto-
ries: mobile devices, zero configuration,
impromptu community enabled by ser-
vice discovery protocols (SDPs), and
cooperation of the proximity network.
Without mentioning the trademarks, we
would hardly know which company is
telling which scenario. These SDPs, how-
ever, have different origins. They see the
problem from different angles and have
different approaches for solving it.

Standards for Service
Discovery and Delivery
Sumi Helal, University of Florida

Editor: Sumi Helal � University of Florida � helal@cise.ufl.edu

Standards,Tools, & Best Practices

1536-1268/02/$17.00 © 2002 IEEE PERVASIVEcomputing 95

DA Directory agent

DHCP Dynamic Host Configuration Protocol

IETF Internet Engineering Task Force

RMI Remote method invocation

SA Service agent

SDP Service discovery protocol

SLP Service location protocol

SOHO Small office/home office

SSDP Simple service discovery protocol

UA User agent

UDP User Datagram Packets

UPnP Universal Plug and Play

GLOSSARY

JINI
Sun Microsystems introduced Jini,

based on the Java technology, in 1998.
The heart of Jini is a trio of protocols:
discovery, join, and lookup. A pair of
these protocols—discovery and join—
occurs when you plug a Jini device into
a network; discovery occurs when a
service looks for a lookup service with
which it can register, and join occurs
when a service locates a lookup service
and wants to join it. Lookup occurs
when a client or user locates and invokes
a service described by its interface type
(written in the Java programming lan-
guage) and possibly other attributes. For
a client in a Jini community to use a
service,

• The service provider must locate a
lookup service by multicasting a
request on the local network or a
remote lookup service known to it
a priori (see Figure 1a).

• The service provider must register a
service object and its service attributes
with the lookup service. This service
object contains the Java programming
language interface for the service,
including the methods that users and
applications will invoke to execute the
service, along with any other descrip-
tive attributes (see Figure 1a).

• A client then requests a service by

Java type and perhaps other service
attributes. The lookup server ships a
copy of the service object over the
network to the client, who uses it to
talk to the service (see Figure 1b).

• The client interacts directly with the
service via the service object (see Fig-
ure 1b).

Jini technology consists of an infra-
structure and a programming model that
address how devices connect with each
other to form an impromptu community.
Jini uses the Java remote method invo-
cation (RMI) protocol to move code
around the network.

We can view the Jini lookup service
as a directory service or broker. Jini uses
three related discovery protocols. When
an application or service first becomes
active, the multicast request protocol
finds lookup services in the vicinity.
Lookup services use the multicast
announcement protocol to announce
their presence to services in the com-
munity that might be interested. The
unicast discovery protocol then estab-
lishes communications with a specific
lookup service known a priori over a
wide-area network.

However, a Jini lookup service is not
just a simple name server. It maps the
interfaces that clients see to service
proxy objects. It also maintains service

attributes and processes match queries.
Clients download the service proxy,
which is usually an RMI stub that can
communicate back with the server. This
proxy object lets clients use the service
without knowing anything about it.
Hence, there is no need for device driv-
ers in case the service provided is a
device (such as a printer). Although
service proxy objects represent a typi-
cal scenario of service invocation, the
downloaded service object can be the
service itself or a smart object capable
of speaking in any private communica-
tion protocol.

Leasing in Jini
Jini grants access to its services on a lease

basis. A client can request a service for a
desired time period, and Jini will grant a
negotiated lease for that period. This lease
must be renewed before its expiration;
otherwise, Jini will release the resources
associated with the service. Leasing lets
Jini be robust and maintenance-free when
faced with abrupt failures or the removal
of devices and services.

Distributed programming in Jini
Besides the basic service discovery and

join-and-lookup mechanism, Jini sup-
ports remote events and transactions
that help programmers write distributed
programs in a reliable and scalable fash-
ion. Remote events notify an object
when desired changes occur in the sys-
tem. Newly published services or some
state changes in registered services can
trigger these events. For example, the
lookup service can notify a Jini palmtop
that has registered its interest in print-
ers when a printer becomes available.
Also, Jini supports the notion of trans-
actions and flexible notions of atomic
commitment.

Anyone interested in Jini can partic-
ipate and contribute to the standard by
joining the Jini Forum (www.jini.org).
Sun Microsystems acts as the steward
for this forum.

UNIVERSAL PLUG AND PLAY
UPnP is an evolving Microsoft-initi-

96 PERVASIVEcomputing http://computer.org/pervasive96 PERVASIVEcomputing

Service
attributes

Service
object

Lookup
service

Service
attributes

Service
object

Service
providerClient

Service
attributes

Service
object

Lookup
service

Service
providerClient

(b)(a)

Service
object

Figure 1. (a) A service provider registers a service object and its service attributes with
the lookup service. (b) A client requests a service from service attributes, and a copy of
the service object moves to the client.

APPLICATIONS EDUCATION NEWS STANDARDS WEARABLE COMPUTING

S TA N D A R D S , T O O L S & B E S T P R A C T I C E S

ated standard that extends the Microsoft
Plug-and-Play peripheral model. It aims
to enable the advertisement, discovery,
and control of networked devices, ser-
vices, and consumer electronics. In UPnP,
a device can dynamically join a network,
obtain an IP address, convey its capabil-
ities on request, and learn about the pres-
ence and capabilities of other devices. A
device can also leave a network smoothly
and automatically without leaving any
unwanted state behind. UPnP leverages
TCP/IP and Web technologies, including
IP, TCP, UDP, HTTP, and XML. It uses
the protocol stack in Figure 2 for service
discovery, advertisement, description,
and eventing.

Joining and discovery in UPnP
UPnP uses simple service discovery

protocol (SSDP) for service discovery.
This protocol announces a device’s pres-
ence to others and discovers other
devices or services. Therefore, SSDP is
analogous to the trio of protocols in Jini.
SSDP uses HTTP over multicast and uni-
cast UDP, referred to as HTTPMU and
HTTPU, respectively.

A joining device sends out an adver-
tisement (ssdp:alive) multicast message to
advertise its services to control points.
Control points function similar to Jini’s
lookup services. A control point, if pres-
ent, can record the advertisement, or
other devices might also directly see this
multicast message. In contrast to Jini,
UPnP can work with or without the
control points (lookup service). It sends
a search (ssdp:discover) multicast message
when a new control point is added to a
network. Any device that hears this
multicast will respond with a unicast
response message.

UPnP uses XML to describe device
features and capabilities. The afore-
mentioned advertisement message con-
tains a URL that points to an XML file
in the network that describes the UPnP
device’s capability. By retrieving this
XML file, other devices can inspect the
advertised device’s features and decide
whether it is important or relevant to
them. XML allows complex and pow-

erful description of device and service
capability as opposed to Jini’s simple
service attribute.

UPnP service description
After a control point has discovered

a device, it learns more about how to
use it, control it, and coordinate with
it by retrieving its XML description
file. Control is expressed as a collec-
tion of Simple Object Access Protocol
(SOAP) objects and their URLs in the
XML file. To use a specific control, a
SOAP message is sent to the SOAP
control object at the specified URL.
The device or the service returns
action-specific values.

A UPnP description for a service in-
cludes a list of actions to which the serv-
ice responds and a list of variables that
model the service’s state at runtime. The
service publishes updates when these
variables change, and a control point can
subscribe to receive this information.
Updates are published by sending event
messages that contain the names and val-
ues of one or more state variables. These
messages are also expressed in XML and
formatted using the General Event Noti-
fication Architecture.

UPnP features an additional higher-
level description of services in the form
of a user interface. This feature lets the

user directly control the service. If a
device or service has a presentation
URL, then the control point can retrieve
a page from this URL, load the page
into a browser, and (depending on the
page’s capabilities) let a user control the
device or view the device’s status.

Automatic configuration of IP
Another important feature of UPnP

is automatic configuration of IP
addresses. AutoIP lets a device join the
network without any explicit adminis-
tration. When a device connects to the
network, it tries to acquire an IP
address from a Dynamic Host Config-
uration Protocol server. However, in the
absence of a DHCP server, an IP
address is claimed automatically from
a reserved range for local network use.
The device claims an address by ran-
domly choosing one from the reserved
range and then making an ARP request
to see if anyone else has already claimed
that address.

Headed by Microsoft, the UPnP
Forum (www.upnp.org) oversees the
standard’s developments. The standard
development process is similar to the
Java Community Process.

SALUTATION
The Salutation Consortium is devel-

STANDARDS, TOOLS & BEST PRACTICES

JULY–SEPTEMBER 2002 PERVASIVEcomputing 97PERVASIVEcomputing 97

UPnP vendor

UDP TCP

IP

UPnP Forum

UPnP device architecture

HTTPU (unicast)

SSDP

HTTP

GENA

SOAP

HTTP

SSDP

GENA

GENA:
SOAP:
SSDP:
UDPs:
UPnP:

General Event Notification Architecture
Simple Object Access Protocol
Simple Service Discovery Protocol
User datagram packets
Universal Plug and Play

HTTPMU
(multicast)

Figure 2. Universal Plug and Play protocol stack.

oping another standard, called Salutation,
for service discovery and use, especially
among devices and services of dissimilar
capabilities. The Salutation architecture
provides a standard method for applica-
tions, services, and devices to describe and
advertise their capabilities to other appli-
cations, services, and devices. The archi-
tecture enables search and discovery
based on particular capabilities.

The architecture is composed of two
major components: the Salutation man-
ager and transport manager. The Saluta-
tion manager is the core of the architec-
ture and is similar to the lookup service
in Jini or control point in UPnP. It is
defined more as a service broker. A ser-
vice provider registers its capability with
a Salutation manager. When a client asks
its local Salutation manager for a service
search, all the Salutation managers coor-
dinate to perform the search. Then, the
client can use the returned service. A Salu-
tation manager sits on the transport man-
agers that provide reliable communica-
tion channels, regardless of the underlying
network transports.

The Salutation manager provides a
transport-independent interface to server
and client applications. This interface
(SLM-API) includes service registration,

service discovery, and service access func-
tion. The interface between the Saluta-
tion manager and transport manager
(called SLM-TI) achieves communication
protocol independence in the Salutation
architecture. The transport manager is
an entity, dependent on the network
transport it supports. A Salutation man-
ager might have more than one transport
manager, in case it is attached to multi-
ple, physically different networks. How-
ever, the Salutation manager sees its
underlying transport through the SLM-
TI, and it performs the following tasks.

Service registration
The Salutation manager contains a

registry to keep information about ser-
vices, and a client can register or unreg-
ister itself. All registrations are done
with the local Salutation manager or a
nearby one connected to the client.

Service discovery
The Salutation manager discovers

other Salutation managers and regis-
tered services. It discovers remote ser-
vices by matching types and sets of
attributes specified by the local Saluta-
tion manager. This unique feature,
called capability exchange, is needed

because services are basically registered
with the local Salutation manager in the
same equipment. This cooperation
among Salutation managers forms a
conceptually similar lookup service to
Jini. One difference, though, is that it is
distributed over the network.

Service availability
A client application can ask the local

Salutation manager to periodically
check the availability of services. This
procedure is done between the local
manager and the corresponding man-
ager. This is a weaker version of Jini and
UPnP’s eventing services.

Service session management
The service session is operated in one

of three modes: native, emulated, or salu-
tation. The Salutation manager might not
be involved in message exchanges in the
service session, depending on the modes.
The native mode exchanges through a
native protocol—the Salutation manager
is never involved in the message ex-
change. In the emulated mode, the Salu-
tation manager protocol carries messages
between the client and service but does-
n’t inspect the contents, and in the salu-
tation mode, Salutation managers not
only carry messages but also define the
formats to be used in the session.

A functional unit is a basic building
block in the Salutation architecture. It is
the minimal meaningful function to con-
stitute a client or service. A collection of
functional units defines a service record.
For example, the functional units [Print],
[Scan], and [Fax Data Send] can define a fax
service. Each functional unit is composed
of a descriptive attribute record, specified
in ISO 8824 ASN.1.

Salutation-Lite
Salutation-Lite is a scaled-down ver-

sion of the Salutation architecture tar-
geted at devices with small footprints. It
is obviously more applicable to small
information appliances such as palm-size
and handheld computers. Salutation-Lite
also lends itself well to low-bandwidth
networks such as IR and Bluetooth.

98 PERVASIVEcomputing http://computer.org/pervasive98 PERVASIVEcomputing

Figure 3. Dallas Semiconductor’s Tiny Internet Interface board running Jmatos (front
and back).

APPLICATIONS EDUCATION NEWS STANDARDS WEARABLE COMPUTING

S TA N D A R D S , T O O L S & B E S T P R A C T I C E S

The Salutation standard is overseen
by the Salutation Consortium (www.
salutation.org), which provides five lev-
els of membership.

SERVICE LOCATION PROTOCOL
Service Location Protocol is an Inter-

net Engineering Task Force (IETF) stan-
dard for decentralized, lightweight, and
extensible service discovery. It uses ser-
vice URLs, which defines the service type
and address for a particular service. For
example, “service:printer:lpr://hostname”
is the service URL for a line printer serv-
ice available at hostname. Based on the
service URL, users (or applications) can
browse available services in their domain
and select and use the one they want.

There are three agents in SLP: the
user, service, and directory. The UA is
a software entity that sends service dis-
covery requests on a user application’s
behalf. The SA broadcasts advertise-
ments on behalf of a service. As a cen-
tralized service information repository,
the DA caches advertisements from
SAs and processes discovery queries
from UAs. An SA advertises itself by
registering with a DA. The registration
message contains the URL for the
advertised service and for the service’s
lifetime, and a set of descriptive attrib-
utes for the service. The SA periodically
renews its registration with the DA,
which caches the registration and sends
an acknowledge message to the SA. A
UA sends a service request message to
the DA to request the service’s location.
The DA responds with a service reply
message that includes the URLs of all
services matched against the UA
request. Now, the UA can access one
of the services pointed to by the
returned URL. In SLP, the DA is
optional. A DA might not exist in a
small network, in which case the UAs’
service request messages are directly
sent to the SAs.

SLP supports service browsing and
string-based querying for service attri-
butes, which let UAs select the most
appropriate services from among avail-
able services in the network. SLP lets

UAs issue query operators such as
AND, OR, comparators, and substring
matching. This is more powerful than
Jini and UPnP service attribute match-
ing, which can be done only against
equality.

The SLP standard is accessible from
the IETF SvrLoc working group Web
site (see www.ietf.org).

BLUETOOTH SDP
Unlike Jini, UPnP, Salutation, or SLP,

the Bluetooth SDP is specific only to
Bluetooth devices (see www.bluetooth.
com). It primarily addresses the service
discovery problem. It doesn’t provide
access to services, brokering of services,
service advertisements, or service reg-
istration, and there’s no event notifica-
tion when services become unavailable.
SDP supports search by service class,
search by service attributes, and serv-
ice browsing. The latter is used when a
Bluetooth client has no prior knowl-
edge of the services available in the
client’s vicinity. SDP is structured as a
Bluetooth profile and runs on a prede-
fined connection-oriented channel of
the L2CAP Logical Link layer. Saluta-
tion has proposed a mapping between
its service discovery and Bluetooth
SDP. Such mapping is synergistic
because it complements Bluetooth by
adding advertisements, brokering, and
eventing. Bluetooth, on the other hand,
serves Salutation by fitting in as a trans-
port (Salutation is transport-independ-
ent) in the heart of the devices.

MARKET ACCEPTABILITY
Not many Jini products are available

on the market today. In 1999, a year after
Jini’s introduction, companies such as
Epson, Canon, Seagate, and Quantum
agreed to embed Jini in some of their
product lines. However, later in the same
year, these companies warned that it
might take up to two years to accomplish
this. People then predicted that Jini stor-
age devices would be first to hit the mar-
ket, but plans for Jini products are still
uncertain. On the brighter side, PsiNap-
tic, a leader in pervasive computing, has
delivered a critical Jini product, Jmatos.
Jmatos supports Dallas Semiconductor’s
(now Maxim’s) Tiny Internet Interface
(known as Tini), which has an embed-
ded Java Virtual Machine. Tini is a small-
footprint microcontroller with a rich set
of on-board interfaces (see Figure 3).

Unlike Jini, many UPnP products are
available on the market today. In addi-
tion to the hundreds of thousands of
Windows XP machines (which come
with UPnP support), the following
products are currently available:

• Gatespace and MetroLink’s OSGi/
UPnP connectivity products. These
products significantly move use of the
OSGi standard toward pervasive com-
puting. OSGi is primarily designed to
deliver Web services to the home. Fig-
ure 4 shows a UPnP version of the Tini
product, a Zilog’s eZ80 Micro Web
server running Metrolink IPWorks
with UPnP support.

• IBM’s Home Director, an X10-based
home networking software system for
appliance control. Incorporating UPnP
with Home Director makes its Con-
trolPoint software accessible from a
variety of devices such as Web pads
and PDAs.

• Intel’s AnyPoint Home Router, the first
in its class to be UPnP certified, re-
moves the burden of setup by the
SOHO user and makes creating a LAN
at home really hard. Several other ven-
dors of home gateways, including
Linksys and D-Link, now use UPnP.

• Software development kits. At least

STANDARDS, TOOLS & BEST PRACTICES

JULY–SEPTEMBER 2002 PERVASIVEcomputing 99

Figure 4. A Zilog’s eZ80 Micro Web server
running Metrolink IPWorks with UPnP
support.

APPLICATIONS EDUCATION NEWS STANDARDS WEARABLE COMPUTING

100 PERVASIVEcomputing http://computer.org/pervasive

eight UPnP SDKs are available today
that would let developers of devices,
consumer electronics, and embedded
systems build UPnP support into their
products (Allegro Software, Virata,
Intel, Lantronix, Atinav, Metrolink,
Microsoft, and Siemens). Support for
these SDKs is not limited to the Win-
dows or Windows CE platform—it
includes the Linux platform and sup-
ports C, C++, and Java.

Several Salutation products are avail-
able but most are office automation prod-
ucts—fax machines, printers, copiers, and
scanners. IBM’s NuOffice, a networked
office system based on Lotus Notes, lets
users import and export data to any
Salutation device.

Backed by IETF and aligned with
other established protocols (including
Lightweight Directory Access Protocol,
Domain Naming System, and DHCP),
developers have widely accepted SLP as
a simple, minimum requirement service
discovery protocol. Another source of
this acceptance is SLP’s scope, because it
attempts only to locate—not access or
deliver—the service. SLP is used by
Hewlett Packard’s JetSend technology,
which supports HP’s office equipment
and consumer electronics. Other vendors
with SLP printer and network products
include Axis, Lexmark, Xerox, Minolta,
IBM, Novel, and Zephyr, and Axis also
offers SLP storage devices. In addition
to office and networking equipment, sev-
eral platforms support SLP, including
Sun, Caldera, Novel, and Apple.

S ervice discovery has come a long
way to becoming a major standard-

ization and development effort, but the
picture is not as impressive when we con-
sider market acceptability and available
products. In addition, in their current

form and shape, most service discovery
standards do not address mobility’s needs
and special requirements. Their potential
use in mobile and pervasive environ-
ments is therefore uncertain.

Current SDPs are designed for use in
local area networks. The IP multicast
range, for example, limits discovery in
Jini. This is inadequate for mobile
clients requiring access to services from
wide area networks. A few research
projects currently underway are deal-
ing with this problem.

Another problem with existing SDPs is
their lack of support for mobile devices.
For instance, Jini requires JVM and RMI
capabilities on the client slide, which has
hindered its widespread use on mobile
devices. A quick fix to this problem was
to introduce the Jini Surrogate Archi-
tecture (www.surrogate.jini.org). Using
surrogates, a device does not have to
have or understand JVM or RMI. It only
must remember Jini code that uses RMI
and be able to send that code to a proxy
(the surrogate) on the local network to
act on its behalf. Unfortunately, surro-
gates are more a solution to stationed
devices than to mobile devices.

One limitation of current service dis-
covery frameworks is that they do not
consider important context information.
For example, there is no support to ser-
vice routing and selection based on the
client’s location. Other unexploited con-
textual information includes distance to
service, time, service load, and quality of
service instances. A few research proj-
ects have started to address this need.

100 PERVASIVEcomputing

The emerging .NET Compact Framework and its role in mobile
application development

next issue How to Reach Us

Writers
For detailed information on submitting
articles, write for our Editorial Guidelines
(pervasive@computer.org) or access
http://computer.org/pervasive/author.htm.

Letters to the Editor
Send letters to

Shani Murray, Associate Lead Editor
IEEE Pervasive Computing
10662 Los Vaqueros Circle
Los Alamitos, CA 90720
smurray@computer.org

Please provide an email address or
daytime phone number with your letter.

On the Web
Access http://computer.org/pervasive or
http://dsonline.computer.org for informa-
tion about IEEE Pervasive Computing.

Subscription Change of Address
Send change-of-address requests
for magazine subscriptions to
address.change@ieee.org. Be sure to
specify IEEE Pervasive Computing.

Membership Change of Address
Send change-of-address requests
for the membership directory to
directory.updates@computer.org.

Missing or Damaged Copies
If you are missing an issue or you
received a damaged copy, contact
membership@computer.org.

Reprints of Articles
For price information or to order reprints,
send email to pervasive@computer.org or
fax +1 714 821 4010.

Reprint Permission
To obtain permission to reprint an article,
contact William Hagen, IEEE Copyrights and
Trademarks Manager, at whagen@ieee.org.

MOBILE AND UBIQUITOUS SYSTEMS

Sumi Helal is an associate professor in the Com-

puter and Information Science and Engineering

Department at the University of Florida. Contact

him at helal@cise.ufl.edu; www.cise.ufl.edu/

~helal.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

