
70 PERVASIVEcomputing 1536-1268/02/$17.00 © 2002 IEEE

System Software for
Ubiquitous Computing

U
biquitous computing, or ubicomp,
systems designers embed devices in
various physical objects and places.
Frequently mobile, these devices—
such as those we carry with us and

embed in cars—are typically wirelessly networked.
Some 30 years of research have gone into creating
distributed computing systems, and we’ve invested
nearly 20 years of experience in mobile computing.
With this background, and with today’s develop-

ments in miniaturization and
wireless operation, our commu-
nity seems poised to realize the
ubicomp vision.

However, we aren’t there yet.
Ubicomp software must deliver
functionality in our everyday

world. It must do so on failure-prone hardware with
limited resources. Additionally, ubicomp software
must operate in conditions of radical change. Vary-
ing physical circumstances cause components rou-
tinely to make and break associations with peers of
a new degree of functional heterogeneity. Mobile
and distributed computing research has already
addressed parts of these requirements, but a quali-
tative difference remains between the requirements
and the achievements. In this article, we examine
today’s ubiquitous systems, focusing on software
infrastructure, and discuss the road that lies ahead.

Characteristics of ubiquitous systems
We base our analysis on physical integration and

spontaneous interoperation, two main characteristics
of ubicomp systems, because much of the ubicomp
vision, as expounded by Mark Weiser and others,1

either deals directly with or is predicated on them.

Physical integration
A ubicomp system involves some integration

between computing nodes and the physical world.
For example, a smart coffee cup, such as a Media-
Cup,2 serves as a coffee cup in the usual way but
also contains sensing, processing, and networking
elements that let it communicate its state (full or
empty, held or put down). So, the cup can give col-
leagues a hint about the state of the cup’s owner. Or
consider a smart meeting room that senses the pres-
ence of users in meetings, records their actions,3 and
provides services as they sit at a table or talk at a
whiteboard.4 The room contains digital furniture
such as chairs with sensors, whiteboards that record
what’s written on them, and projectors that you can
activate from anywhere in the room using a PDA
(personal digital assistant).

Human administrative, territorial, and cultural
considerations mean that ubicomp takes place in
more or less discrete environments based, for exam-
ple, on homes, rooms, or airport lounges. In other
words, the world consists of ubiquitous systems
rather than “the ubiquitous system.” So, from phys-
ical integration, we draw our Boundary Principle:

Ubicomp system designers should divide the ubicomp
world into environments with boundaries that demarcate
their content. A clear system boundary criterion—often,

The authors identify two key characteristics of ubiquitous computing
systems, physical integration and spontaneous interoperation. They
examine how these properties affect the design of ubicomp software and
discuss future directions.

R E A C H I N G F O R W E I S E R ’ S V I S I O N

Tim Kindberg
Hewlett-Packard Laboratories

Armando Fox
Stanford University

but not necessarily, related to a boundary in
the physical world—should exist. A bound-
ary should specify an environment’s scope but
doesn’t necessarily constrain interoperation.

Spontaneous interoperation
In an environment, or ambient,5 there

are components—units of software that
implement abstractions such as services,
clients, resources, or applications (see Fig-
ure 1). An environment can contain infra-
structure components, which are more or
less fixed, and spontaneous components
based on devices that arrive and leave rou-
tinely. Although this isn’t a hard and fast
distinction, we’ve found it to be useful.

In a ubiquitous system, components
must spontaneously interoperate in chang-
ing environments. A component interop-
erates spontaneously if it interacts with a
set of communicating components that can
change both identity and functionality over
time as its circumstances change. A spon-
taneously interacting component changes
partners during its normal operation, as it
moves or as other components enter its
environment; it changes partners without
needing new software or parameters.

Rather than a de facto characteristic,
spontaneous interoperation is a desirable
ubicomp feature. Mobile computing re-
search has successfully addressed aspects
of interoperability through work on adap-
tation to heterogeneous content and de-
vices, but it has not discovered how to
achieve the interoperability that the
breadth of functional heterogeneity found
in physically integrated systems requires.

For a more concrete definition, suppose
the owners of a smart meeting room pro-
pose a “magic mirror,” which shows those
facing it their actions in the meeting. Ide-
ally, the mirror would interact with the
room’s other components from the moment
you switch it on. It would make sponta-
neous associations with all relevant local
sources of information about users. As
another example, suppose a visitor from
another organization brings his PDA into
the room and, without manually configur-
ing it in any way, uses it to send his presen-
tation to the room’s projector.

We choose spontaneous rather than the
related term ad hoc because the latter
tends to be associated with networking—
ad hoc networks6 are autonomous systems
of mobile routers. But you cannot achieve
spontaneous interoperation as we have
defined it solely at the network level. Also,
some use ad hoc to mean infrastructure-
free.7 However, ubicomp involves both
infrastructure-free and infrastructure-
enhanced computing. This includes, for
example, spontaneous interaction between
small networked sensors such as particles
of smart dust,8 separate from any other
support, or our previous example of a
PDA interacting with infrastructure com-
ponents in its environment.

From spontaneous interoperation, we
draw our Volatility Principle:

You should design ubicomp systems on the
assumption that the set of participating users,
hardware, and software is highly dynamic
and unpredictable. Clear invariants that gov-
ern the entire system’s execution should exist.

The mobile computing community will
recognize the Volatility Principle in theory,
if not by name. However, research has con-
centrated on how individual mobile com-
ponents adapt to fluctuating conditions.
Here, we emphasize that ubicomp adap-
tation should involve more than “every
component for itself” and not restrict itself
to the short term; designers should specify
system-wide invariants and implement
them despite volatility.

Examples
The following examples help clarify how

physical integration and spontaneous inter-
operation characterize ubicomp systems.
Our previous ubicomp example of the
magic mirror demonstrates physical inte-
gration because it can act as a conventional
mirror and is sensitive to a user’s identity.
It spontaneously interoperates with com-
ponents in any room.

Nonexamples of ubicomp include

• Accessing email over a phone line from
a laptop. This case involves neither phys-
ical integration nor spontaneous inter-
operation; the laptop maintains the same
association to a fixed email server. This
exemplifies a physically mobile system:
it can operate in various physical envi-
ronments but only because those envi-
ronments are equally transparent to it.
A truly mobile (although not necessarily
ubiquitous) system engages in sponta-
neous interactions.9

• A collection of wirelessly connected lap-
tops at a conference. Laptops with an
IEEE 802.11 capability can connect
spontaneously to the same local IEEE
802.11 network, assuming no encryp-
tion exists. Laptops can run various
applications that enable interaction,
such as file sharing. You could argue that
discovery of the local network is physi-
cal integration, but you’d miss the es-
sence of ubicomp, which is integration
with that part of the world that has a

JANUARY–MARCH 2002 PERVASIVEcomputing 71

System definition
boundaries

Environment 2Environment 1

Component “appears” in
environment (switched on

there or moves there)

Mobile
component

moves between
environments

Figure 1. The ubiquitous computing
world comprises environments with
boundaries and components appearing
in or moving between them.

nonelectronic function for us. As for
spontaneous interaction, realistically,
even simple file sharing would require
considerable manual intervention.

Borderline ubicomp examples include

• A smart coffee cup and saucer. Our smart
coffee cup (inspired by but different from
the MediaCup) clearly demonstrates
physical integration, and it demonstrates
a device that you could only find in a
ubiquitous system. However, if you con-
structed it to interact only with its corre-
sponding smart saucer according to a
specialized protocol, it would not satisfy
spontaneous interoperation. The owner
couldn’t use the coffee cup in another
environment if she forgot the saucer, so
we would have localization instead of
ubiquitous functionality.

• Peer-to-peer games. Users play games
such as Pirates!10 with portable devices
connected by a local area wireless net-
work. Some cases involve physical inte-
gration because the client devices have
sensors, such as proximity sensors in
Pirates! Additionally, some games can
discover other players over the local net-
work, and this dynamic association
between the players’ devices resembles
spontaneous interaction. However, such
games require preconfigured compo-

nents. A more convincing case would
involve players with generic game-play-
ing “pieces,” which let them sponta-
neously join local games even if they had
never encountered them before.

• The Web. The Web is increasingly inte-
grated with the physical world. Many
devices have small, embedded Web
servers,11 and you can turn objects into
physical hyperlinks—the user is pre-
sented with a Web page when it senses
an identifier on the object.12 Numerous
Web sites with new functionality (for
example, new types of e-commerce sites)
spring up on the Web without, in many
cases, the need to reconfigure browsers.
However, this lacks spontaneous inter-
operation—the Web requires human
supervision to keep it going. The “human
in the loop” changes the browser’s asso-
ciation to Web sites. Additionally, the
user must sometimes install plug-ins to
use a new type of downloaded content.

Software challenges
Physical integration and spontaneous

interoperation have major implications for
software infrastructure. These ubicomp
challenges include a new level of compo-
nent interoperability and extensibility, and
new dependability guarantees, including
adaptation to changing environments, tol-
erance of routine failures or failurelike con-

ditions, and security despite a shrunken
basis of trust. Put crudely, physical inte-
gration for system designers can imply “the
resources available to you are sometimes
highly constrained,” and spontaneous
interoperation means “the resources avail-
able to you are highly dynamic but you
must work anywhere, with minimal or no
intervention.” Additionally, a ubicomp sys-
tem’s behavior while it deals with these
issues must match users’ expectations of
how the physical world behaves. This is
extremely challenging because users don’t
think of the physical world as a collection
of computing environments, but as a col-
lection of places13 with rich cultural and
administrative semantics.

The semantic Rubicon
Systems software practitioners have long

ignored the divide between system- and
human-level semantics. Ubicomp removes
this luxury. Little evidence exists to suggest
that software alone can meet ubicomp chal-
lenges, given the techniques currently avail-
able. Therefore, in the short term, design-
ers should make clear choices about what
system software will not do, but humans
will. System designers should pay careful,
explicit attention to what we call the se-
mantic Rubicon of ubiquitous systems (see
Figure 2). (The historical Rubicon river
marked the boundary of what was Italy in
the time of Julius Caesar. Caesar brought
his army across it into Italy, but only after
great hesitation.) The semantic Rubicon is
the division between system and user for
high-level decision-making or physical-
world semantics processing. When respon-
sibility shifts between system and user, the
semantic Rubicon is crossed. This division
should be exposed in system design, and
the criteria and mechanisms for crossing
it should be clearly indicated. Although the
semantic Rubicon might seem like a hu-
man-computer interaction (HCI) notion,

72 PERVASIVEcomputing http://computer.org/pervasive

R E A C H I N G F O R W E I S E R ’ S V I S I O N

System responsible for this User responsible for this

Explicit mechanisms for
transferring responsibilities

Figure 2. The semantic Rubicon
demarcates responsibility for decision-
making between the system and the user;
allocation between the two sides can be
static or dynamic.

especially to systems practitioners, it is, or
should be, a ubicomp systems notion.

Progress report
Many ubicomp researchers have iden-

tified similar challenges but pursued
them with quite different approaches;
we offer a representative sampling and
comparison of these approaches. Our
discussion focuses on these areas, which
appear common to Weiser’s and others’
ubicomp scenarios:

• Discovery. When a device enters an envi-
ronment, how does mutual discovery
take place between it and other available
services and devices, and among which
ones is interaction appropriate?

• Adaptation. When near other hetero-
geneous devices, how can we use the
device to display or manipulate data or
user interfaces from other devices in the
environment?

• Integration. What connects the device’s
software and the physical environment,
and what affects the connection?

• Programming framework. What does it
mean to write the traditional program-
ming exercise “Hello World” for a ubi-
comp environment: Are discovery, adap-
tation, and integration addressed at the
application level, middleware–OS level,
language level, or a combination of these?

• Robustness. How can we shield the
device and user from transient faults and
similar failures (for example, going out
of network range) that will likely affect
a ubicomp environment?

• Security. What can we let the device or
user do? Whom does it trust and how
does authentication take place? How
can we minimize threats to privacy?

Discovery and interaction
Ubiquitous systems tend to develop acci-

dentally over the medium-to-long term,14

that is, in piecemeal as users integrate new
devices into their physical environments
and as they adopt new usage models for
existing devices. You can’t reboot the
world, let alone rewrite it, to introduce new
functionality. Users shouldn’t be led into a
disposable physical world just because they

can’t keep up with software upgrades. All
this suggests that ubicomp systems should
be incrementally extensible.

Spontaneous interoperation makes
shorter-term demands on our components’
interoperability. As we defined a sponta-
neously interoperating system, devices can
interact with partners of varying function-
ality over time. We do not mean arbitrar-
ily varying functionality: For example, it’s
not clear how a camera could meaningfully
associate with a coffee cup. Our challenge
is to bring about spontaneous interaction
between devices that conform to wide-
spread models of interoperation—as wide
as is practicable.

Consider a component that enters an
environment (see Figure 1). To satisfy spon-
taneous interoperation, the component
faces these issues:

• Bootstrapping. The component requires
a priori knowledge of addresses (for
example, multicast or broadcast addres-
ses) and any other parameters needed
for network integration and service dis-
covery. This is largely a solved problem.
Protocols exist for joining underlying
networks, such as IEEE 802.11. You can
dynamically assign IP addresses either
statefully, using DHCP (dynamic host
configuration protocol),15 or statelessly
in IPv6.16

• Service discovery. A service discovery sys-
tem dynamically locates a service instance
that matches a component’s require-
ments. It thus solves the association prob-
lem: Hundreds or even thousands of
devices and components might exist per
cubic meter; with which of these, if any,
is it appropriate for the arriving compo-
nent to interact?

• Interaction. Components must conform
to a common interoperation model to
interact.

Additionally, if the arriving component
implements a service, the components in
the service’s environment might need to
discover and interact with it. Service dis-
covery and interaction are generally sepa-
rable (although the Intentional Naming
System17 combines them).

Service discovery. Address allocation and
name resolution are two examples of local
services that an arriving component might
need to access. Client components gener-
ally require an a priori specification of
required services, and corresponding ser-
vice components must provide similar spec-
ifications to be discoverable. Several sys-
tems perform service discovery.17–21 Each
provides syntax and vocabulary for speci-
fying services. The specification typically
consists of attribute–value pairs such as
serviceType=printer and type=laser.

A challenge in ubicomp service descrip-
tion is avoiding overspecification. Consider
a wireless-enabled camera brought into a
home. If the camera contains a printing ser-
vice description, a user could take a picture
and send it from the camera to a matching
printer without using a PC. But one issue is
brittleness: Both camera and printer must
obey the same vocabulary and syntax.
Association can’t take place if the camera
requests serviceType=printing when the
printer has service=print. Agreement on
such details is a practical obstacle, and it’s
debatable whether service specification can
keep up with service development.

Furthermore, lost opportunities for asso-
ciation arise if devices must contain speci-
fications of all services with which they can
interact. Suppose our example home con-
tains a digital picture frame. A camera that
can send an image for printing should be
able to send the image to a digital frame.
But, if the camera doesn’t have a specifi-
cation for serviceType=digitalFrame, the
opportunity passes.

Other designs, such as Cooltown,21 tried
to use more abstract and much less detailed
service specifications to get around such
problems. For example, a camera could
send its images to any device that consumes
images of the same encoding (such as
JPEG) without needing to know the spe-
cific service.

But abstraction can lead to ambiguity. If
a camera were to choose a device in the
house, it would potentially face many data
consumers with no way of discriminating
between them. Also, it’s not clear how a
camera should set the target device’s para-
meters, such as image resolution, without

JANUARY–MARCH 2002 PERVASIVEcomputing 73

a model of the device. Users, however, tend
to be good at associating devices appro-
priately. So, we observe:

System designers must decide the human’s
role to resolve tension between interoper-
ability and ambiguity.

Additionally, the Boundary Principle
tells us that the definition of here is impor-
tant for meaningful discovery results. For
example, a client might not be interested
in services in Japan if he has just arrived in
a smart house in London. Figure 1 shows
various environments with a dotted line
marking the boundary around service com-
ponents that we deem to be in the same
environment as the arriving device.

In one approach, clients might sense
their current location’s name or position
and use that in their service specifications
to a global discovery service. But most ser-
vice discovery systems are local, of the net-
work discovery type. They primarily define
here as the collection of services that a
group, or multicast, communication can
reach. The discovery service listens for
query and registration messages on a multi-
cast address that all participating compo-
nents possess a priori. These messages’
scope of delivery typically includes one or
more local connected subnets, which they
can efficiently reach with the underlying
network’s multicast or broadcast facilities.

The problem here is that the approach
puts discovery firmly on the systems side
of the semantic Rubicon, but the very sim-
plicity of subnet multicast makes it blind
to human issues such as territory or use
conventions. It is unlikely, for example,
that the devices connected to a particular
subnet are in a meaningful place such as a
room. Using physically constrained media
such as infrared, ultrasound, or 60-GHz
radio (which walls substantially attenuate)
helps solve territorial issues, but it does not

solve other cultural issues. Another alter-
native is to rely on human supervision to
determine the scope of each instance of the
discovery service.22

Interaction. After associating to a service,
a component employs a programming
interface to use it. If services in a ubicomp
environment arbitrarily invented their own
interfaces, no arriving component could be
expected to access them. Jini lets service-
access code and data, in the form of a Java
object, migrate to a device. However, how
can the software on the device use the
downloaded object without a priori
knowledge of its methods?

Event systems18, 23 or tuple spaces18,24–26

offer alternative approaches. These interac-
tions share two common features: the sys-
tem interface comprises a few fixed opera-
tions, and the interactions are data-oriented.

In event systems, components called
publishers publish self-describing data
items, called events or event messages, to
the local event service. That service matches
the data in a published event to specifica-
tions that components called subscribers
have registered. When an event is pub-
lished, the event service forwards it to all
subscribers with a matching subscription.
The only interaction methods an event sys-
tem uses are publish, subscribe, and handle
(that is, handle an event).

A tuple space provides a repository of data
tuples. Again, any component interacting via
a tuple space needs to know only three oper-
ations. (A fourth operation, eval, exists in
some tuple space systems for process or
thread creation.) Components can add tuples
to a tuple space, or they can take tuples out
or read them without removing them.

In each case, components interact by
sharing a common service (a tuple space or
an event service); they don’t need direct

knowledge of one another. However, these
data-oriented systems have shifted the bur-
den of making interaction consistent onto
data items—namely, events and tuples. If
one component publishes events or adds
tuples of which no other component has a
priori knowledge, interaction can fail. So,
we observe:

Data-oriented interaction is a promising
model that has shown its value for spon-
taneous interaction inside the boundaries
of individual environments. It seems that
this requires ubiquitous data standardiza-
tion for it to work across environment
boundaries.

Adaptation
Several reasons exist for why ubicomp

implies dealing with limited and dynami-
cally varying computational resources.
Embedded devices tend to be small, and
limits to miniaturization mean constrained
resources. Additionally, for devices that run
on batteries, a trade-off exists between bat-
tery life and computational prowess or net-
work communication. For extreme exam-
ples of ubicomp such as smart dust, these
constraints become an order of magnitude
more severe than for components such as
PDAs, which previous research has con-
sidered resource-impoverished.

Furthermore, the available resources
tend to vary dynamically. For example, a
device that has access to a high-bandwidth
wireless network such as IEEE 802.11b in
one environment might find itself with only
a low-bandwidth wide-area connection in
another—a familiar problem in mobile
computing. A new challenge for ubiqui-
tous systems arises because adaptation
must often take place without human inter-
vention, to achieve what Weiser calls calm
computing.27 In this new environment, we
examine possible extensions of existing
mobile computing techniques: transfor-
mation and adaptation for content and the
human interface.

Content. Embedding computation in or
linking general-purpose computing de-
vices with the physical world implies het-
erogeneity across the devices, including de-
vices embedded in and those brought to the
environment by users (for example, lap-

74 PERVASIVEcomputing http://computer.org/pervasive

R E A C H I N G F O R W E I S E R ’ S V I S I O N

A new challenge for ubiquitous systems arises

because adaptation must often take place

without human intervention, to achieve what

Weiser calls calm computing.

tops). Mobile computing research success-
fully addressed content adaptation for
resource-poor devices at both the OS and
application levels. Pioneering work such as
the Coda file systemexplored network dis-
connection and content adaptation within
the context of a specific application, namely
the file system, handling all such adapta-
tion in the operating system to enable appli-
cation transparency. Coda’s successor,
Odyssey,29 and other, later work on adapt-
ing Web content for slow networks and
small devices30,31 moved some responsibil-
ity to the application layer, observing that
because the OS is rarely familiar with the
semantics of the application’s data, it is not
always in the best position to make adap-
tation decisions; this reflected the thinking
of application-level framing.32

Adaptation in ubicomp is quantitatively
harder. Instead of adapting a small fixed set
of content types to a variety of device types
(1-to-n), we must potentially adapt content
among n heterogeneous device types (n-to-
n). Fortunately, the general approaches
mobile computing research has explored
have immediate applicability. For example,
the Stanford Interactive Workspaces’ smart
clipboard can copy and paste data between
incompatible applications on different plat-
forms.33 It builds on well-known mobile
computing content adaptation, the main
difference being that the smart clipboard
must transparently invoke the machinery
whenever the user performs a copy-and-
paste operation. A more sophisticated but
less general approach, semantic snarfing,
as implemented in Carnegie Mellon’s Peb-
bles project, captures content from a large
display onto a small display and attempts to

emulate the content’s underlying behav-
iors.34 For example, snarfing a pop-up
menu from a large display onto a handheld
lets the user manipulate the menu on her
handheld, relaying the menu choice back
to the large display. This approach tries
harder to do “the right thing,” but rather
than relying on a generic transformation
framework, it requires special-case code for
each content type (such as menus and Web
page content) as well as special-case client-
server code for each pair of desired devices
(Windows to Palm, X/Motif to Windows
CE). Nonetheless, both approaches demon-
strate the applicability of content transfor-
mation to the ubicomp environment. In
general, we observe:

The content adaptation approaches and tech-
nology developed in mobile computing imme-
diately pertain to ubicomp, but they solve
only a part of the overall problem. We must
still address such issues as discovery and
robustness, and we must find a way to apply
the adaptation using mechanisms invisible to
the user.

The human interface. Earlier, we intro-
duced the commonly quoted ubicomp sce-
nario of a user entering an environment
and immediately accessing or controlling
various aspects of the environment through
her PDA. To achieve such a scenario re-
quires separating user interfaces (UIs)
from their applications—a well-under-
stood problem in desktop systems. In ubi-
comp, however, the goal might be to move
the human interface to a physically differ-
ent device chosen on the fly. Based on pre-
vious on-the-fly transformations applied
to this problem, we can distinguish four
levels of client intelligence. At the lowest

level, a client such as VNC35 displays the
bits and collects user input, without knowl-
edge of UI widget semantics. At the next
level, the client manipulates a higher-level,
usually declarative description of the inter-
face elements and has the intelligence to
render them itself. X Windows and its low-
bandwidth derivatives—for example, LBX
(Low-Bandwidth X)—do this, although in
these systems, the device displaying the UI
runs what is confusingly called a server.
Smarter clients also do their own geometry
management and some local UI interac-
tion processing, so not every interaction
requires a roundtrip to the server (see Fig-
ure 3); Tcl/Tk and JavaScript-enhanced
Web pages are examples.

A noteworthy variant involves deliver-
ing an HTML UI (based on forms and
HTML widgets) via HTTP to any device
that can host a Web browser, thus remov-
ing the need to reconfigure the device for
different interfaces. This important special
case arises as a result of the Web’s phe-
nomenal success. However, HTML pro-
vides only limited expressiveness for a UI.
Also, HTML and HTTP address deliver-
ing, rendering, and letting the user interact
with the UI, but they do not address how
to determine what belongs in it or how UI
elements associate with the applications or
devices they control.

The next level is represented by Todd
Hodes and his colleagues,36 who proposed
a Tcl/Tk framework in which controllable
entities export Tcl-code descriptions, from
which a client can generate its UI. The
descriptions are declarative and high level
(“This control is a Boolean toggle,” “This
control is a slider with range 0 to 255 in

JANUARY–MARCH 2002 PERVASIVEcomputing 75

Figure 3. Spontaneously generated user interfaces to control lights and displays in a meeting room. The same high-level markup
was used to generate device-specific UIs for (a) a desktop HTML browser, (b) a Java-equipped device, and (c) a Palm device.

(a) (b) (c)

increments of 1”), letting the geometry and
the generated interface’s visual details vary
among platforms. The Stanford Interactive
Workspaces project has successfully gen-
eralized Hodes’s approach: The Interface
Crafter framework4 supports a level of
indirection of specialized per-device or per-
service interface generators and a generic
interface transformation facility. In this sys-
tem, the high-level service descriptions per-
mit adaptation for nontraditional UI modal-
ities such as voice control.

Finally, a fully generalized mobile code
facility, such as Jini, lets the client down-
load and execute arbitrary code or
pseudocode that implements the interface
and communication with the service. Be-
cause the protocol between a Jini service
and its UI is opaque—embedded in the code
or pseudocode—you usually can’t enlist a

different user agent to interpret and render
the UI. You also can’t realize the UI on a
device not running a Java Virtual Machine
or on one with nontraditional I/O charac-
teristics (for example, a voice-controlled or
very small glass device). We conclude:

Applying transformation to the UI can be a
powerful approach to achieving spontaneous
interaction in ubicomp, provided we express
the UI in terms that enable extensive manip-
ulation and transformation.

Integration with the physical world
To integrate computing environments

(which are virtual by definition) with the
physical world, we need low-level appli-
cation programming interfaces that let soft-
ware deal with physical sensors and actu-
ators, and a high-level software framework
that lets applications sense and interact
with their environment, including physical
sensors and actuators. Traditional device
drivers offer APIs that are too low-level,
because application designers usually think
of functionality at the level of widgets in
standard toolkits such as Tcl/Tk, Visual
Basic, and X/Motif. A potentially more

useful low-level API is a Phidget,37 a GUI
widget element whose state and behaviors
correspond to those of a physical sensor or
actuator. For example, querying a servo-
motor phidget returns the motor’s angular
position, and setting the Phidget’s angular
value causes the motor to step to the given
position. You can directly incorporate
Phidgets into Visual Basic programs using
the popular Visual Basic WYSIWYG drag-
and-drop UI editor. At a higher level, the
Context Toolkit framework38 provides
applications with a context widget soft-
ware abstraction, which lets an application
access different types of context informa-
tion while hiding how the information was
sensed or collected. For example, one type
of context widget provides information on
the presence of a person in a particular
location, without exposing how it collected

the information. The Context Toolkit’s
middleware contribution is its ability to
expose a uniform abstraction of (for exam-
ple) location tracking, hiding the details of
the sensing system or systems used to col-
lect the information.

Location sensing and tracking figure
prominently in several projects. The early
Active Badge work39 and the more recent
Sentient Computing effort40 use infrared,
radio, and ultrasound to track physical
objects that users carry or wear. Knowing
the users’ locations and identities enables
location tracking and novel behaviors for
existing devices, such as a camera that
knows who it’s photographing. On the
other hand, EasyLiving41 and the MIT
Intelligent Room42 use location tracking as
one of several elements that help infer or
disambiguate a user action. For example,
if a user requests “Show me the agenda,”
the system can respond in a context-sensi-
tive manner if it can determine the user’s
identity and location. Such approaches lead
to potentially impressive applications,
although they should make it clear on

which side of the semantic Rubicon deci-
sions are being made at the point of inte-
gration with the user’s physical world. Such
systems should make it easy to identify
where the decisions are being made at the
point of integration with the user’s physi-
cal world.

Several groups have investigated ways of
linking physical entities directly to services
using identification technologies. For exam-
ple, Roy Want and his colleagues at Xerox
Parc43 augmented books and documents by
attaching radio frequency identification
tags to them and presenting the electronic
version to users who scanned them with
handheld devices. Jun Rekimoto and Yuji
Ayatsuka44 attached symbols specially
designed for digital camera capture to phys-
ical objects, to link them to electronic ser-
vices. Hewlett-Packard Labs’ Cooltown
project focuses on associating Web re-
sources (Web presences) with physical enti-
ties. For example, a visitor to a museum can
obtain related Web pages automatically
over a wireless connection by reading iden-
tifiers associated with the exhibits. The
identifier might come from a barcode or a
short-range infrared beacon. Although the
Cooltown infrastructure has primarily tar-
geted direct human interaction, work is in
progress on interoperation between Web
presences using XML over HTTP to export
query and update operations.45

Programming frameworks
What does it mean to write “Hello

World” for a ubicomp environment? A
framework for programming such envi-
ronments might address the ubicomp chal-
lenges in applications, the operating sys-
tem or middleware, and the development
language. Some environments might use
combinations of these.

Support for legacy applications and com-
modity OSs has always been a systems
research challenge. Although we have
stressed the need for incremental extensi-
bility in any new system, legacy support
also implies accommodating existing appli-
cations and OSs. It’s important to leverage
existing applications because of large
investments in the applications, their data,
and knowledge of how to use them. It’s

76 PERVASIVEcomputing http://computer.org/pervasive

R E A C H I N G F O R W E I S E R ’ S V I S I O N

It’s important to leverage existing applications

because of large investments in the applications,

their data, and knowledge of how to use them.

important to leverage OSs without modifi-
cation because OSs are fragile, most users
are reluctant or insufficiently sophisticated
to apply OS patches, and OS functionality
is generally regarded as beyond application
writers’ control. (This latter point can be
especially true in ubicomp, as seen in spe-
cialized embedded OSs such as the TinyOS
used in smart dust.46) Although some
researchers choose to design entirely new
systems at the expense of legacy support,
we do not always have this option in ubi-
comp. The Volatility Principle tells us that
ubicomp environments change incremen-
tally and continuously over time: today’s
new systems are tomorrow’s legacy sys-
tems, and given innovation’s current pace,
legacy systems are accreting faster than ever.
Therefore, our approaches should include
support for legacy systems. The Stanford
Interactive Workspaces project has taken
this approach, providing only an applica-
tion coordination mechanism via a tuple
space26 and delegating state storage, sensor
fusion for context determination, and so
forth to other components at the applica-
tion level. This results in more loosely cou-
pled pieces, but makes the basic infrastruc-
ture easy to port to new and legacy devices,
encouraging rapid device integration as an
aspect of incremental evolution.

Conversely, the MIT Intelligent Room
project’s Metaglue framework provides
Java-specific extensions for freezing object
state in a persistent database and express-
ing functional connections between com-
ponents. (For example, you can express
that one component relies on the func-
tionality of another, and the system pro-
vides resource brokering and management
to satisfy the dependency at runtime.) In
Metaglue, the component coordination
system is also the language and system for
building the applications. The researchers
chose this approach, which forgoes legacy
support, as a better fit for the project’s
focus—namely, applying AI techniques to
determine the intent of a user’s action (for
example, by sensing identity via image
analysis from a video feed and position rel-
ative to landmarks in the room). Although
AI techniques can make valuable contri-
butions, such work must clearly define on

which side of the semantic Rubicon a par-
ticular functionality resides. An important
question will be whether the Metaglue
framework is sufficiently expressive and
provides abstractions at the appropriate
level to facilitate this.

Other places to provide programming
support for addressing the ubicomp chal-
lenges are middleware and the OS. When
mobile computing faced similar challenges
in breaking away from the “one desktop
machine per fixed user” model of com-
puting, researchers introduced middleware
as one approach. We define middleware as
services provided by a layer in between the
operating system and the applications.
Middleware usually requires only minimal
changes to existing applications and OSs
(hence its name). The ActiveSpaces project
at the University of Illinois, Urbana-Cham-
paign, is developing a large framework,
Gaia,47 based on distributed objects and a
software object bus that can connect
objects from different frameworks (Corba,
DCOM, Enterprise JavaBeans). Gaia, a
middleware OS, views an ActiveSpace and
its devices as analogous to a traditional OS
with the resources and peripherals it man-
ages. The framework thus provides more
tightly integrated facilities for sensor
fusion, quality-of-service-aware resource
management, code distribution, adaptive
and distributed rendering, and security.
The ActiveSpaces project chooses to deem-
phasize extensive support for existing sys-
tems and devices.

Robustness and routine failures
Ubiquitous systems, especially those

using wireless networking, see a radical
increase of “failure” frequency compared
to a wired distributed system. Some of
these failures are not literal failures but
unpredictable events from which it is sim-
ilarly complicated to recover. For example,
physical integration often implies using
batteries with a relatively short mean time
to failure due to battery exhaustion. Wire-
less networks, with limited range and
prone to interference from nearby struc-
tures, afford much less reliable communi-
cation than wireline networks. In sponta-
neous interoperation, associations are

sometimes gained and lost unpredictably
as, for example, when a device suddenly
leaves an environment.

Although the distributed systems litera-
ture contains techniques for fault-tolerant
computing, they are often based on resource
redundancy rather than scarcity. Further-
more, the common assumption in distrib-
uted systems that failures are relatively rare
could lead to expensive or ungraceful recov-
ery, contrary to the expectation of calm
behavior for ubiquitous systems.

Two widely accepted truths about depend-
ability are that you can’t add it to a system
after the fact but must design it in,48 and that
it is ultimately an end-to-end property.49

Design choices made at lower layers of a sys-
tem can either facilitate or hinder the sound
engineering of dependability at higher system
layers or in the project’s later stages.

In ubicomp systems, various transient
failures can actually characterize steady-
state operation. The Internet protocol com-
munity and the distributed systems com-
munity have considered such scenarios. We
look to both for techniques specifically
designed to function under the assumption
that “failure is a common case.” The com-
mon tie is the underlying assumption that
recovering from frequent transient failures
basically entails being always prepared to
reacquire lost resources.

Expiration-based schemes and soft state.
Consider the PointRight system,50 in which
a single mouse and keyboard can control
a collection of otherwise-independent
displays in a ubicomp environment. When
a user enters or leaves a ubicomp envi-
ronment that has PointRight, the user’s
device could register with a centralized
directory that tracks the room’s screen
geometry. But this directory is a single
point of failure. If it fails and has not saved
its data to stable storage, it must notify all
devices to reregister when the directory
comes back up. Furthermore, if a device
dies or fails to deregister before leaving the
environment, it creates inconsistency
between the directory contents and the
environment’s true state.

An alternative solution requires each
available device or service to send a peri-

JANUARY–MARCH 2002 PERVASIVEcomputing 77

odic advertisement announcing its pres-
ence or availability to the directory service,
which collects these advertisements and
expires them when a new advertisement
arrives or after a designated timeout period.
Should the directory service fail, new adver-
tisements will repopulate it when it restarts;
hence, the directory itself constitutes soft
state. Should a device fail, it will stop send-
ing advertisements, and once the device’s
previous advertisement has expired, the
directory will no longer list the device.

A detailed analysis of how to choose a
timeout to balance the resulting “window
of potential inconsistency” with the net-
work and computation capacity consumed
by advertisements is available elsewhere.51

Of course, it might be more practical to
store nonchanging information such as
physical room geometry in a fixed data-
base for reliability and high performance.
Microsoft takes this approach for describ-
ing the geometry of EasyLiving-aware
rooms. We propose the following sugges-
tion for practitioners:

When failure is a common case, identify what
critical static or dynamic state you must per-
sistently store and consider reconstructable
soft state for the rest.

Separating failure-free and failure-prone
operations. In a dynamically changing
environment, some operations can fail
while others must necessarily succeed. The
one.world middleware separates applica-
tion code into operations, which can fail,
and logic, which does not fail except
under catastrophic circumstances.23 Gen-
erally, an operation is anything that might
require allocating or accessing a potentially
nonlocal resource whose availability is
dynamic, such as file or network I/O. For
robustness, a process must always be pre-
pared to rediscover and reacquire lost
resources. For example, opening a file on
a remote server creates a binding between
the local filehandle and the remote file. If
the application thread is migrated to
another host, the file might still be avail-
able on the server, but you’ll need to estab-
lish a new binding on the new host. The
application must provide code that deals
with such conditions when doing opera-

tions that can fail. one.world automatically
provides for some common cases, such as
retrying idempotent operations a finite
number of times. So, we observe:

Because not all operations are equally likely to
fail, clearly indicate which ones are more likely
to fail because of dynamism and required
spontaneous interoperation, so developers can
provide more effective error handling.

Group communication for “free”
indirection. You can use group communi-
cation to provide a level of indirection that
helps rediscover lost resources. Although
approaches that rely on group communi-
cation have been criticized for their poor
scaling, in ubicomp, we might be able to
exploit the Boundary Principle. For exam-
ple, a meeting room only accommodates a
finite number of persons, because effective
meetings must necessarily be limited in size;
a corporate campus has a security and
administrative boundary that separates it
from the rest of the world; and so on. In
fact, systems that aim to provide location-
dependent services might be thwarted by
the reverse scalability problem: wireless
group communication’s typical scope often
exceeds the size of the locale in which the
service will operate. So, we observe:

Although ubicomp projects should certainly
address scalability, the Boundary Principle can
confound the attempt. Sometimes observing
the Boundary Principle can help, by enabling
solutions that favor robustness over scalabil-
ity. Other times, observing the principle can
introduce complications, as is the case when
a physically range-limited networking tech-
nology still fails to capture other (cultural or
administrative) important boundaries.

Security
We described how components enter into

spontaneous associations in a ubiquitous
system and interact with the components
they discover. However, how do we protect
components from one another? Certain ser-
vices in a smart room, for example, need
protection from devices belonging to visi-
tors. Similarly, data and devices brought
into an environment, such as users’ PDAs
or particles of smart dust, require protec-
tion from hostile devices nearby.

Looked at from a higher level, users

require security for their resources and, in
many cases, privacy for themselves.52

Mobile computing has led to an under-
standing of vulnerabilities such as the open-
ness of wireless networks.53 But physical
integration and spontaneous interoperation
raise new challenges, requiring new mod-
els of trust and authentication as well as
new technologies.

Trust. In ubiquitous systems, trust is an
issue because of spontaneous interopera-
tion. What basis of trust can exist between
components that can associate sponta-
neously? Components might belong to dis-
parate individuals or organizations and
have no relevant a priori knowledge of one
another or a trusted third party. Fortu-
nately, physical integration can work to
our advantage—at least with an appropri-
ate placement of the semantic Rubicon.
Humans can make judgments about their
environments’ trustworthiness,7 and the
physical world offers mechanisms for boot-
strapping security based on that trust. For
example, users might exchange crypto-
graphic keys with their environment or
each other over a physically constrained
channel such as short-range infrared, once
they have established trust.

Security for resource-poor devices. Physi-
cal integration impacts security protocols.
Particles of smart dust and other extremely
resource-poor devices do not have sufficient
computing resources for asymmetric (pub-
lic key) encryption—even when using ellip-
tic curve cryptography54—and protocols
must minimize communication overheads
to preserve battery life. For example, Spins
(security protocols for sensor networks) pro-
vides security guarantees for the data that
smart dust particles exchange in a poten-
tially hostile environment.55 They use only
symmetric-key cryptography, which, unlike
asymmetric-key cryptography, works on
very low-power devices. But this does not
address what has been called the “sleep
deprivation torture attack” on battery-pow-
ered nodes:56 an attacker can always deny
service by jamming the wireless network
with a signal that rapidly causes the devices
to run down their batteries.

78 PERVASIVEcomputing http://computer.org/pervasive

R E A C H I N G F O R W E I S E R ’ S V I S I O N

Access control. Another problem in ubi-
comp systems is basing access control on
authenticating users’ identities. Physical
integration makes this awkward for users
because knowing an identified user’s where-
abouts raises privacy issues. Spontaneous
interoperation makes it problematic for
environments, which have to integrate a
stream of users and devices that can spon-
taneously appear and disappear. It can be
advantageous to issue time-limited capa-
bilities to devices that have spontaneously
appeared in an environment, rather than
setting up access control lists. Capabilities
could be issued on the basis of dynamically
established trust such as we described ear-
lier and used without explicitly disclosing
an identity. Also, they reduce the need for
system-wide configuration and avoid com-
munication with a central server.19 Because
capabilities resemble physical keys, a secu-
rity component can enable, for example, a
visitor’s PDA to use a soft-drinks machine
without communicating with that machine.

Location. Physical integration has several
implications for security through location.
Customizing services to a location can
result in a loss of privacy for identified indi-
viduals. However, location-aware com-
puting doesn’t have to require user track-
ing. Users, rather than the system, can
establish their own locations.57 Moreover,
even if the system learns the user’s location,
it does not follow necessarily that it can
correlate that location with any personal
data. In a ubicomp system, locations can
be tied to temporary identifiers and keys,
and some cases require no identity criteria.
In location authentication, the system
establishes a component’s physical loca-
tion, for example, as a criterion for pro-
viding services. So, an Internet cafe might
provide a walk-up-and-print service to
anyone who is on the cafe’s premises. It
doesn’t matter who they are, the cafe cares
only about where they are. Physically con-
strained channels, such as ultrasound,
infrared, and short-range radio transmis-
sion, particularly at highly attenuated fre-
quencies, have enabled work on protocols
that prove whether clients are where they
claim to be.58,59

New patterns of resource-sharing. We
commonly use intranet architectures to
protect resources, using a firewall that
cleanly separates resources inside and out-
side an organization. Mobile ambients,5 a
model of firewalled environments compo-
nents that can be crossed in certain cir-
cumstances, more closely address mobile
computing requirements than those of ubi-
comp. Physical integration works against
the firewall model because it entails shar-
ing “home” devices with visitors. Sponta-
neous interaction makes extranet tech-
nologies unsuitable, because developers
intend them for long-term relationships
with outside users. Work on securing dis-
covery services19 and access to individual
services60 tends to assume the opposite of
the firewall model: that locals and visitors
go through the same security interface to
access resources, although the former
might require more convenient access.

Evidently, a more convenient and fine-
grained model of protected sharing is
required. As an example, Weiser envisioned
devices you can use temporarily as personal
devices and then return for others to use.
The “Resurrecting Duckling” paper sug-
gests how a user might do this.56 The user
imprints the device by transmitting a sym-
metric key to it over a physically secure
channel, such as by direct contact. Once
imprinted, the device only obeys commands
from other components that prove posses-
sion of the same key until it receives instruc-
tions to return to the imprintable state.

C learly, much more research is
needed. Consider the common
scenario of a user who walks
into an environment for the

first time and “finds” and uses a printer.

Even this seemingly easy scenario raises
subtle issues. How do you know if it’s cul-
turally OK to use a particular printer? (It
might be for the boss’s use, even though it’s
in a shared space on a shared network.)
Which printers are conveniently located?
How should we define ontologies for such
things as “color printer”?

We are not aware of a de facto solution
to the printer example. At least, no solu-
tions exist that we can use out of the lab.
Too often, we only investigate interoper-
ability mechanisms within environments
instead of looking at truly spontaneous
interoperation between environments. We
suggest exploring content-oriented pro-
gramming—data-oriented programming
using content that is standard across
boundaries—as a promising way forward.
The Web demonstrates the effectiveness of
a system that enables content standards to
evolve, while users invoke processing

through a small, fixed interface.
In some cases, the research community

isn’t realistic enough about either physical-
world semantics’ complexity or known
mechanisms’ inadequacy to make decisions
when responding to exigencies, as in adap-
tation and failure recovery. Some problems
routinely put forward are actually AI-hard.
For example, similar to the Turing test for
emulating human discourse, we could imag-
ine a meeting test for context-aware systems:
can a system accurately determine, as com-
pared with our human sensibilities, when a
meeting is in session in a given room?

To make progress, ubicomp research
should concentrate on the case where a
human is supervising well-defined ubicomp
aspects—for example, by assisting in appro-
priate association or by making a judgment
about a system’s boundary. Once the ubi-
comp community can get that right—and
we believe that human-supervised operation

JANUARY–MARCH 2002 PERVASIVEcomputing 79

In some cases, the research community isn’t realistic

enough about either physical-world semantics’

complexity or known mechanisms’ inadequacy to

make decisions when responding to exigencies.

represents as much as a 75 percent solution
for ubicomp—it will be time to push certain
responsibilities across the semantic Rubi-
con, back toward the system.

By the way, has anyone seen a printer
around here?

ACKNOWLEDGMENTS
We thank Gregory Abowd, Nigel Davies, Mahadev
Satyanarayanan, Mirjana Spasojevic, Roy Want,
and the anonymous reviewers for their helpful
feedback on earlier drafts of this article. Thanks also
to John Barton, who suggested what became the
Volatility Principle.

REFERENCES
1. M. Weiser, “The Computer for the 21st Cen-

tury,” Scientific American, vol. 265, no. 3,
Sept. 1991, pp. 94–104 (reprinted in this
issue, see pp. 19–25).

2. M. Beigl, H.-W. Gellersen, and A. Schmidt,
“MediaCups: Experience with Design and
Use of Computer-Augmented Everyday
Objects,” Computer Networks, vol. 35, no.
4, Mar. 2001, pp. 401–409.

3. G.D. Abowd, “Classroom 2000: An Exper-
iment with the Instrumentation of a Living
Educational Environment,” IBM Systems J.,
vol. 38, no. 4, Oct. 1999, pp. 508–530.

4. S.R. Ponnekanti et al., “ICrafter: A Service
Framework for Ubiquitous Computing
Environments,” Ubicomp 2001: Ubiquitous
Computing, Lecture Notes in Computer Sci-
ence, vol. 2201, Springer-Verlag, Berlin,
2001, pp. 56–75.

5. L. Cardelli and A.D. Gordon, “Mobile
Ambients,” Foundations of Software Science
and Computation Structures, Lecture Notes
in Computer Science, vol. 1378, Springer-
Verlag, Berlin, 1998, pp. 140–155.

6. C.E. Perkins, ed., Ad Hoc Networking,
Addison-Wesley, Reading, Mass., 2001.

7. L. Feeney, B. Ahlgren, and A. Westerlund,
“Spontaneous Networking: An Application-
Oriented Approach to Ad Hoc Network-
ing,” IEEE Comm. Magazine, vol. 39, no. 6,
June 2001, pp. 176–181.

8. J.M. Kahn, R.H. Katz, and K.S.J. Pister,
“Mobile Networking for Smart Dust,” Proc.
Int’l Conf. Mobile Computing and Net-
working (MobiCom 99), ACM Press, New
York, 1999, pp. 271–278.

9. R. Milner, Communicating and Mobile Sys-
tems: The π calculus, Cambridge Univ. Press,
Cambridge, UK, 1999.

10.S. Björk et al., “Pirates! Using the Physical
World as a Game Board,” Proc. Conf.
Human-Computer Interaction (Interact 01),
IOS Press, Amsterdam, 2001, pp. 9–13.

11.G. Borriello and R. Want, “Embedded Com-
putation Meets the World Wide Web,”
Comm. ACM, vol. 43, no. 5, May 1999, pp.
59–66.

12.T. Kindberg et al., “People, Places, Things:
Web Presence for the Real World,” Proc. 3rd
IEEE Workshop Mobile Computing Sys-
tems and Applications (WMCSA 2000),
IEEE CS Press, Los Alamitos, Calif., 2000,
pp. 19–28.

13.S. Harrison and P. Dourish, “Re-Place-ing
Space: The Roles of Place and Space in Col-
laborative Systems,” Proc. ACM Conf.
Computer-Supported Cooperative Work
(CSCW 96), ACM Press, New York, 1996,
pp. 67–76.

14.W.K. Edwards and R.E. Grinter, “At Home
with Ubiquitous Computing: Seven Chal-
lenges,” Ubicomp 2001: Ubiquitous Com-
puting, Lecture Notes in Computer Science,
vol. 2201, Springer-Verlag, Berlin, 2001, pp.
256–272.

15.R. Droms, Dynamic Host Configuration
Protocol, RFC 2131, Internet Engineering
Task Force, www.ietf.org.

16.S. Thomson and T. Narten, IPv6 Stateless
Address Autoconfiguration, RFC 1971,
Internet Engineering Task Force, www.ietf.
org.

17.W. Adjie-Winoto et al., “The Design and
Implementation of an Intentional Naming
System,” Proc. 17th ACM Symp. Operating
System Principles (SOSP 99), ACM Press,
New York, 1999, pp. 186–201.

18.K. Arnold et al., “The Jini Specification,”
Addison-Wesley, Reading, Mass., 1999.

19.S.E. Czerwinski et al., “An Architecture for
a Secure Service Discovery Service,” Proc.
5th Ann. ACM/IEEE Int’l Conf. Mobile
Computing and Networks (MobiCom 99),
ACM Press, New York, 1999, pp. 24–35.

20.E. Guttman, “Service Location Protocol:
Automatic Discovery of IP Network Ser-
vices,” IEEE Internet Computing, vol. 3, no.
4, July/Aug. 1999, pp. 71–80.

21.T. Kindberg and J. Barton, “A Web-Based
Nomadic Computing System,” Computer
Networks, vol. 35, no. 4, Mar. 2001, pp.
443–456.

22. J. Barton, T. Kindberg, and S. Sadalgi, “Phys-
ical Registration: Configuring Electronic
Directories Using Handheld Devices,” to
be published in IEEE Wireless Comm.,

vol. 9, no. 1, Feb. 2002; tech. report HPL–
2001–119, Hewlett-Packard, Palo Alto,
Calif., 2001.

23.R. Grimm et al., “Systems Directions for Per-
vasive Computing,” Proc. 8th Workshop
Hot Topics in Operating Systems (HotOS
VIII), 2001, pp. 128–132.

24.N. Carriero and D. Gelernter, “Linda in
Context,” Comm. ACM, vol. 32, no. 4, Apr.
1989, pp. 444–458.

25.N. Davies et al., “Limbo: A Tuple Space
Based Platform for Adaptive Mobile Appli-
cations,” Proc. Joint Int’l Conf. Open Dis-
tributed Processing and Distributed Plat-
forms (ICODP/ICDP 97), Chapman and
Hall, Boca Raton, Fla., 1997.

26.B. Johanson and A. Fox, “Tuplespaces as
Coordination Infrastructure for Interactive
Workspaces,” Proc. Workshop Application
Models and Programming Tools for Ubiq-
uitous Computing (UbiTools 01), 2001,
http://choices.cs.uiuc.edu/UbiTools01/pub/
08-fox.pdf.

27.M. Weiser and J. Brown, “Designing Calm
Technology,” PowerGrid J., vol. 1, 1996.

28. J.J. Kistler and M. Satyanarayanan, “Dis-
connected Operation in the Coda File Sys-
tem,” ACM Trans. Computer Systems, vol.
10, no. 1, Feb. 1992, pp. 3–25.

29.B.D. Noble, M. Price, and M. Satyanara-
yanan, “A Programming Interface for Appli-
cation-Aware Adaptation in Mobile Com-
puting,” Proc. USENIX Symp. Mobile
and Location-Independent Computing,
USENIX, Berkeley, Calif., 1995.

30.B. Zenel and D. Duchamp, “A General Pur-
pose Proxy Filtering Mechanism Applied to
the Mobile Environment,” Proc. 3rd Ann.
ACM/IEEE Intl. Conf. Mobile Computing
and Networking, ACM Press, New York,
1997, pp. 248–259.

31.A. Fox et al., “Adapting to Network and
Client Variation Using Active Proxies:
Lessons and Perspectives,” IEEE Personal
Comm., Aug. 1998, pp. 10–19.

32.D.D. Clark and D.L. Tennenhouse, “Archi-
tectural Considerations for a New Genera-
tion of Protocols,” Computer Comm. Rev.,
vol. 20, no. 4, Sept. 1990.

33.E. Kiciman and A. Fox, “Using Dynamic
Mediation to Integrate COTS Entities in a
Ubiquitous Computing Environment,” Proc.
2nd Int’l Symp. Handheld and Ubiquitous
Computing (HUC2K), Lecture Notes in
Computer Science, vol. 1927, Springer-Ver-
lag, Berlin, 2000, pp. 211–226.

34.B.A. Myers et al., “Interacting at a Distance
Using Semantic Snarfing,” Ubicomp 2001:

80 PERVASIVEcomputing http://computer.org/pervasive

R E A C H I N G F O R W E I S E R ’ S V I S I O N

Ubiquitous Computing, Lecture Notes in
Computer Science, vol. 2201, Springer-Ver-
lag, Berlin, 2001, pp. 305–314.

35.T. Richardson et al., “Virtual Network Com-
puting,” IEEE Internet Computing, vol. 2,
no. 1, Jan./Feb. 1998, pp. 33–38.

36.T.D. Hodes et al., “Composable Ad Hoc
Mobile Services for Universal Interaction,”
Proc. Third Int’l Symp. Mobile Computing
and Networking (MobiCom 97), ACM
Press, New York, 1997, pp. 1–12.

37.C. Fitchett and S. Greenberg, “The Phidget
Architecture: Rapid Development of Physi-
cal User Interfaces,” Proc. Workshop Appli-
cation Models and Programming Tools for
Ubiquitous Computing (UbiTools 01), 2001,
http://choices.cs.uiuc.edu/UbiTools01/pub/
17-fitchett.pdf.

38.D. Salber, A.K. Dey, and G.D. Abowd, “The
Context Toolkit: Aiding the Development of
Context-Enabled Applications,” Proc. ACM
SIGCHI Conf. Human Factors in Comput-
ing Systems (CHI 99), ACM Press, New
York, 1999, pp. 434–441.

39.R. Want et al., “The Active Badge Location
System,” ACM Trans. Information Systems,
vol. 10, no. 1, Jan. 1992, pp. 91–102.

40.M. Addlesee et al., “Implementing a Sentient
Computing System,” Computer, vol. 34, no.
8, Aug. 2001, pp. 50–56.

41.B. Brumitt et al., “EasyLiving: Technologies
for Intelligent Environments,” Proc. 2nd
Int’l Symp. Handheld and Ubiquitous Com-
puting (HUC2K), Lecture Notes in Com-
puter Science, vol. 1927, Springer-Verlag,
Berlin, 2000, pp. 12–29.

42.M. Coen et al., “Meeting the Computational
Needs of Intelligent Environments: The
Metaglue System,” Proc. 1st Int’l Workshop
Managing Interactions in Smart Environ-
ments (MANSE 99), Springer-Verlag, Berlin,
1999.

43.R. Want et al., “Bridging Physical and Vir-
tual Worlds with Electronic Tags,” Proc.
1999 Conf. Human Factors in Computing
Systems (CHI 99), ACM Press, New York,
pp. 370–377.

44. J. Rekimoto and Y. Ayatsuka, “CyberCode:
Designing Augmented Reality Environments
with Visual Tags,” Proc. Designing Aug-
mented Reality Environments, ACM Press,
New York, 2000, pp. 1–10.

45.D. Caswell and P. Debaty, “Creating Web
Representations for Places,” Proc. 2nd Int’l
Symp. Handheld and Ubiquitous Comput-
ing (HUC2K), Lecture Notes in Computer
Science, vol. 1927, Springer-Verlag, Berlin,
2000, pp. 114–126.

46.D.E. Culler et al., “A Network-Centric
Approach to Embedded Software for Tiny
Devices,” Proc. DARPA Workshop Embed-
ded Software, 2001.

47.M. Roman and R.H. Campbell, “GAIA:
Enabling Active Spaces,” Proc. 9th ACM
SIGOPS European Workshop, ACM Press,
New York, 2000.

48.B. Lampson, “Hints for Computer System
Design,” ACM Operating Systems Rev., vol.
15, no. 5, Oct. 1983, pp. 33–48.

49. J.H. Saltzer, D.P. Reed, and D.D. Clark,
“End-to-End Arguments in System Design,”
ACM Trans. Computer Systems, vol. 2, no.
4, Nov. 1984, pp. 277–288.

50.B. Johanson, G. Hutchins, and T. Winograd,
PointRight: A System for Pointer/Keyboard
Redirection among Multiple Displays and
Machines, tech. report CS-2000-03, Com-
puter Science Dept., Stanford Univ., Stan-
ford, Calif., 2000.

51.S. Raman and S. McCanne, “A Model,
Analysis, and Protocol Framework for Soft
State-Based Communication,” Proc. Special
Interest Group on Data Communication
(SIGCOMM 99), ACM Press, New York,
1999, pp. 15–25.

52.M. Langheinrich, “Privacy by Design: Prin-
ciples of Privacy-Aware Ubiquitous Sys-
tems,” Ubicomp 2001: Ubiquitous Com-
puting, Lecture Notes in Computer Science,
vol. 2201, Springer-Verlag, Berlin, 2001, pp.
273–291.

53.N. Borisov, I. Goldberg, and D. Wagner,
“Intercepting Mobile Communications: The
Insecurity of 802.11,” Proc. 7th Ann. Int’l
Conf. Mobile Computing and Networks
(MobiCom 2001), ACM Press, New York,
2001, pp. 180–188.

54.N. Smart, I.F. Blake, and G. Seroussi, Ellip-
tic Curves in Cryptography, Cambridge
Univ. Press, Cambridge, UK, 1999.

55.A. Perrig et al., “SPINS: Security Protocols
for Sensor Networks,” Proc. 7th Ann. Int’l
Conf. Mobile Computing and Networks
(MobiCom 2001), ACM Press, New York,
2001, pp. 189–199.

56.F. Stajano and R. Anderson, “The Resur-
recting Duckling: Security Issues for Ad Hoc
Wireless Networks,” Security Protocols,
Lecture Notes in Computer Science, vol.
1796, Springer-Verlag, Berlin, 1999, pp. pp.
172–194.

57.N.B. Priyantha, A. Chakraborty, and H. Bal-
akrishnan, “The Cricket Location-Support
System,” Proc. 6th Ann. Int’l Conf. Mobile
Computing and Networks (MobiCom
2000), ACM Press, New York, 2000, pp.
32–43.

58.E. Gabber and A. Wool, “How to Prove
Where You Are,” Proc 5th ACM Conf.
Computer and Comm. Security, ACM Press,
New York, 1998, pp. 142–149.

59.T. Kindberg and K. Zhang, “Context
Authentication Using Constrained Chan-
nels,” tech. report HPL–2001–84, Hewlett-
Packard Laboratories, Palo Alto, Calif.,
2001.

60.P. Eronen and P. Nikander, “Decentralized
Jini Security,” Proc. Network and Distrib-
uted System Security 2001 (NDSS 2001),
The Internet Soc., Reston, Va., 2001, pp.
161–172.

For more information on this or any other com-
puting topic, please visit our Digital Library at
http://computer.org/publications/dlib.

JANUARY–MARCH 2002 PERVASIVEcomputing 81

the AUTHORS

Tim Kindberg is a senior
researcher at Hewlett-
Packard Labs, Palo Alto,
where he works on nomadic
computing systems as part
of the Cooltown program.
His research interests include
ubiquitous computing sys-

tems, distributed systems, and human factors.
He has a BA in mathematics from the University
of Cambridge and a PhD in computer science
from the University of Westminster. He is coau-
thor of Distributed Systems: Concepts & Design
(Addison-Wesley, 2001). Contact him at Mobile
Systems and Services Lab, Hewlett-Packard
Labs, 1501 Page Mill Rd., MS 1138, Palo Alto,
CA 94304-1126; timothy@hpl.hp.com; www.
champignon.net/TimKindberg.

Armando Fox is an assistant
professor at Stanford Univer-
sity. His research interests
include the design of robust
software infrastructure for
Internet services and ubiqui-
tous computing, and user
interface issues related to

mobile and ubiquitous computing. He received
a BS in electrical engineering from the Massa-
chusetts Institute of Technology, an MS in elec-
trical engineering from the University of Illinois,
and a PhD in computer science from University
of California, Berkeley, as a researcher in the
Daedalus wireless and mobile computing pro-
ject. He is an ACM member and a founder of
ProxiNet (now a division of PumaTech), which
is commercializing thin client mobile comput-
ing technology developed at UC Berkeley. Con-
tact him at 446 Gates Bldg., 4-A, Stanford
Univ., Stanford, CA 94305-9040; fox@cs.
stanford.edu; http://swig.stanford. edu/~fox.

