
Systems Directions for Pervasive Computing

Robert Grimm, Janet Davis, Ben Hendrickson, Eric Lemar, Adam MacBeth,
Steven Swanson, Tom Anderson, Brian Bershad, Gaetano Borriello,

Steven Gribble, David Wetherall
University of Washington
one@cs.washington.edu

Abstract

Pervasive computing, with its focus on users and their tasks
rather than on computing devices and technology, provides
an attractive vision for the future of computing. But, while
hardware and networking infrastructure to realize this vi-
sion are becoming a reality, precious few applications run
in this infrastructure. We believe that this lack of applica-
tions stems largely from the fact that it is currently too hard
to design, build, and deploy applications in the pervasive
computing space.

In this paper, we argue that existing approaches to dis-
tributed computing are flawed along three axes when ap-
plied to pervasive computing; we sketch out alternatives
that are better suited for this space. First, application data
and functionality need to be kept separate, so that they can
evolve gracefully in a global computing infrastructure. Sec-
ond, applications need to be able to acquire any resource
they need at any time, so that they can continuously pro-
vide their services in a highly dynamic environment. Third,
pervasive computing requires a common system platform,
allowing applications to be run across the range of devices
and to be automatically distributed and installed.

1. Introduction

Pervasive computing [10, 26] promises a computing infras-
tructure that seamlessly and ubiquitously aids users in ac-
complishing their tasks and that renders the actual com-
puting devices and technology largely invisible. The basic
idea behind pervasive computing is to deploy a wide va-
riety of smart devices throughout our working and living
spaces. These devices coordinate with each other to provide
users with universal and immediate access to information
and support users in completing their tasks. The hardware
devices and networking infrastructure necessary to realize
this vision are increasingly becoming a reality, yet precious
few applications run in this infrastructure. Notable excep-

tions are email for communication and the World Wide Web
as a medium for electronic publishing and as a client inter-
face to multi-tier applications.

This lack of applications is directly related to the fact that
it is difficult to design, build, and deploy applications in a
pervasive computing environment. The pervasive comput-
ing space has been mapped as a combination of mobile and
stationary devices that draw on powerful services embedded
in the network to achieve users’ tasks [9]. The result is a gi-
ant, ad-hoc distributed system, with tens of thousands of de-
vices and services coming and going. Consequently, the key
challenge for developers is to build applications that con-
tinue to provide useful services, even if devices are roaming
across the infrastructure and if the network provides only
limited services, or none at all.

As part of our research into pervasive computing, we
are buildingone.world , a system architecture for pervasive
computing [14]. Based on our experiences with this archi-
tecture, we believe that existing distributed computing tech-
nologies are ill-suited to meet this challenge. This is not to
say that discovery services [1, 2, 8] or application-aware
adaptation [19] are not useful in a pervasive computing en-
vironment. On the contrary, we consider them clearly ben-
eficial for pervasive computing applications. However, they
are not sufficient to successfully design, build, and deploy
applications in the pervasive computing space.

Moreover, we argue that current approaches to building
distributed applications are deeply flawed along three axes,
which — to express their depth — we call fault lines. In
the rest of this paper, we explore the three fault lines in de-
tail; they are summarized in Table 1. First, Section 2 makes
our case against distributed objects and outlines a more ap-
propriate approach to integrating application data and func-
tionality. Next, Section 3 discusses the need to write appli-
cations that continuously adapt in a highly dynamic envi-
ronment. Finally, Section 4 argues for a common pervasive
computing platform that spans the different classes of de-
vices. We conclude this paper in Section 5.



Problem Cause Proposed Solution

Objects do not scale well across
large, wide-area distributed sys-
tems

Encapsulation of data and function-
ality within a single abstraction

Keep data and functionality sepa-
rate

Availability of application services
is limited or intermittent

Transparency in a highly dynamic
environment

Programming for change: Applica-
tions need to be able to acquire any
resource they need at any time

Programming and distributing ap-
plications is increasingly unman-
ageable

Heterogeneity of devices and sys-
tem platforms

Common system platform with an
integrated API and a single binary
format

Table 1. Overview of the three fault lines discussed in this paper, listing the problem, cause, and
proposed solution for each fault line.

2. Data and Functionality

The first fault line concerns the relationship between data
and functionality and how they are represented. Several dis-
tributed systems, such as Legion [16] or Globe [25], are tar-
geted at a global computing environment and have explored
the use of objects as the unifying abstraction for both data
and functionality. We are skeptical about this use of objects
for distributed computing for two reasons.

First, objects as an encapsulation mechanism are based
on two assumptions: (1) Implementation and data layout
change more frequently than an object’s interface, and (2)
it is indeed possible to design interfaces that accommo-
date different implementations and hold up as a system
evolves. However, these assumptions do not hold for a
global distributed computing environment. Increasingly,
common data formats, such as HTML or PNG, are specified
by industry groups or standard bodies, notably the World
Wide Web Consortium, and evolve at a relatively slow pace.
In contrast, application vendors compete on functionality,
leading to considerable differences in application interfaces
and implementations and a much faster pace of innovation.

Second, it is preferable to store and communicate data
instead of objects, as it is generally easier to access passive
data rather than active objects. In particular, safe access to
active objects in a distributed system raises important is-
sues, notably system security and resource control, that are
less difficult to address when accessing passive data. This
is clearly reflected in today’s Internet: Access to regular
HTML or PDF documents works well, while active content
results in an ever continuing string of security breaches [17].
Based on these two realizations, we argue that data and
functionality should be kept separate rather than being en-
capsulated within objects.

At the same time, data and functionality depend on each
other, especially when considering data storage and mo-
bile code. On one hand, data management systems al-

ready rely on mobile code for their services. For exam-
ple, Bayou propagates updates as procedures and not sim-
ply as data [23]. The Oracle8i database not only supports
SQL stored procedures, but also includes a fully featured
Java virtual machine [11]. On the other hand, mobile code
systems have seen limited success in the absence of a stan-
dard data model and the corresponding data management
solutions. For example, while many projects have explored
mobile agents [18], they have not been widely adopted, in
part because they lack storage management. Java, which
was originally marketed as a mobile code platform for the
Internet, has been most successful in the enterprise, where
access to databases is universal [21].

The result is considerable tension between integrating
data and functionality too tightly — in the form of objects
— and not integrating them tightly enough.one.world re-
solves this tension by keeping data and functionality sep-
arate and by introducing a new, higher-level abstraction to
group the two. In our architecture, data is represented by tu-
ples, which essentially are records with named and option-
ally typed fields, while functionality is provided by compo-
nents, which implement units of functionaly. Environments
serve as the new unifying abstraction: They are contain-
ers for stored tuples, components, and other environments,
providing a combination of the roles served by file system
directories and nested processes [5, 12, 24] in more tradi-
tional operating systems. Environments make it possible to
group data and functionality when necessary. At the same
time, they allow for data and functionality to evolve sepa-
rately and for applications to store and exchange just data,
thus avoiding the two problems associated with objects dis-
cussed above.

To summarize, we are arguing that data and functionality
need to be supported equally well in large distributed sys-
tems, yet also need to be kept separate. We are not arguing
that object-oriented programming is not useful.one.world is
implemented mostly in Java and makes liberal use of object-



oriented language features such as inheritance to provide its
functionality.1 At the same time, our architecture clearly
separates data and functionality, using tuples to represent
data and components to express functionality.

3. Programming for Change

The second fault line is caused by transparent access to re-
mote resources. By building on distributed file systems or
remote procedure call packages, many existing distributed
systems mask remote resources as local resources. This
transparency certainly simplifies application development.
From the programmer’s viewpoint, accessing a remote re-
source is as simple as a local operation. However, this
comes at a cost in failure resilience and service availability.
Network connections and remote servers may fail. Some
services may not be available at all in a given environ-
ment. As a result, if a remote service is inaccessible or un-
available, distributed applications cannot provide their ser-
vices, because they were written without the expectation of
change.

We believe that this transparency is misleading in a per-
vasive computing environment, because it encourages a pro-
gramming style in which a failure or the unavailability of a
resource is viewed as an extreme case. But in an environ-
ment where tens of thousands of devices and services come
and go, the unavailability of some resource may be the com-
mon (or at least frequent) case. We are thus advocating a
programming style that forces applications to explicitly ac-
quire all resources, be they local or remote, and to be pre-
pared to reacquire them or equivalent resources at any time.

In one.world , applications need to explicitly bind all
resources they use, including storage and communication
channels. Leases are used to control such bindings and,
by forcing applications to periodically renew them, provide
timeouts for inaccesible or unavailable resources. While
leases have been used in other distributed systems, such as
Jini [2], to control access to remote resources, we take them
one step further by requiring thatall resources be explic-
itly bound and leased. Furthermore, resource discovery in
one.world can use late binding, which effectively binds re-
sources on every use and thus reduces applications’ expo-
sure to failures or changes in the environment [1].

This style of programming for change imposes a strict
discipline on applications and their developers. Yet, pro-
gramming for change also presents an opportunity by en-
abling system services that make it easier to build applica-
tions. one.world provides support for saving and restoring
application checkpoints and for migrating applications and

1Though, for several features, including the implementation of tuples,
mixin-based inheritance [4] and multiple dispatch as provided by Multi-
Java [7] would have provided a better match than Java’s single inheritance
and single dispatching of methods.

their data between nodes. Checkpointing and migration are
useful primitives for building failure resilient applications
and for improving performance in a distributed system. Fur-
thermore, migration is attractive for applications that follow
a user as she moves through the physical world.

Checkpointing and migration affect an environment and
its contents, including all nested environments. Checkpoint-
ing captures the execution state of all components in an
environment tree and saves that state in form of a tuple,
making it possible to later restore the saved state. Migra-
tion moves an environment tree, including all components
and stored tuples, from one device to another. Since ap-
plications already need to be able to dynamically acquire
resources they need, both checkpointing and migration es-
chew transparency and are limited to the resources con-
tained in the environment tree being checkpointed or mi-
grated. As a result, their implementation inone.world can
avoid the complexities typically associated with full pro-
cess checkpointing and migration [18], and migration in the
wide area becomes practical.

To summarize, the main idea behind programming for
change is to force developers to build applications that bet-
ter cope with a highly dynamic environment, while also pro-
viding primitives that make it easier to implement applica-
tions.

4. The Need for a Common Platform

The third fault line is rooted in the considerable and inher-
ent heterogeneity of devices in a pervasive computing en-
vironment. Computing devices already cover a wide range
of platforms, computing power, storage capacity, form fac-
tors, and user interfaces. We expect this heterogeneity to
increase over time rather than decrease, as new classes of
devices such as pads or car computers become widely used.

Today, applications are typically developed for specific
classes of devices or system platforms, leading to separate
versions of the same application for handhelds, desktops,
or cluster-based servers. Furthermore, applications typi-
cally need to be distributed and installed separately for each
class of devices and processor family. As heterogeneity
increases, developing applications that run across all plat-
forms will become exceedingly difficult. As the number of
devices grows, explicitly distributing and installing appli-
cations for each class of devices and processor family will
become unmanageable, especially in the face of migration
across the wide area.

We thus argue for a single application programming in-
terface (API) and a single binary distribution format, includ-
ing a single instruction set, that can be implemented across
the range of devices in a pervasive computing environment.
A single, common API makes it possible to develop appli-
cations once, and a single, common binary format enables



the automatic distribution and installation of applications. It
is important to note that Java does not provide this common
platform. While the Java virtual machine is attractive as
a virtual execution platform (and used for this purpose by
one.world), Java as an application platform does not meet
the needs of the pervasive computing space. In particular,
Java’s platform libraries are rather large, loosely integrated,
and often targeted at conventional computers. Furthermore,
Java, by itself, fails to separate data and functionality and
does not encourage programming for change, as discussed
in Sections 2 and 3 respectively.

Given current hardware trends and advances in virtual
execution platforms, such as the Java virtual machine or
Microsoft’s common language runtime [22], we can rea-
sonably expect that most devices can implement such a per-
vasive computing platform. Devices that do not have the
capacity to implement the full platform, such as small sen-
sors [15], can still interact with it by using proxies or em-
ulating the platform’s networking protocols. Furthermore,
legacy applications can be integrated by communicating
through standard networking protocols, such as HTTP or
SOAP [3], and by exchanging data in standard formats, such
as XML.

A pervasive computing platform that runs across a wide
range of devices does impose a least common denominator
on the core APIs. Applications can only assume the services
defined by the core APIs; they must implement their basic
functionality within this framework. At the same time, a
common platform does not prevent individual devices from
exposing additional services to applications. It simply de-
mands that additional services be treated as optional and
dynamically discovered by applications.

As part of our research onone.world , we are exploring
how to scale a common platform across the range of de-
vices. Taking a cue from other research projects [6, 13, 15,
20], which have successfully used asynchronous events at
very different points of the device space, our architecture
also relies on asynchronous events to express control flow.
All system interfaces are asynchronous, and application
components interact by exchanging asynchronous events.
The hope behind this design decision is that it will consider-
ably aid with the scalability of the architecture.one.world ’s
implementation currently runs on Windows and Linux com-
puters, and a port to Compaq’s iPAQ handheld computer is
under way.

5. Outlook

In this paper, we have argued that current approaches to dis-
tributed computing are ill-suited for the pervasive comput-
ing space and have identified three fault lines of existing dis-
tributed systems. First, while object-oriented programming
continues to provide an attractive paradigm for application

development, data and functionality should be kept separate
for pervasive computing applications as they typically need
to evolve independently. Second, applications need to be
explicitly programmed to gracefully handle change. While
this style of programming imposes a strict discipline on ap-
plication developers, it also enables system services, such
as checkpointing and migration, previously not available in
distributed systems of this scale. Third, pervasive comput-
ing requires a common system platform, so that applications
can run across (almost) all devices in this infrastructure and
can be automatically distributed and installed.

We are exploring how to address these fault lines with
one.world , a system architecture for pervasive computing.
In an effort to better understand the needs of application
developers, we have taught an undergraduate course that
leveragesone.world as the basis for students’ projects. We
are also building pervasive applications within our archi-
tecture and are collaborating with other researchers in the
department to implement additional infrastructure services
on top of it. Further information onone.world , including
a source distribution, is available athttp://one.cs.
washington.edu/ .

Acknowledgments

We thank David Notkin for helping us to refine our obser-
vations and Brendon Macmillan as well as the anonymous
reviewers for their comments on an earlier version of this
paper.

References

[1] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lil-
ley. The design and implementation of an intentional naming
system. InProceedings of the 17th ACM Symposium on Op-
erating Systems Principles, pages 186–201, Kiawah Island
Resort, South Carolina, Dec. 1999.

[2] K. Arnold, B. O’Sullivan, R. W. Scheifler, J. Waldo, and
A. Wollrath. The Jini Specification. Addison-Wesley, 1999.

[3] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman,
N. Mendelsohn, H. F. Nielsen, S. Thatte, and D. Winer. Sim-
ple object access protocol (SOAP) 1.1. W3C note, World
Wide Web Consortium, Cambridge, Massachusetts, May
2000.

[4] G. Bracha and W. Cook. Mixin-based inheritance. InPro-
ceedings of the ACM Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications ’90, pages
303–311, Ottawa, Canada, Oct. 1990.

[5] P. Brinch Hansen. The nucleus of a multiprogramming sys-
tem. Communications of the ACM, 13(4):238–241, 250,
Apr. 1970.

[6] P. Chou, R. Ortega, K. Hines, K. Partridge, and G. Borriello.
ipChinook: An integrated IP-based design framework for
distributed embedded systems. InProceedings of the 36th



ACM/IEEE Design Automation Conference, pages 44–49,
New Orleans, Louisiana, June 1999.

[7] C. Clifton, G. T. Leavens, C. Chambers, and T. Millstein.
MultiJava: Modular open classes and symmetric multiple
dispatch for Java. InProceedings of the ACM Conference
on Object-Oriented Programming Systems, Languages, and
Applications ’00, pages 130–145, Minneapolis, Minnesota,
Oct. 2000.

[8] S. E. Czerwinski, B. Y. Zhao, T. D. Hodes, A. D. Joseph, and
R. H. Katz. An architecture for a secure service discovery
service. InProceedings of the 5th ACM/IEEE International
Conference on Mobile Computing and Networking, pages
24–35, Seattle, Washington, Aug. 1999.

[9] M. L. Dertouzos. The future of computing.Scientific Amer-
ican, 281(2):52–55, Aug. 1999.

[10] M. Esler, J. Hightower, T. Anderson, and G. Borriello. Next
century challenges: Data-centric networking for invisible
computing. InProceedings of the 5th ACM/IEEE Interna-
tional Conference on Mobile Computing and Networking,
pages 256–262, Seattle, Washington, Aug. 1999.

[11] S. Feuerstein.Guide to Oracle8i Features. O’Reilly, Oct.
1999.

[12] B. Ford, M. Hibler, J. Lepreau, P. Tullmann, G. Back, and
S. Clawson. Microkernels meet recursive virtual machines.
In Proceedings of the 2nd USENIX Symposium on Operating
Systems Design and Implementation, pages 137–151, Seat-
tle, Washington, Oct. 1996.

[13] S. D. Gribble, E. A. Brewer, J. M. Hellerstein, and D. Culler.
Scalable, distributed data structures for internet service con-
struction. InProceedings of the 4th USENIX Symposium on
Operating Systems Design and Implementation, pages 319–
332, San Diego, California, Oct. 2000.

[14] R. Grimm, T. Anderson, B. Bershad, and D. Wetherall. A
system architecture for pervasive computing. InProceedings
of the 9th ACM SIGOPS European Workshop, pages 177–
182, Kolding, Denmark, Sept. 2000.

[15] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System architecture directions for networked sen-
sors. InProceedings of the 9th ACM International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems, pages 93–104, Cambridge, Mas-
sachusetts, Nov. 2000.

[16] M. Lewis and A. Grimshaw. The core Legion object model.
In Proceedings of the Fifth IEEE International Symposium
on High Performance Distributed Computing, pages 551–
561, Syracuse, New York, Aug. 1996.

[17] G. McGraw and E. W. Felten.Securing Java: Getting Down
to Business with Mobile Code. Wiley Computer Publishing,
John Wiley & Sons, 1999.

[18] D. Miloji c̆ić, F. Douglis, and R. Wheeler, editors.Mobility—
Processes, Computers, and Agents. ACM Press. Addison-
Wesley, Feb. 1999.

[19] B. D. Noble, M. Satyanarayanan, D. Narayanan, J. E. Tilton,
J. Flinn, and K. R. Walker. Agile application-aware adapta-
tion for mobility. In Proceedings of the 16th ACM Sym-
posium on Operating Systems Principles, pages 276–287,
Saint-Malo, France, Oct. 1997.

[20] V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An
efficient and portable Web server. InProceedings of the

1999 USENIX Annual Technical Conference, pages 199–
212, Monterey, California, June 1999.

[21] A. Radding. Java emerges as server-side standard.Informa-
tionWeek, (987):121–128, May 22, 2000.

[22] J. Richter. Microsoft .NET framework delivers the platform
for an integrated, service-oriented web.MSDN Magazine,
15(9):60–69, Sept. 2000.

[23] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J.
Spreitzer, and C. H. Hauser. Managing update conflicts in
Bayou, a weakly connected replicated storage system. In
Proceedings of the 15th ACM Symposium on Operating Sys-
tems Principles, pages 172–183, Copper Mountain Resort,
Colorado, Dec. 1995.

[24] P. Tullmann and J. Lepreau. Nested Java processes: OS
structure for mobile code. InProceedings of the 8th ACM
SIGOPS European Workshop, pages 111–117, Sintra, Por-
tugal, Sept. 1998.

[25] M. van Steen, P. Homburg, and A. S. Tanenbaum. Globe: A
wide-area distributed system.IEEE Concurrency, 7(1):70–
78, 1999.

[26] M. Weiser. The computer for the twenty-first century.Sci-
entific American, 265(3):94–104, Sept. 1991.


