
“The most profound technologies are those that disappear.
They weave themselves into the fabric of everyday life

until they are indistinguishable from it.”

o began Mark Weiser’s semi-
nal 1991 paper [1] that

described his vision of ubiquitous computing, now also called
pervasive computing. The essence of that vision was the cre-
ation of environments saturated with computing and commu-
nication capability, yet gracefully integrated with human users.
When articulated, this was a vision too far ahead of its time
— the hardware technology needed to achieve it simply did
not exist. Not surprisingly, the implementation attempted by
Weiser and his colleagues at Xerox PARC fell short.

After a decade of hardware progress, many critical ele-
ments of pervasive computing that were exotic in 1991 are
now viable commercial products: handheld and wearable
computers; wireless LANs; and devices to sense and control
appliances. We are now better positioned to begin the quest
for Weiser’s vision. Pervasive computing projects have
emerged at major universities and in industry. Examples at
universities include Project Aura at Carnegie Mellon Univer-
sity, Endeavour at the University of California at Berkeley
(UC Berkeley), Oxygen at the Massachusetts Institute of
Technology (MIT), and Portalano at the University of Wash-
ington. Industry examples include work at AT&T Research
in Cambridge, United Kingdom, and at the IBM T. J. Wat-
son Research Center. Each of these projects addresses a dif-
ferent mix of issues in pervasive computing, and a different
blend of near-term and far-term goals. Together, they repre-
sent a broad communal effort to make pervasive computing
a reality.

The goal of this article is to help us understand the chal-
lenges in computer systems research posed by pervasive
computing. We begin by examining its relationship to the
closely related fields of distributed systems and mobile com-
puting. Next, we sketch two pervasive computing scenarios,
and ask why they are fiction rather than fact today. From
that starting point, we delve deeper into some key research
problems. To preserve focus on computer systems issues, we
avoid digressions into other areas important to pervasive
computing such as human-computer interaction, expert sys-
tems, and software agents.

Related Fields
Pervasive computing represents a major evolutionary step in a
line of work dating back to the mid-1970s. Two distinct earlier
steps in this evolution are distributed systems and mobile
computing. Some of the technical problems in pervasive com-
puting correspond to problems already identified and studied
earlier in the evolution. In some of those cases, existing solu-
tions apply directly; in other cases, the demands of pervasive
computing are sufficiently different that new solutions have to
be sought. There are also new problems introduced by perva-
sive computing that have no obvious mapping to problems
studied earlier. In the rest of this section we try to sort out
this complex intellectual relationship and to develop a taxono-
my of issues characterizing each phase of the evolution.

Distributed Systems
The field of distributed systems arose at the intersection of
personal computers and local area networks. The research
that followed from the mid-1970s through the early 1990s cre-
ated a conceptual framework and algorithmic base that has
proven to be of enduring value in all work involving two or
more computers connected by a network — whether mobile
or static, wired or wireless, sparse or pervasive. This body of
knowledge spans many areas that are foundational to perva-
sive computing and is now well codified in textbooks [2–4]:
• Remote communication, including protocol layering, remote

procedure call [5], the use of timeouts, and the use of end-
to-end arguments in placement of functionality [6]

• Fault tolerance, including atomic transactions, distributed
and nested transactions, and two-phase commit [7]

• High availability, including optimistic and pessimistic replica
control [8], mirrored execution [9], and optimistic recovery [10]

• Remote information access, including caching, function ship-
ping, distributed file systems, and distributed databases [11]

• Security, including encryption-based mutual authentication
and privacy [12]

Mobile Computing
The appearance of full-function laptop computers and wire-
less LANs in the early 1990s led researchers to confront the
problems that arise in building a distributed system with
mobile clients. The field of mobile computing was thus born.
Although many basic principles of distributed system design
continued to apply, four key constraints of mobility forced the

IEEE Personal Communications • August 200110 1070-9916/01/$10.00 © 2001 IEEE

S

Pervasive Computing:
Vision and Challenges

M. Satyanarayanan, Carnegie Mellon University

Abstract
This article discusses the challenges in computer systems research posed by the emerging field of pervasive computing. It first examines the

relationship of this new field to its predecessors: distributed systems and mobile computing. It then identifies four new research thrusts:
effective use of smart spaces, invisibility, localized scalability, and masking uneven conditioning. Next, it sketches a couple of hypothetical

pervasive computing scenarios, and uses them to identify key capabilities missing from today’s systems. The article closes with a discussion
of the research necessary to develop these capabilities.

IEEE Personal Communications • August 2001 11

development of specialized techniques: unpredictable varia-
tion in network quality, lowered trust and robustness of
mobile elements, limitations on local resources imposed by
weight and size constraints, and concern for battery power
consumption [13].

Mobile computing is still a very active and evolving field of
research, whose body of knowledge awaits codification in text-
books. The results achieved so far can be grouped into the
following broad areas:
• Mobile networking, including Mobile IP [14], ad hoc proto-

cols [15], and techniques for improving TCP performance
in wireless networks [16, 17]

• Mobile information access, including disconnected operation
[18], bandwidth-adaptive file access [19], and selective con-
trol of data consistency [20, 21]

• Support for adaptative applications, including transcoding by
proxies [22] and adaptive resource management [23]

• System-level energy saving techniques, such as energy-aware
adaptation [24], variable-speed processor scheduling [25],
and energy-sensitive memory management [26]

• Location sensitivity, including location sensing [27, 28] and
location-aware system behavior [29–31]

Pervasive Computing
Earlier in this article, we characterized a pervasive computing
environment as one saturated with computing and communi-
cation capability, yet so gracefully integrated with users that it
becomes a “technology that disappears.” Since motion is an
integral part of everyday life, such a technology must support
mobility; otherwise, a user will be acutely aware of the tech-
nology by its absence when he moves. Hence, the research
agenda of pervasive computing subsumes that of mobile com-
puting, but goes much further. Specifically, pervasive comput-

ing incorporates four additional research thrusts into its agen-
da, as illustrated by Fig. 1.
Effective Use of Smart Spaces — The first research thrust is
the effective use of smart spaces. A space may be an enclosed
area such as a meeting room or corridor, or a well-defined
open area such as a courtyard or quadrangle. By embedding
computing infrastructure in building infrastructure, a smart
space brings together two worlds that have been disjoint until
now [16]. The fusion of these worlds enables sensing and con-
trol of one world by the other. A simple example of this is the
automatic adjustment of heating, cooling, and lighting levels
in a room based on an occupant’s electronic profile. Influence
in the other direction is also possible: software on a user’s
computer may behave differently depending on where the
user is currently located. Smartness may also extend to indi-
vidual objects, whether located in a smart space or not.

Invisibility — The second thrust is invisibility. The ideal
expressed by Weiser is complete disappearance of pervasive
computing technology from a user’s consciousness. In prac-
tice, a reasonable approximation to this ideal is minimal user
distraction. If a pervasive computing environment continuously
meets user expectations and rarely presents him with surpris-
es, it allows him to interact almost at a subconscious level
[33]. At the same time, a modicum of anticipation may be
essential to avoiding a large unpleasant surprise later, much as
pain alerts a person to a potentially serious future problem in
a normally unnoticed body part.

Localized Scalability — The third research thrust is localized
scalability. As smart spaces grow in sophistication, the intensi-
ty of interactions between a user’s personal computing space
and his/her surroundings increases. This has severe band-

■ Figure 1. Taxonomy of computer systems research problems in pervasive computing.

Smart spaces

Invisibility

Localized scalability

Uneven conditioning

Mobile networking
Mobile IP, ad hoc networks, wireless TCP fixes…

Mobile information access
disconnected operation, weak consistency…

Adaptive applications
proxies, transcoding, agility…

Energy-aware systems
goal-directed adaptation, disk spin-down…

Location sensitivity

GPS, WaveLan triangulation, context-awareness…

Distributed
systems

Remote communication
protocol layering, RPC, end-to-end args…

Fault tolerance
ACID, two-phase commit, nested transactions…

High availability
replication, rollback recovery,…

Remote information access
dist. file systems, dist. databases, caching…

Distributed security
encryption, mutual authentication…

Mobile
computing

Pervasive
computing

This figure shows how research problems in pervasive computing relate to those in mobile computing and distributed systems.
New problems are encountered as one moves from left to right in this figure. In addition, the solution of many previously-encountered
problems becomes more complex. As the modulation symbols suggest, this increase in complexity is multiplicative rather than additive
— it is very much more difficult to design and implement a pervasive computing system than a simple distributed system of comparable
robustness and maturity. Note that this figure describes logical relationships, not temporal ones. Although the evolution of research
effort over time has loosely followed this picture, there have been cases where research effort on some aspect of pervasive computing
began relatively early. For example, work on smart spaces began in the early 1990’s and proceeded relatively independently of work in
mobile computing.

IEEE Personal Communications • August 200112

width, energy, and distraction implications for a wireless
mobile user. The presence of multiple users will further com-
plicate this problem. Scalability, in the broadest sense, is thus
a critical problem in pervasive computing. Previous work on
scalability has typically ignored physical distance — a Web
server or file server should handle as many clients as possible,
regardless of whether they are located next door or across the
country. The situation is very different in pervasive comput-
ing. Here, the density of interactions has to fall off as one
moves away; otherwise, both the user and his computing sys-
tem will be overwhelmed by distant interactions that are of lit-
tle relevance. Although a mobile user far from home will still
generate some distant interactions with sites relevant to him,
the preponderance of his/her interactions will be local.

Like the inverse square laws of nature, good system design
has to achieve scalability by severely reducing interactions
between distant entities. This directly contradicts the current
ethos of the Internet, which many believe heralds the “death
of distance.”

Masking Uneven Conditioning — The fourth thrust is the
development of techniques for masking uneven conditioning of
environments. The rate of penetration of pervasive computing
technology into the infrastructure will vary considerably
depending on many nontechnical factors such as organization-
al structure, economics, and business models. Uniform pene-
tration, if it is ever achieved, is many years or decades away.
In the interim, there will persist huge differences in the
“smartness” of different environments — what is available in
a well-equipped conference room, office, or classroom may be
more sophisticated than in other locations. This large dynamic
range of “smartness” can be jarring to a user, detracting from
the goal of making pervasive computing technology invisible.

One way to reduce the amount of variation seen by a user is
to have his/her personal computing space compensate for
“dumb” environments. As a trivial example, a system that is
capable of disconnected operation is able to mask the absence of
wireless coverage in its environment. Complete invisibility may
be impossible, but reduced variability is well within our reach.

Example Scenarios
What would it be like to live in a world with pervasive com-
puting? To help convey the “look and feel” of such a world, we
sketch two hypothetical scenarios below. We have deliberately
chosen scenarios that appear feasible in just a few years.
These examples use Aura as the pervasive computing system,
but the concepts illustrated are of broad relevance.

Scenario 1
Jane is at Gate 23 in the Pittsburgh airport, waiting for her con-
necting flight. She has edited many large documents, and would
like to use her wireless connection to e-mail them. Unfortunately,
bandwidth is miserable because many passengers at Gates 22
and 23 are surfing the Web.

Aura observes that at the current bandwidth Jane won’t be
able to finish sending her documents before her flight departs.
Consulting the airport’s network weather service and flight sched-
ule service, Aura discovers that wireless bandwidth is excellent at
Gate 15, and that there are no departing or arriving flights at
nearby gates for half an hour. A dialog box pops up on Jane’s
screen suggesting that she go to Gate 15, which is only three min-
utes away. It also asks her to prioritize her e-mail, so that the
most critical messages are transmitted first. Jane accepts Aura’s
advice and walks to Gate 15. She watches CNN on the TV there
until Aura informs her that it is close to being done with her
messages, and that she can start walking back. The last message

is transmitted during her walk, and she is back at Gate 23 in
time for her boarding call.

Scenario 2
Fred is in his office, frantically preparing for a meeting at which he
will give a presentation and software demonstration. The meeting
room is a 10-minute walk across campus. It is time to leave, but
Fred is not quite ready. He grabs his PalmXXII wireless handheld
computer and walks out of the door. Aura transfers the state of his
work from his desktop to his handheld, and allows him to make his
final edits using voice commands during his walk. Aura infers where
Fred is going from his calendar and the campus location tracking
service. It downloads the presentation and the demonstration soft-
ware to the projection computer, and warms up the projector.

Fred finishes his edits just before he enters the meeting room.
As he walks in, Aura transfers his final changes to the projection
computer. As the presentation proceeds, Fred is about to display a
slide with highly sensitive budget information. Aura senses that this
might be a mistake: the room’s face detection and recognition
capability indicates that there are some unfamiliar faces present. It
therefore warns Fred. Realizing that Aura is right, Fred skips the
slide. He moves on to other topics and ends on a high note, leav-
ing the audience impressed by his polished presentation.

Missing Capabilities
These scenarios embody many key ideas in pervasive comput-
ing. Scenario 1 shows the importance of proactivity: Jane is able
to complete her e-mail transmission only because Aura had the
foresight to estimate how long the whole process would take.
She is able to begin walking back to her departure gate before
transmission completes because Aura looks ahead on her
behalf. The scenario also shows the importance of combining
knowledge from different layers of the system. Wireless conges-
tion is a low-level system phenomenon; knowledge of boarding
time is an application or user-level concept. Only by combining
these disparate pieces of knowledge can Aura help Jane. The
scenario also shows the value of a smart space. Aura is able to
obtain knowledge of wireless conditions at other gates, flight
arrival/departure times and gates, and distance between gates
only because the environment provides these services.

Scenario 2 illustrates the ability to move execution state
effortlessly across diverse platforms — from a desktop to a hand-
held machine, and from the handheld to the projection comput-
er. Self-tuning, or automatically adjusting behavior to fit
circumstances, is shown by the ability to edit on the handheld
using speech input rather than keyboard and mouse. The sce-
nario embodies many instances of proactivity: inferring that Fred
is headed for the room across campus, warming up the projector,
transferring the presentation and demonstration, anticipating
that the budget slide might be displayed next, and sensing danger
by combining this knowledge with the inferred presence of
strangers in the room. The value of smart spaces is shown in
many ways: the location tracking and online calendar services are
what enable Aura to infer where Fred is heading; the software-
controlled projector enables warmup ahead of time; the camera-
equipped room with continuous face recognition is key to
warning Fred about the privacy violation he is about to commit.

Perhaps the biggest surprise in these scenarios is how sim-
ple and basic all the component technologies are. The hard-
ware technologies (laptops, handhelds, wireless
communication, software-controlled appliances, room cam-
eras, etc.) are all here today. The component software tech-
nologies have also been demonstrated: location tracking, face
recognition, speech recognition, online calendars, and so on.

Why then do these scenarios seem like science fiction rather
than reality today? The answer lies in the fact that the whole is
much greater than the sum of its parts. In other words, the real

IEEE Personal Communications • August 2001 13

research is in the seamless integration of component
technologies into a system like Aura. The difficult
problems lie in architecture, component synthesis,
and system-level engineering. We elaborate on
some of these problems in the next section.

Drilling Down
Practical realization of pervasive computing will
require us to solve many difficult design and imple-
mentation problems. Building on the discussion in
earlier sections, we now look at some of these
problems at the next level of detail. Our goal is
only to convey an impressionistic picture of the
road ahead. We make no claim of completeness or
exclusiveness; this specific set of topics is merely a
sampling of the problem space, presented in no
particular order.

In this discussion we assume each user is
immersed in a personal computing space that accom-
panies him/her everywhere and mediates all interac-
tions with the pervasive computing elements in
his/her surroundings. This personal computing space
is likely to be implemented on a body-worn or hand-
held computer (or a collection of these acting as a
single entity). We refer to this entity as a “client” of
its pervasive computing environment, even though
many of its interactions may be peer-to-peer rather than strictly
client-server. As indicated by the discussion below, the client
needs to be quite sophisticated and hence complex. Figure 2,
illustrating the structure of an Aura client, gives a concrete exam-
ple of this complexity, showing the components of an Aura client
and their logical relationships. The text in italics indicates the
role played by each component. Coda and Odyssey were created
prior to Aura, but are being modified substantially to meet the
demands of pervasive computing. In the case of Odyssey, these
changes are sufficiently extensive that they will result in Chroma,
a replacement. Other components, such as Prism and Spectra,
are being created specifically for use in Aura. Additional compo-
nents are likely to be added over time since Aura isrelatively
early in its design at the time of this writing. Server and infra-
structure support for Aura are not shown here.

User Intent
For proactivity to be effective, it is crucial that a pervasive
computing system track user intent. Otherwise, it will be
almost impossible to determine which system actions will help
rather than hinder the user. For example, suppose a user is
viewing video over a network connection whose bandwidth
suddenly drops. Should the system:
• Reduce the fidelity of the video?
• Pause briefly to find another higher-bandwidth connection?
• Advise the user that the task can no longer be accom-

plished?
The correct choice will depend on what the user is trying to
accomplish.

Today’s systems are poor at capturing and exploiting user
intent. On one hand are generic applications that have no
idea what the user is attempting to do, and can therefore offer
little support for adaptation and proactivity. On the other
hand are applications that try to anticipate user intent but do
so very badly — gimmicks like the Microsoft “paperclip” are
often more annoying than helpful. The need to capture user
intent generates a number of important research questions:
• Can user intent be inferred, or does it have to be explicitly pro-

vided? In the latter case, is it statically specified (from a file, for
example) or obtained on demand through dynamic interactions?

• How is user intent represented internally? How rich must
this information be for it to be useful? When and how is it
updated? How do different layers of a system access this
knowledge?

• How does one characterize accuracy of knowledge in this
area? Is incomplete or imprecise knowledge of user intent
still useful? At what level of uncertainty is it better to
ignore such knowledge in making decisions?

• Will the attempt to obtain intent place an undue burden on
the user? Will it hurt usability and performance unaccept-
ably? Is the benefit worth the cost? How does one quantify
this benefit?

Cyber Foraging
The need to make mobile devices smaller, lighter, and have
longer battery life means that their computing capabilities
have to be compromised. But meeting the ever-growing
expectations of mobile users may require computing and data
manipulation capabilities well beyond those of a lightweight
mobile computer with long battery life. Reconciling these con-
tradictory requirements is difficult.

Cyber foraging, construed as “living off the land,” may be an
effective way to deal with this problem. The idea is to dynami-
cally augment the computing resources of a wireless mobile
computer by exploiting wired hardware infrastructure. As com-
puting becomes cheaper and more plentiful, it makes economic
sense to “waste” computing resources to improve user experi-
ence. Desktop computers at discount stores already sell today
for a few hundred dollars, with prices continuing to drop. In the
forseeable future, we envision public spaces such as airport
lounges and coffee shops being equipped with compute servers
or data staging servers for the benefit of customers, much as
table lamps are today. These will be connected to the wired
Internet through high-bandwidth networks. When hardware in
the wired infrastructure plays this role, we call it a surrogate of
the mobile computer it is temporarily assisting.

We envision a typical scenario as follows. When a mobile com-
puter enters a neighborhood, it first detects the presence of
potential surrogates and negotiates their use. Communication
with a surrogate is via short-range wireless peer-to-peer technolo-

■ Figure 2. The structure of an Aura client.

App 1 App 3App 2

Prism
Task support, user intent, high-level proactivity

Linux kernel

Intelligent networking
Network weather monitoring, network proactivity

Other Aura runtime support Spectra
Remote execution

Coda
Nomadic file access

Odyssey/Chroma
Resource monitoring, adaptation

This figure shows the components of an Aura client and their logical
relationships. The text in italics indicates the role played by each
component. Coda and Odyssey were created prior to Aura, but are being
modified substantially to meet the demands of pervasive computing. In the
case of Odyssey, these changes are sufficiently extensive that they will
result in Chroma, a replacement. Other components, such as Prism and
Spectra, are being created specifically for use in Aura. Additional
components are likely to be added over time since Aura is relatively early in
its design at the time of this writing. Server and infrastructure support for
Aura are not shown here.

IEEE Personal Communications • August 200114

gy, with the surrogate serving as the mobile computer’s network-
ing gateway to the Internet. When an intensive computation
accessing a large volume of data has to be performed, the mobile
computer ships the computation to the surrogate; the latter may
cache data from the Internet on its local disk in performing the
computation. Alternatively, the surrogate may have staged data
ahead of time in anticipation of the user’s arrival in the neighbor-
hood. In that case, the surrogate may perform computations on
behalf of the mobile computer or merely service its cache misses
with low latency by avoiding Internet delays. When the mobile
computer leaves the neighborhood, its surrogate bindings are bro-
ken, and any data staged or cached on its behalf are discarded.

Cyber foraging opens up many important research ques-
tions. Here are some examples:
• How does one discover the presence of surrogates? Of the

many proposed service discovery mechanisms such as JINI,
UPnP, and BlueTooth proximity detection, which is best
suited for this purpose? Can one build a discovery mecha-
nism that subsumes all of them for greatest flexibility?

• How does one establish an appropriate level of trust in a
surrogate? What are useful levels of trust in practice? How
applicable and useful is the concept of caching trust [34]?
Can one amortize the cost of establishing trust across many
surrogates in a neighborhood?

• How is load balancing on surrogates done? Is surrogate
allocation based on an admission control approach or a
best-effort approach? How relevant is previous work on
load balancing on networks of workstations?

• In typical situations, how much advance notice does a surro-
gate need to act as an effective staging server with minimal
delay? Is this on the order of seconds, minutes, or tens of
minutes? What implications does this requirement have for
the other components of a pervasive computing system?

• What are the implications for scalability? How dense does
the fixed infrastructure have to be to avoid overloads dur-
ing periods of peak demand?

• What is the system support needed to make surrogate use
seamless and minimally intrusive for a user? Which are the
components of this support that must be provided by the
mobile client, and which by the infrastructure?

Adaptation Strategy
Adaptation is necessary when there is a significant mismatch
between the supply and demand of a resource. The resource
in question may be wireless network bandwidth, energy, com-
puting cycles, memory, and so on. There are three alternative
strategies for adaptation in pervasive computing.

First, a client can guide applications in changing their
behavior so that they use less of a scarce resource. This
change usually reduces the user-perceived quality, or fidelity,
of an application. Odyssey [23, 24] is an example of a system
that uses this strategy.

Second, a client can ask the environment to guarantee a
certain level of a resource. This is the approach typically used
by reservation-based quality of service (QoS) systems [35].
From the viewpoint of the client, this effectively increases the
supply of a scarce resource to meet the client’s demand.

Third, a client can suggest a corrective action to the user. If
the user acts on this suggestion, it is likely (but not certain) that
resource supply will become adequate to meet demand. An
example of this approach was described earlier in the article: in
Scenario 1, Aura advised Jane to walk to Gate 15 in order to
obtain adequate wireless bandwidth. While conceptually
promising, no real system has implemented this approach yet.

All three strategies are important in pervasive computing. The
existence of smart spaces suggests that some of the environments
encountered by a user may be capable of accepting resource reser-

vations. At the same time, uneven conditioning of environments
suggests that a mobile client cannot rely solely on a reservation-
based strategy — when the environment is uncooperative or
resource-impoverished, the client may have no choice but to ask
applications to reduce their fidelities. Corrective actions broaden
the range of possibilities for adaptation by involving the user, and
may be particularly useful when lowered fidelity is unacceptable.

Many questions remain to be answered:
• How does a client choose between adaptation strategies?

What factors should a good decision procedure take into
account? How should different factors be weighted? What
role, if any, should the user play in making this decision?
How can smooth and seamless transitions between strate-
gies be ensured as a user moves?

• At first glance, it appears that the second strategy (reserva-
tion-based QoS) is always superior from the viewpoint of
the user, since he/she is required to neither accept lower
fidelity nor perform a corrective action. Is this true in all
circumstances? What are the hidden costs and “gotchas,” if
any, in a widely deployed system?

• How will the implementation of a smart space honor
resource reservations? What are the most appropriate
admission control policies when there are competing
requests from multiple clients? What resources beside wire-
less network bandwidth is it meaningful and useful for a
smart space to reserve? What are the application program-
ming interfaces (APIs) and protocols necessary to negotiate
these reservations?

• Is adaptation using corrective actions practically feasible?
Do users find such a strategy intrusive or annoying? What
is the best way to communicate potential corrective actions
to users? What are the programming models and APIs nec-
essary to support corrective actions? Can existing applica-
tions use this approach? If so, how substantial are the
modifications to them?

• What are the different ways in which fidelity can be lowered
for a broad range of applications? Are existing APIs, such as
that of Odyssey [23], adequate? How should those APIs and
programming models be revised in the light of extensive
usage experience? In particular, what is the negative impact
of lowered fidelity on users, and how can this be minimized?

High-Level Energy Management
Sophisticated capabilities such as proactivity and self-tuning
increase the energy demand of software on a mobile comput-
er in one’s personal computing space. At the same time,
relentless pressure to make such computers lighter and more
compact places severe restrictions on battery capacity. There
is growing consensus that advances in battery technology and
low-power circuit design cannot, by themselves, reconcile
these opposing constraints — the higher levels of the system
must also be involved [36, 37].

How does one involve the higher levels of a system in
energy management? One example is energy-aware memory
management [26], where the operating system dynamically
controls the amount of physical memory that has to be
refreshed. Another example is energy-aware adaptation [24],
where individual applications switch to modes of operation
with lower fidelity and energy demand under operating system
control. Many research questions follow:
• In what other ways can the higher levels of a system con-

tribute to managing energy? What are the relative strengths
and weaknesses of these approaches? When should one
method be used in preference to another?

• How does high-level energy management impact the goal of
invisibility in pervasive computing? How intrusive or dis-
tracting do users find such techniques?

IEEE Personal Communications • August 2001 15

• Can knowledge of user intent be exploited in energy man-
agement? If so, how robust is this approach in the face of
imperfection in this knowledge?

• Can smart spaces and surrogates be used to reduce energy
demand on a mobile computer? What is the range of possi-
ble approaches, and what are their relative merits?

• What is the role of remote execution in extending battery
life? Under what circumstances does its energy savings
exceed the energy cost of wireless communication? Can a
system predict these savings and costs accurately enough in
practice to make a significant difference?

Client Thickness
How powerful does a mobile client need to be for a pervasive
computing environment? In other words, how much CPU
power, memory, disk capacity, and so on should it have? The
answer will determine many of the key constraints imposed on
the hardware design of the client. In trade press jargon, a thick
client is a powerful client, while a thin client is a minimal one.

Thick clients tend to be larger, heavier, require a bigger bat-
tery, and dissipate more heat — all negative factors from the
viewpoint of the user who has to carry or wear the client. Over
time, improvements in very large-scale integration (VLSI) and
packaging technology can reduce the physical size and weight of
a thick client. However, those improvements will translate to an
even smaller and lighter thin client. For a mobile user, a client
can never be too small or too light, or have too much battery life!

A wide range of feasible designs has been demonstrated. At
one extreme are ultra-thin clients such as Infopad [38, 39] and
SLIM [40]. These bare-bones devices are little more than high-res-
olution displays connected through high-bandwidth wireless links
to nearby compute servers. At the other extreme are full-function
clients capable of standalone or disconnected operation. Examples
include the Navigator family of wearable computers [41] and lap-
tops running as clients of the Coda File System [18]. Such designs
can make use of wireless connectivity when available, but are not
critically dependent on it. Handheld computers such as the
PalmPilot represent design points between these extremes. They
can operate in isolation, but run a limited range of applications.

For a given application, the minimum acceptable thickness
of a client is determined by the worst-case environmental condi-
tions under which the application must run satisfactorily. A very
thin client suffices if one can always count on high-bandwidth
low-latency wireless communication to nearby computing infra-
structure, and batteries can be recharged or replaced easily. If
there exists even a single location visited by a user where these
assumptions do not hold, the client will have to be thick enough
to compensate at that location. This is especially true for inter-
active applications where crisp response is important.

With a client of modest thickness, it may be possible to pre-
serve responsiveness by handling simple cases locally and relying
on remote infrastructure only for more compute-intensive situa-
tions. Alternatively, it may be possible to execute part of the
application locally and then ship a much-reduced intermediate
state over a weak wireless link to a remote compute server for
completion. The hybrid mode of speech recognition in Odyssey
[23] is an example of this approach. Another approach would be
for the client to recognize that a key assumption is not being
met, and to alert the user with an intelligible message. The client
could also suggest possible corrective actions such as moving to a
nearby location that is known to be suitable for the application.

Uneven conditioning of environments implies that an
extreme thin-client approach will be unsatisfactory for perva-
sive computing in the foreseeable future. At the same time,
there is considerable merit in not having to carry or wear a
client thicker than absolutely necessary. Many research ques-
tions follow from this tension:

• Can the concepts of client thickness and environmental condi-
tioning be quantified? Are there “sweet spots” in the design
space where a modest increase in client thickness yields con-
siderable improvement in performance and usability?

• Can a proactive system alert a user in a timely manner
before he leaves a benign environment for a less hospitable
one? In that context, can an application be transparently
migrated from a thinner to a thicker client and vice versa?
What are the kinds of applications for which such migration
is feasible and useful? What is the impact on usability?

• Is it possible to build cost-effective modular computers that can
be physically reconfigured to serve as the optimal mobile
clients under diverse environmental conditions? Can a proac-
tive system advise a user to reconfigure when appropriate?
Knowing his/her travel plans, can such a system guide in config-
uring the system so that it is of adequate thickness at all times?

• Can semi-portable infrastructure be carried with a user to
augment less hospitable environments? For example, in a
poorly conditioned environment, can a thin bodyworn com-
puter extend its capabilities by wireless access to a full-func-
tion laptop brought by the user? This is analogous to
carrying both a briefcase and a wallet when you travel; the
briefcase is not physically on your person at all times, but it
is close enough to provide easy access to things too large to
fit in your wallet. Is this a usable and practical strategy to
cope with uneven conditioning?

Context Awareness
A pervasive computing system that strives to be minimally
intrusive has to be context-aware. In other words, it must be
cognizant of its user’s state and surroundings, and must modi-
fy its behavior based on this information. A user’s context can
be quite rich, consisting of attributes such as physical location,
physiological state (e.g., body temperature and heart rate),
emotional state (e.g., angry, distraught, or calm), personal his-
tory, daily behavioral patterns, and so on. If a human assistant
were given such context, he or she would make decisions in a
proactive fashion, anticipating user needs. In making these
decisions, the assistant would typically not disturb the user at
inopportune moments except in an emergency. Can a perva-
sive computing system emulate such a human assistant?

A key challenge is obtaining the information needed to
function in a context-aware manner. In some cases, the
desired information may already be part of a user’s personal
computing space. For example, that space may include sched-
ules, personal calendars, address books, contact lists, and to-
do lists. More dynamic information has to be sensed in real
time from the user’s environment. Examples of such informa-
tion include position, orientation, the identities of people
nearby, locally observable objects and actions, and emotional
and physiological state.

Implementing a context-aware system requires many issues
to be addressed. For example:
• How is context represented internally? How is this informa-

tion combined with system and application state? Where is
context stored? Does it reside locally, in the network, or
both? What are the relevant data structures and algorithms?

• How frequently does context information have to be consult-
ed? What is the overhead of taking context into account?
What techniques can one use to keep this overhead low?

• What are the minimal services an environment needs to
provide to make context awareness feasible? What are rea-
sonable fallback positions if an environment does not pro-
vide such services? Is historical context useful?

• What are the relative merits of different location-sensing
technologies? Under what circumstances should one be
used in preference to another? Should location information

IEEE Personal Communications • August 200116

be treated just like any other context information, or should
it be handled differently?

Balancing Proactivity and Transparency
Proactivity is a double-edged sword. Unless carefully designed,
a proactive system can annoy a user and thus defeat the goal
of invisibility. How does one design a system that strikes the
proper balance at all times? Self-tuning can be an important
tool in this effort. A mobile user’s need and tolerance for
proactivity are likely to be closely related to his/her level of
expertise on a task and familiarity with his/her environment. A
system that can infer these factors by observing user behavior
and context is better positioned to strike the right balance.

Historically, the ideal in system design has been transparen-
cy. For example, caching is attractive in distributed file sys-
tems because it is completely transparent. Unfortunately,
servicing a cache miss on a large file over a low-bandwidth
wireless network takes so long that most users would rather
be asked first whether they really need the file. However, a
flurry of such interactions can overwhelm the user. Coda sug-
gests a way to resolve this dilemma [19]. On a cache miss, the
system consults an internally maintained user patience model
to predict whether the user will respond positively to a fetch
request. If this appears likely, the user interaction is sup-
pressed and the fetch is handled transparently.

Many subtle problems arise in designing a system that
walks the fine line between annoying proactivity and
inscrutable transparency. For example:
• How are individual user preferences and tolerances speci-

fied and taken into account? Are these static, or do they
change dynamically?

• What cues can such a system use to determine if it is veer-
ing too far from balance? Is explicit interaction with the
user to obtain this information acceptable? Or would it be
an annoyance too?

• Can one provide systematic design guidelines to application
designers to help in this task? Can one retrofit balancing
mechanisms into existing applications?

Privacy and Trust
Privacy, already a thorny problem in distributed systems and
mobile computing, is greatly complicated by pervasive computing.
Mechanisms such as location tracking, smart spaces, and use of
surrogates monitor user actions on an almost continuous basis. As
a user becomes more dependent on a pervasive computing sys-
tem, it becomes more knowledgeable about that user’s move-
ments, behavior patterns and habits. Exploiting this information is
critical to successful proactivity and self-tuning. At the same time,
unless use of this information is strictly controlled, it can be put to
a variety of unsavory uses ranging from targeted spam to black-
mail. Indeed, the potential for serious loss of privacy may deter
knowledgeable users from using a pervasive computing system.

Greater reliance on infrastructure means a user must trust
that infrastructure to a considerable extent. Conversely, the
infrastructure needs to be confident of the user’s identity and
authorization level before responding to his/her requests. It is
a difficult challenge to establish this mutual trust in a manner
that is minimally intrusive and thus preserves invisibility.

Privacy and trust are likely to be enduring problems in perva-
sive computing. Many research questions follow. For example:
• How does one strike the right balance between seamless

system behavior and the need to alert users to potential loss
of privacy? What are the mechanisms, techniques, and
design principles relevant to this problem? How often
should the system remind a user that his/her actions are
being recorded? When and how can a user turn off moni-
toring in a smart space?

• What are the authentication techniques best suited to per-
vasive computing? Are password-based challenge-response
protocols such as Kerberos [42] adequate, or are more exot-
ic techniques such as biometric authentication [43] neces-
sary? What role, if any, can smart cards [44] play?

• How does one express generic identities in access control?
For example, how does one express security constraints
such as “Only the person currently using the projector in
this room can set its lighting level”? Or “Only employees of
our partner companies can negotiate QoS properties in this
smart space”?

Impact on Layering
A recurring theme in the earlier sections of this article has
been the merging of information from diverse layers of a sys-
tem to produce an effective response. For example, scenario 1
showed the value of combining low-level resource information
(network bandwidth) with high-level context information (air-
port gate information). Proactivity and adaptation based on
corrective actions seem to imply exposure of much more
information across layers than is typical in systems today.

Layering cleanly separates abstraction from implementation
and is thus consistent with sound software engineering. Layer-
ing is also conducive to standardization since it encourages the
creation of modular software components. Deciding how to
decompose a complex system into layers or modules is nontriv-
ial, and remains very much an art rather than a science. The
two most widely used guidelines for layering are Parnas’ princi-
ple of information hiding [45] and Saltzer et al.’s end-to-end
principle [6]. However, these date back to the early 1970s and
early 1980s, respectively, long before pervasive computing was
conceived. Many research questions follow:
• How can the benefits of layering be preserved while accommo-

dating the needs of pervasive computing? What is the impact
of these accommodations on efficiency and maintainability?

• Are existing layers best extended for pervasive computing by
broadening their primary interfaces or creating secondary inter-
faces (e.g., the SNMP network management interface [46])?

• When creating a new layer, are there systematic guidelines
we can offer to ensure compatibility with the needs of per-
vasive computing? How much harder is it to design and
implement such a layer?

Conclusion
Pervasive computing will be a fertile source of challenging
research problems in computer systems for many years to come.
Solving these problems will require us to broaden our discourse
on some topics, and revisit long-standing design assumptions in
others. We will also have to address research challenges in areas
outside computer systems. These areas include human-computer
interaction (especially multimodal interactions and human-cen-
tric hardware designs), software agents (with specific relevance
to high-level proactive behavior), and expert systems and artifi-
cial intelligence (particularly in the areas of decision making and
planning). Capabilities from these areas will need to be integrat-
ed with the kinds of computer systems capabilities discussed in
this article. Pervasive computing will thus be the crucible in
which many disjoint areas of research are fused.

When describing his vision, Weiser was fully aware that
attaining it would require tremendous creativity and effort by
many people, sustained over many years. The early decades of
the 21st century will be a period of excitement and ferment, as
new hardware technologies converge with research progress
on the many fundamental problems discussed in this article.
Like the frontier of the American West in the early 19th cen-
tury, pervasive computing offers new beginnings for the

IEEE Personal Communications • August 2001 17

adventurous and the restless — a rich open space where the
rules have yet to be written and the borders yet to be drawn.

Acknowledgments
The ideas in this article were formed over an extended period
of time and benefited from the input of many individuals. In
particular, I would like to thank my colleagues on the Aura
team (David Garlan, Raj Reddy, Dan Siewiorek, Asim Smailag-
ic, and Peter Steenkiste) for their many valuable thoughts, sug-
gestions, and insights. I would also like to acknowledge the
members of the Coda and Odyssey projects for the many
insights I have gained in working with them. Discussions with
David Clark and Michael Dertouzous of MIT were helpful in
formulating the concept of localized scalability.

I would like to thank Sandeep Gupta, guest editor of this
special issue, for giving me the opportunity to express my
thoughts on pervasive computing. I would also like to thank a
number of people who read early versions of this article and
provided valuable feedback on its content and presentation:
Mary Baker, Rajesh Balan, Maria Ebling, Michalis Faloutsos,
Jason Flinn, David Garlan, Ira Greenberg, Guerney Hunt,
Hui Lei, Alan Messer, Dejan Milojocic, Dushyanth
Narayanan, and SoYoung Park. Any remaining errors or
omissions are, of course, entirely my responsibility.

This research was supported by the National Science Foun-
dation (NSF) under contracts CCR-9901696 and ANI-
0081396, the Defense Advanced Projects Research Agency
(DARPA) and the U.S. Navy (USN) under contract
N660019928918, IBM Corporation, Compaq Corporation and
Nokia Corporation. The views and conclusions contained in
this document are those of the author and should not be
interpreted as representing the official policies, either
expressed or implied, of the NSF, DARPA, USN, IBM, Com-
paq, Nokia, or the U.S. government.

References
[1] M. Weiser, “The Computer for the 21st Century,” Sci. Amer., Sept., 1991.
[2] G. Couloris, J. Dollimore, and T. Kindberg, Distributed Systems Concepts

and Design, 3rd ed., Addison-Wesley, 2001.
[3] N. A. Lynch, Distributed Algorithms, Morgan Kaufmann, 1993.
[4] S. J. Mullender, Ed., Distributed Systems, Addison-Wesley, 1993.
[5] A. D. Birrell and B. J. Nelson, “Implementing Remote Procedure Calls,”

ACM Trans. Comp. Sys., vol. 2, no. 1, Feb. 1984.
[6] J. H. Saltzer, D. P. Reed and D. D Clark, “End-to-End Arguments in Sys-

tem Design,” ACM Trans. Comp. Sys., vol. 2, no. 4, Nov., 1984.
[7] J. Gray and A. Reuter, Transaction Processing: Concepts and Tech-

niques, Morgan Kaufman, 1993.
[8] S. B. Davidson, H. Garcia-Molina, and D. Skeen, “Consistency in Parti-

tioned Networks,” ACM Comp. Surveys, vol. 17, no. 3, Sept., 1985.
[9] A. Borg, W. Blau, and W. Graetsch, “Fault Tolerance Under Unix,” ACM

Trans. Comp. Sys., vol. 7, no. 1, Feb., 1989.
[10] R. E. Strom and S. Yemini, “Optimistic Recovery in Distributed Sys-

tems,” ACM Trans. Comp. Sys., vol. 3, no. 3, Aug. 1985.
[11] M. Satyanarayanan, “A Survey of Distributed File Systems,” J. F. Traub

et al., Eds., Annual Rev. Comp. Sci., Annual Reviews, Inc., 1989.
[12] R. M. Needham and M. D. Schroeder, “Using Encryption for Authenti-

cation in Large Networks of Computers,” Commun. ACM, vol. 21, no.
12, Dec. 1978.

[13] M. Satyanarayanan, “Fundamental Challenges in Mobile Computing,” Proc.
15th ACM Symp. Principles of Dist. Comp., Philadelphia, PA, May, 1996.

[14] P. Bhagwat, C. Perkins, and S. Tripathi, “Network Layer Mobility: An
Architecture and Survey,” IEEE Pers. Commun., vol. 3, no. 3, June 1996.

[15] E. M. Royer, C. K. Toh, “A Review of Current Routing Protocols for Ad Hoc
Mobile Wireless Networks,” IEEE Pers. Commun., vol. 6, no. 2, Apr., 1999.

[16] A. Bakre, B. R. Badrinath, “Handoff and System Support for Indirect
TCP/IP, “ Proc. 2nd Usenix Symp. Mobile & Location-Independent
Comp., Ann Arbor, MI, Apr., 1995.

[17] E. A. Brewer et al., “A Network Architecture for Heterogeneous Mobile
Computing,” IEEE Pers. Commun., vol. 5, no. 5, Oct. 1998.

[18] J. J. Kistler and M. Satyanarayanan, “Disconnected Operation in the
Coda File System,” ACM Trans. Comp. Sys., vol. 10, no. 1, Feb. 1992.

[19] L. B. Mummert, M. R. Ebling, and M. Satyanarayanan, “Exploiting
Weak Connectivity for Mobile File Access,” Proc. 15th ACM Symp. Op.
Sys. Principles, Copper Mountain Resort, CO, Dec. 1995.

[20] C. D. Tait and D. Duchamp, “An Efficient Variable-Consistency Replicated
File Service,” Proc. USENIX File Sys. Wksp., Ann Arbor, MI, May 1992.

[21] D. B. Terry et al., “Managing Update Conflicts in a Weakly Connected
Replicated Storage System,“ Proc. 15th ACM Symp. Op. Sys. Principles,
Copper Mountain Resort, CO, Dec. 1995.

[22] A. Fox et al., “Adapting to Network and Client Variability via On-
Demand Dynamic Distillation,” Proc. 7th Int’l. ACM Conf. Architectural
Support for Progr. Lang. and Op. Sys., Cambridge, MA, Oct. 1996.

[23] B. D. Noble et al., “Agile Application-Aware Adaptation for Mobility,” Proc.
16th ACM Symp. Op. Sys. Principles, Saint-Malo, France, Oct. 1997.

[24] J. Flinn and M. Satyanarayanan, “Energy-Aware Adaptation for Mobile
Applications,” Proc. 17th ACM Symp. Op. Sys. Principles, Kiawah Island,
SC, Dec. 1999.

[25] M. Weiser et al., “Scheduling for Reduced CPU Energy,” Proc. 1st USENIX
Symp. Op. Sys. Design and Implementation, Monterey, CA, Nov. 1994.

[26] A. R. Lebeck et al., “Power Aware Page Allocation,” Proc. 9th Int’l.
Conf. Architerctural Support for Prog. Lang. and Op. Sy., Nov. 2000.

[27] R. Want et al., “The Active Badge Location System,” ACM Trans. Info.
Sys., vol. 10, no. 1, Jan. 1992.

[28] A. Ward, A. Jones, and A. Hopper, “A New Location Technique for the
Active Office,“ IEEE Pers. Commun., vol. 4, no. 5, Oct., 1997.

[29] B. Schilit, N. Adams, and R. Want, “Context-Aware Computing Applica-
tions,” Proc. Wksp. Mobile Comp. Sys. App., Santa Cruz, CA, Dec. 1994.

[30] M. Spreitzer and M. Theimer, “Providing Location Information in a
Ubiquitous Computing Environment,“ Proc. 14th ACM Symp. Op. Sys.
Principles, Dec. 1993.

[31] G. M. Voelker and B. N. Bershad, “Mobisaic: An Information System
for a Mobile Wireless Computing Environment,” Proc. IEEE Wksp.
Mobile Comp. Sys. and Apps., Santa Cruz, CA, Dec., 1994.

[32] R. H. Katz et al., “Workspaces in the Information Age,” Report NSF
Wksp. Workspaces Information Age, Leesburg, VA, Oct., 1996, available
at http://www.cs.berkeley.edu/~randy/NSFWS.

[33] M. Weiser and J. S. Brown, “The Coming Age of Calm Technology,” P.
J. Denning and R. M. Metcalfe, Eds., Beyond Calculation: The Next Fifty
Years of Computing, Copernicus, 1998.

[34] M. Satyanarayanan, “Caching Trust Rather Than Content,” Op. Sys.
Rev., vol. 34, no. 4, Oct. 2000.

[35] K. Nahrsted, H. Chu, and S. Narayan, “QoS-Aware Resource Manage-
ment for Distributed Multimedia Applications,” J. High-Speed Network-
ing, vol. 7, no. 3/4, 1998.

[36] C. S. Ellis, “The Case for Higher-Level Power Management,” 7th IEEE
Wksp. Hot Topics Op. Sys., Rio Rico, AZ, Mar. 1999.

[37] “Energy-Efficient Technologies for the Dismounted Soldier Board on
Army Science and Technology,” Nat’l. Research Council, Washington,
DC, 1997.

[38] R. W. Brodersen, “InfoPad — Past, Present and Future,” Mobile Comp.
and Commun. Rev., vol. 3, no. 1, Jan. 1999.

[39] T. E. Truman et al., “The InfoPad Multimedia Terminal: A Portable
Device for Wireless Information Access,” IEEE Trans. Comp., vol. 47, no.
10, Oct. 1998.

[40] B. K. Schmidt, M. S. Lam and J. D. Northcutt, “The Interactive Perfor-
mance of SLIM: A Stateless, Thin-Client Architecture,” Proc. 17th ACM
Symp. Op. Sys. Principles, Kiawah Island, SC, Dec. 1999.

[41] A. Smailagic and D. P. Siewiorek, “Modalities of Interaction with CMU
Wearable Computers,” IEEE Pers. Commun., vol. 3, no. 1, Feb. 1996.

[42] J. G. Steiner, G. Neuman, and J. I. Schiller, “Kerberos: An Authentica-
tion Service for Open Network Systems,” Proc. Winter 1988 USENIX
Tech. Conf., Dallas, TX, Feb., 1988.

[43] A. Jain, L. Hong, and S. Pankanti, “Biometric Identification,” Commun.
ACM, vol. 43, no. 2, Feb. 2000.

[44] N. Itoi, P. Honeyman, “Practical Security Systems with Smartcards,” 7th
IEEE Wksp. Hot Topics in Op. Sys., Rio Rico, AZ, Mar. 1999.

[45] D. L. Parnas, “On the Criteria to be Used in Decomposing Systems into
Modules,” Commun. ACM, vol. 15, no. 12, Dec. 1972.

[46] J. Case et al., “A Simple Network Management Protocol,” IETF RFC
1157, 1990.

Biography
M. SATYANARAYANAN (satya@cs.cmu.edu) is an experimental computer scien-
tist who has pioneered research in the field of mobile information access.
One outcome of this work is the Coda File System, which supports discon-
nected and bandwidth-adaptive operation. Key ideas from Coda have been
incorporated by Microsoft into the IntelliMirror component of Windows.
Another outcome is Odyssey, a set of open-source operating system exten-
sions for enabling mobile applications to adapt to variation in critical
resources such as bandwidth and energy. Coda and Odyssey are building
blocks in Project Aura, a new research initiative at Carnegie Mellon to build
a distraction-free ubiquitous computing environment. Earlier, he was a
principal architect and implementor of the Andrew File System, which was
commercialized by IBM. He is the Carnegie Group Professor of Computer
Science at Carnegie Mellon University. He received his Ph.D. in Computer
Science from Carnegie Mellon, after Bachelor's and Master's degrees from
the Indian Institute of Technology, Madras.

