
1

OWL-S
Semantic Markup for Web Services

See: http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/

2P. Turci - Sistemi Orientati ad Internet

What is OWL-S?

OWL-based Web service ontology
Supplies a core set of markup language constructs for describing
Web services in unambiguous, computer-interpretable form

• Describe Web services capabilities
• Describe Web services Process Model
• Map Web services Process Model to WSDL for Web service invocation

OWL-S allows services to interact on the Semantic Web
• Description of capabilities allows capability-based discovery of WS
• Process Model allows construction of plans that compose the activities

of different WS
• Mapping to WSDL allows automatic invocation of WS

OWL-S objective
• OWL-S does not aim to replace the Web services standards rather it

attempts to provide a semantic layer
▫ OWL-S relies on WSDL for Web service invocation
▫ OWL-S expands UDDI for Web service discovery

2

3P. Turci - Sistemi Orientati ad Internet

Motivation

Tasks OWL-S is expected to enable:
Automatic Web service discovery

• Automated location of WSs that provide a particular service and adhere
to requested constraints

Automatic Web service invocation
• Automated execution of an identified WS by a computer program or

agent
Automatic Web service composition and interoperation

• Automatic selection, composition and interoperation of WSs to perform
some task (e.g. arrangement for a conference)

Automatic Web service execution monitoring
• Individual services and composition services generally require some

time to execute completely
• It is useful to know the state of execution of services

4P. Turci - Sistemi Orientati ad Internet

Upper Ontology for Services

Three essential type of knowledge about a service:
What does the service provide for prospective clients?

• The answer to this question is given in the "profile" which is used to
advertise the service.

• To capture this perspective, each instance of the class Service
presents a ServiceProfile.

How is it used?
• The answer to this question is given in the "process model"
• This perspective is captured by the ServiceModel class. Instances of

the class Service use the property describedBy to refer to the
service's ServiceModel.

How does one interact with it?
• The answer to this question is given in the "grounding"
• A grounding provides the needed details about transport protocols.

Instances of the class Service have a supports property referring to a
ServiceGrounding.

Source: http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/

3

5P. Turci - Sistemi Orientati ad Internet

Upper Ontology for Services

The class Service provides an organizational
point of reference for a declared Web service

One instance of Service will exist for each distinct
published service.
The properties presents, describedBy, and supports
are properties of Service.
The classes ServiceProfile, ServiceModel,
and ServiceGrounding are the respective
ranges of those properties.
Each instance of Service will present a
ServiceProfile description, be describedBy a
ServiceModel description, and support a
ServiceGrounding description.

The ServiceProfile provides the information
needed to automatically discover a service, while
the ServiceModel and ServiceGrounding,
taken together, provide enough information to make
use of a service, once found

Source: http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/

6P. Turci - Sistemi Orientati ad Internet

Upper Ontology for Services

The upper ontology for services specifies only two
cardinality constraints:

A service can be described by at most one service model
A grounding must be associated with exactly one service.

It deliberately does not specify any minimum cardinality for
the properties presents or describedBy

In principle, a service needs all three properties to be fully
characterized; in some situations a partial characterization could be
useful.

Nor does it specify any maximum cardinality for presents or
supports

It can be useful for some services to offer multiple profiles and/or
multiple groundings.

4

7P. Turci - Sistemi Orientati ad Internet

Service Profile

The class ServiceProfile provides a superclass of every type of
high-level description of a service
OWL-S provides one possible representation of a service profile through
the class Profile, describing a service as a function of three basic
types of information:

What organization provides the service
• Contact information that refers to the entity that provides the service

What function the service computes
• Specified in terms of:

▫ Inputs required by the service and outputs generated
▫ Preconditions required by the service and expected effects that result from the execution

of the service

A host of features that specify characteristics of the service
• The category of a given service
• The quality rating of the service (some services may be very good, reliable, and

quick to respond)
• An unbounded list of service parameters that can contain any type of information

8P. Turci - Sistemi Orientati ad Internet

Service Profile and Registry

The aim of the service profile is to provide a
concise description to a registry
The types of registry may vary widely

28 different types have been identified
By using a declarative representation of Web services,
the service profile is not committed to any form of
registry

• It can be used in all of them.

The service profile can also be used to represents
needs of services

• In a reverse registry that records needs and queries on offers.

5

9P. Turci - Sistemi Orientati ad Internet

Service Profile vs. Service Model

The Profile and the Process Model play different
roles during the transaction between Web services

But …
they are two different representations of the same
service and the input, output, precondition, and effects
(IOPEs) of one are reflected in the IOPEs of the other

OWL-S does not dictate any constraint between
Profiles and Process Models

… the two descriptions may be inconsistent without
affecting the validity of the OWL expression

10P. Turci - Sistemi Orientati ad Internet

Profile Properties

- Selected class and properties of the Profile
Source: http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/

6

11P. Turci - Sistemi Orientati ad Internet

Profile - Functionality Description

Generally the IOPE's published by the Profile are a
subset of those published by the Process.

The Process part of a description will create all the IOPE instances
and the Profile instance can simply point to these instances.
The Profile can create its own IOPE instances according to the
schema in the Process ontology

The Profile ontology defines the following properties of the
Profile class:

hasParameter
• hasInput
• hasOutput

hasPrecondition
hasResult

• Specifies under what conditions the outputs are generated and what
domain changes are produced during the execution of the service

12P. Turci - Sistemi Orientati ad Internet

Profile - Additional Properties

serviceParameter
An expandable list of properties that may accompany a profile description.
The value of the property is an instance of the class ServiceParameter
• serviceParameterName

▫ Name of the actual parameter (e.g. the URI)
• sParameter

▫ Points to the value of the parameter within some OWL ontology.

serviceCategory
Describes categories of services on the bases of some classification.
The value of the property is an instance of the class ServiceCategory
• categoryName
• taxonomy

▫ A reference to the taxonomy scheme (not necessarily an URL).
• value

▫ Points to the value in a specific taxonomy
• code

▫ Code associated to a taxonomy.

7

13P. Turci - Sistemi Orientati ad Internet

Process Model

- Top level of the Process ontology Source: http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/

14P. Turci - Sistemi Orientati ad Internet

Modelling Services as Processes
A process is intended as a specification of the ways a
client may interact with a service

An atomic process is a description of a service that expects one
(possibly complex) message and returns one (possibly complex)
message in response.
A composite process is one that maintains some state; each
message the client sends advances it through the process.

A process can have two sorts of purpose:
1. It can generate and return some new information. Information

production is described by the inputs and outputs of the process.
2. It can produce a change in the world. This transition is described

by the preconditions (which must all hold in order for the process to
be successfully invoked) and effects of the process

Preconditions and effects are represented as logical formulas (using
languages more expressive than OWL: RuleML or OWL Rules
Language)

8

15P. Turci - Sistemi Orientati ad Internet

Simple Process

Simple processes are not invocable and are not
associated with a grounding

They are conceived of as having single-step executions
Simple processes are used as elements of
abstraction. A simple process may be used to
provide:

A view of (a specialized way of using) some atomic
process

• The simple process is realizedBy the atomic process
A simplified representation of some composite process
(for purposes of planning and reasoning).

• The simple process expandsTo the composite process

16P. Turci - Sistemi Orientati ad Internet

Composite Process

Composite processes are decomposable into other (non-
composite or composite) processes

Their decomposition can be specified by using control constructs
A process can often be viewed at different levels of granularity,
either as a primitive, undecomposable process or as a composite
process.

• These are sometimes referred to as ``black box'' and ``glass box''
views, respectively.

• When a composite process is viewed as a black box, a simple process
can be used to represent it.

A composite process is not a behavior a service will do, but
a behavior (or set of behaviors) the client can perform by
sending and receiving a series of messages.

If the composite process has an overall effect, then the client must
perform the entire process in order to achieve that effect.

9

17P. Turci - Sistemi Orientati ad Internet

Process - Control Constructs
Sequence

A list of control constructs to be done in order.
Split

A bag of process components to be executed concurrently. Split completes as soon as all of its
component processes have been scheduled for execution.

Split-Join
The process consists of concurrent execution of a bunch of process components with barrier
synchronization. Split+Join completes when all of its components processes have completed.

Any-Order
Allows the process components (specified as a bag) to be executed in some unspecified order but
not concurrently. Execution and completion of all components is required.

Choice
Execution of a single control construct from a given bag of control constructs. Any of the given control
constructs may be chosen for execution

If-Then-Else
Iterate

Is an "abstract" class, serves as the common superclass of Repeat-While, Repeat-Until, and
potentially other specific iteration constructs.
Repeat-While and Repeat-Until

• Iterate until a condition becomes false or true, following the familiar programming language conventions.

18P. Turci - Sistemi Orientati ad Internet

Data Flow and
Parameter Bindings

In composite processes we can have different type/pattern
of data flow specifications

The input to one process component can be obtained as one of the
outputs of a preceding step.
The outputs of a composite process may be derived from outputs of
some of its components
…

The convention adopted is that the source of a datum is
identified when the user of the datum is declared
(consumer-pull convention)

If step 1 feeds step 3, this fact is specified in the description of step
3 rather than in the description of step 1 (the opposite is called
producer-push convention).

10

19P. Turci - Sistemi Orientati ad Internet

Data Flow and
Parameter Bindings

Ex.
I1 input of: { Composite Process CP }: with output O1

composed of
Step 1: Perform S1 ⇒ Step 2: Perform S2

where: S1 has inputs I11 and I12, and output O11
S2 has input I21 and output O21

Suppose that:
• Input I1 of the overall process CP is used as input I11 of S1, after adding 1.
• Input I12 of S1 is a constant, the string "Academic".
• Output O11 of S1 is used as input I21 of S2.
• The maximum of 0 and output O21 of S2, times π, is used as output O1 of CP.

Using a consumer-pull convention, the parameters I1, O11, and O21 are simply
declared, but for parameters I11, I21, and O1 bindings are provided:

I11(Step1) comes from incr(I1(CP))
I12(Step1) = "Academic"

I21(Step2) comes from O11(Step1)
O1(CP) comes from π × max 0, O21(Step2))

Each equalities is represented in OWL-S as a Binding, an abstract object with two
properties: toParam, the name of the parameter (e.g., I21(S2)), and
valueSpecifier, a description of its value.

20P. Turci - Sistemi Orientati ad Internet

Grounding a Service

Providing details on how to interoperate/access
the service

Protocol, message formats, serialization, …
A mapping from an abstract specification to a concrete
realization

• How the abstract inputs and outputs of an atomic process are to
be realized concretely as messages (which carry these inputs
and outputs)

WSDL as a possible grounding approach
Exploiting the extensibility elements of WSDL

11

21P. Turci - Sistemi Orientati ad Internet

OWL-S/WSDL Grounding

To construct an OWL-S/WSDL grounding one must first identify, in WSDL, the messages
and operations by which an atomic process may be accessed, and then specify
correspondences

22P. Turci - Sistemi Orientati ad Internet

OWL-S and UDDI

The main problem with UDDI is that it does not provide a capability
representation language such as the OWL-S Service Profile.

UDDI supports the location of information about a Web services, once it is known
which Web service to use
UDDI does not provide capability based search (impossible to locate a Web
service on the basis of what problems it solves)

But …
OWL-S and UDDI complement each other

Integrate OWL-S capability matching in the UDDI registry.
• Mapping of OWL-S Service Profiles into UDDI Web service representations.
• A set of specialized UDDI TModels to store OWL-S information that cannot be represented

in the standard UDDI
OWL-S/UDDI provides all the functionalities provided by UDDI using exactly the
same API; any UDDI can interact with it to retrieve information about available Web
services.
OWL-S/UDDI supports capability matching by taking advantage of OWL-S capability
representation.

12

23P. Turci - Sistemi Orientati ad Internet

OWL-S to UDDI Mapping

contactInformation
name
title
phone
fax
email
physicalAddress
webURL

serviceName

textDescription

hasProcess

serviceCategory

serviceParameter

qualityRating

input

output

precondition

effects

businessKey
name
description
categoryBag

hasProcess_TModel
serviceCategory _TModel
serviceParameter _TModel
qualityRating_TModel
input_TModel
output_TModel
precondition_TModel
effect_TModel

bindingTemplates

Business Entity

Name
Contact

person name
phone
email
address
discovery URLs

business Key

Business ServiceOWL-S Profile

