
On Combinatorial Generation of Prefix Normal
Words

Péter Burcsi1, Gabriele Fici2, Zsuzsanna Lipták3, Frank Ruskey4, and Joe
Sawada5

1 Eötvös Loránd University, Budapest, Hungary, bupe@compalg.inf.elte.hu
2 University of Palermo, Italy, gabriele.fici@math.unipa.it

3 University of Verona, Italy, zsuzsanna.liptak@univr.it
4 University of Victoria, Canada, ruskey@cs.uvic.ca

5 University of Guelph, Canada, jsawada@uoguelph.ca

Abstract. A prefix normal word is a binary word with the property that
no substring has more 1s than the prefix of the same length. This class of
words is important in the context of binary jumbled pattern matching.
In this paper we present an efficient algorithm for exhaustively listing
the prefix normal words with a fixed length. The algorithm is based on
the fact that the language of prefix normal words is a bubble language,
a class of binary languages with the property that, for any word w in
the language, exchanging the first occurrence of 01 by 10 in w results in
another word in the language. We prove that each prefix normal word is
produced in O(n) amortized time, and conjecture, based on experimental
evidence, that the true amortized running time is O(log(n)).

1 Introduction

A binary word of length n is prefix normal if for all 1 ≤ k ≤ n, no substring of
length k has more 1s than the prefix of length k. For example, 1001010 is not
prefix normal because the substring 101 has more 1s than the prefix 100. These
words were introduced in [8], where it was shown that each binary word w has
a canonical prefix normal form w′ of the same length.

The study of prefix normal words and prefix normal forms is motivated by
the string problem known as binary jumbled pattern matching (binary JPM).
In that problem, we are given a text of length n over a binary alphabet, and
two numbers x and y, and ask whether the text has a substring with exactly
x 1s and y 0s. While the online version can be solved with a simple sliding
window algorithm in O(n) time, the offline version, where many queries are
expected, has recently attracted much interest: here an index of size O(n) can be
generated which then allows answering queries in constant time [5]. However, the
best construction algorithms up to date have running time O(n2/ log n) [2, 13].
Several recent papers have yielded better results under specific assumptions,
such as word level parallelism or highly compressible strings [1, 6, 10, 14], or
for constructing an approximate index [7]; but the general case has not been
improved. It was demonstrated in [1,8] that prefix normal forms of the text can

be used to construct this index. JPM over an arbitrary alphabet has also been
studied [4,5,11]. Moreover, several variants of the original problem have recently
been introduced: approximate JPM [3], JPM in the streaming model [12], JPM
on trees and graphs [6, 9].

We note that the connection of the present paper to binary JPM is that
of supplying a new approach: We do not present an improvement of the JPM
problem, but we strongly believe that a better understanding of these words will
eventually lead to better solutions for JPM.

Bubble languages are an interesting new class of binary languages defined by
the following property: L is a bubble language if, for every word w ∈ L, replacing
the first occurrence of 01 (if any) by 10 results in another word in L [15,16,17].
A generic generation algorithm for bubble languages was given in [17], leading
to Gray codes for each of these languages. The algorithm’s efficiency depends
only on a language-dependent subroutine, which in the best case leads to CAT
(constant amortized time) generation algorithms. Many important languages are
bubble languages, including binary necklaces and Lyndon words, and k-ary Dyck
words.

In this paper, we show that prefix normal words form a bubble language and
present an efficient generation algorithm which runs in O(n) amortized time
per word, and which yields a Gray code for prefix normal words. Generating
these words naively takes O(2n · n2) time. Based on experimental evidence, we
conjecture that the running time of our algorithm is in fact Θ(log(n)) amortized.
We also give a new characterization of bubble languages in terms of a closure
property in the computation tree of a certain generation algorithm for all binary
words (Prop. 1). We prove new properties of prefix normal words and present
a linear time testing algorithm for words which have been obtained from prefix
normal words via a simple operation. We present several open problems in the
last section.

Most proofs have been omitted for lack of space and will be contained in the
full version of the paper.

2 Basics

A binary word (or string) w = w1 · · ·wn over Σ = {0, 1} is a finite sequence of
elements from Σ. Its length n is denoted by |w|. We denote by Σn the words
over Σ of length n, and by Σ∗ = ∪n≥0Σn the set of finite words over Σ. The
empty word is denoted by ε. Let w ∈ Σ∗. If w = uv for some u, v ∈ Σ∗, we say
that u is a prefix of w and v is a suffix of w. A substring of w is a prefix of a
suffix of w. A binary language is any subset L of Σ∗.

In the following, we will often write binary words w 6= 1n in a canonical form
w = 1s0tγ, where γ ∈ 1{0, 1}∗ ∪ {ε} and s ≥ 0, t ≥ 1. In other words, s is the
length of the first, possibly empty, 1-run of w, t the length of the first 0-run, and
γ the remaining, possibly empty, suffix. Note that this representation is unique.
We call 1s0t the critical prefix of w and cr(w) = s+ t the critical prefix length of
w. We denote by |w|c the number of occurrences in w of character c ∈ {0, 1}, and

by Bnd the set of all binary strings w of length n such that |w|1 = d (the density
of w is d). We denote by swap(w, i, j) the string obtained from w by exchanging
the characters in positions i and j.

2.1 Prefix Normal Words

Let w ∈ Σ∗. For i = 0, . . . , n, we set

– P (w, i) = |w1 · · ·wi|1, the number of 1s in the i-length prefix of w.
– F (w, i) = max{|u|1 : u is a substring of w and |u| = i}, the maximum num-

ber of 1s over all substrings of length i.

Definition 1. A binary word w is prefix normal if, for all 1 ≤ i ≤ |w|, F (w, i) =
P (w, i). In other words, a word is prefix normal if no substring contains more
1s than the prefix of the same length.

We denote by LPN the language of prefix normal words. In [8] it was shown
that for every word w there exists a unique word w′, called its prefix normal
form, or PNF(w), such that for all 1 ≤ i ≤ |w|, F (w, i) = F (w′, i), and w′

is prefix normal. Therefore, a prefix normal word is a word coinciding with its
prefix normal form. In the following table we list all prefix normal words of
length 5 followed by the set of binary words w such that PNF(w) = w′ (i.e., its
equivalence class):

11111 ⇒ {11111} 11000 ⇒ {11000, 011000, 00110, 00011}
11110 ⇒ {11110, 01111} 10101 ⇒ {10101}
11101 ⇒ {11101, 10111} 10100 ⇒ {10100, 01010, 00101}
11100 ⇒ {11100, 01110, 00111} 10010 ⇒ {10010, 01001}
11011 ⇒ {11011} 10001 ⇒ {10001}
11010 ⇒ {11010, 10110, 01101, 01011} 10000 ⇒ {10000, 01000, 00100, 00010, 00001}
11001 ⇒ {11001, 10011} 00000 ⇒ {00000}.

Several methods were presented in [8] for testing whether a word is prefix
normal; however, all ran in quadratic time in the length of the word. One open
problem given there was that of enumerating prefix normal words (counting).
The number of prefix normal words of length n can be computed by checking for
each binary word whether it is prefix normal, i.e. altogether in O(2n ·n2) time. In
this paper, we present an algorithm that is far superior in that it generates only
prefix normal words, rather than testing every binary word; it runs in O(n) time
per word; and it generates prefix normal words in cool-lex order, constituting a
Gray code (subsequent words differ by a constant number of swaps or flips).

2.2 Bubble Languages and Combinatorial Generation

Here we give a brief introduction to bubble languages, mostly summarising re-
sults from [15, 17]. We also give a new characterization of bubble languages in
terms of the computation tree of a generation algorithm (Prop. 1).

Algorithm Generate(s, t, γ)
(∗ current string resides in array w ∗)
1. if s > 0 and t > 0
2. then for i = 1, 2, . . . , t
3. do w ← swap(w, s, s+ i)
4. Generate(s− 1, i, 10t−iγ)
5. w ← swap(w, s, s+ i)
6. Visit()

Fig. 1. The Recursive Swap Generation Algorithm

Definition 2. A language L ⊆ {0, 1}∗ is called a bubble language if, for every
word w ∈ L, exchanging the first occurrence of 01 (if any) by 10 results in
another word in L.

For example, the languages of binary Lyndon words and necklaces are bubble
languages. A language L ⊆ {0, 1}n is a bubble language if and only if each of
its fixed-density subsets L ∩ Bnd is a bubble language [15]. This implies that for
generating a bubble language, it suffices to generate its fixed-density subsets.

Next we consider combinatorial generation of binary strings. Let w be a
binary string of length n. Let d be the number of 1s in w, and let i1 < i2 < . . . <
id denote the positions of the 1s in w. Clearly, we can obtain w from the word
1d0n−d with the following algorithm: first swap the last 1 with the 0 in position
id, then swap the (d − 1)st 1 with the 0 in position id−1 etc. Note that every
1 is moved at most once, and in particular, once the k’th 1 is moved into the
position ik, the suffix wik · · ·wn remains fixed for the rest of the algorithm.

These observations lead us to the following generation algorithm (Fig. 1),
which we will refer to as Recursive Swap Generation Algorithm (like Alg. 1
from [17], but without the language-specific subroutine). It generates recursively
all binary strings from Bnd with fixed suffix γ, where γ ∈ 1{0, 1}∗ ∪ {ε}, starting
from the string 1s0tγ. The call Generate(d, n− d, ε) generates all binary strings
of length n with density d.

The algorithm swaps the last 1 of the first 1-run with each of the 0s of the
first 0-run, thus generating a new string each, for which it makes a recursive
call. During the execution of the algorithm, the current string resides in a global
array w. In the subroutine Visit() we can print the contents of this array, or
increment a counter, or check some property of the current string. The main
point of Visit() is that it touches every object once.

Let Tn
d denote the recursive computation tree of Generate(d, n− d, ε). As an

example, Fig. 2 illustrates the computation tree T 7
4 (ignore for now the high-

lighted words, see Sec. 3). The depth of the tree equals d, the number of 1s,
while the maximum degree is n−d, the number of 0s. In general, for the subtree
rooted at v = 1s0tγ, we have depth s and maximum degree t; the number of
children of v is t, and v’s ith child is 1s−10i10t−iγ. Note that suffix γ remains
unchanged in the entire subtree, that the computation tree is isomorphic to the
computation tree of 1s0t, and that the critical prefix length strictly decreases
along any downward path in the tree.

1111000

1110100 1110010 1110001

1101001

1011001
0111001

1100101 1100011

1010101 1001101
0110101 0101101 0011101

1010011
0110011

1001011
0101011 0011011 0100111

1000111
0010111 0001111

1101100

1011100
0111100

1101010 1100110

1011010
0111010

1010110 1001110
0110110 0101110 0011110

Fig. 2. The computation tree Tn
d for n = 7, d = 4. Prefix normal words in bold.

The algorithm performs a post-order traversal of the tree, yielding an enu-
meration of the strings of Bnd in what is referred to as cool-lex order [15,17,19]. A
pre-order traversal of the same tree, which implies moving line 4 of the algorithm
before line 1, would yield an enumeration in co-lex order. A crucial property of
cool-lex order is that any two subsequent strings differ by at most two swaps
(transpositions), thus yielding a Gray code [15]. This can be seen in the compu-
tation tree Tn

d as follows. Note that in a post-order traversal of Tn
d , we have:

next(u) =

{
parent(u) if u is rightmost child

leftmost descendant of u’s right sibling otherwise.

Let u, u′ both be children of v. This means that for some s, t, i, j ∈ N and
γ ∈ 1{0, 1}∗∪{ε}, we have v = 1s0tγ, u = 1s−10i10t−iγ, and u′ = 1s−10j10t−jγ.
Let v′ be a descendant of v along the leftmost path, i.e. v′ = 1k01s−k0t−1γ for
some k. Then v = swap(u, s, s + i) (parent), u′ = swap(u, s + i, s + j) (sibling),
and v′ = swap(v, k, s+ 1) (descendant along leftmost path).

The following proposition states a crucial property of bubble languages with
respect to the Recursive Swap Generation Algorithm. The proof follows imme-
diately from the definition of bubble languages:

Proposition 1. A language L is a bubble language if and only if, for every
d = 0, . . . , n, its fixed-density subset L ∩ Bnd is closed w.r.t. parents and left
siblings in the computation tree Tn

d of the Recursive Swap Generation Algorithm.
In particular, if L ∩ Bn

d 6= ∅, then it forms a subtree rooted in 1d0n−d.

Using this property, the Recursive Swap Generation Algorithm can be used
to generate any fixed-density bubble language L, as long as we have a way of
deciding, for a node w = 1s0tγ, already known to be in L, which is its rightmost
child (if any) that is still in L. If such a child exists, and it is the kth child
u = 1s−10k10t−kγ, then the bubble property ensures that all children to its left
are also in L. Thus, line 2. in the algorithm can simply be replaced by “for
i = 1, . . . , k”. Moreover, this algorithm, which visits the words in the language
in cool-lex order, will yield a Gray code, since because of this closure property,
next(u) will again either be the parent, or a node on the leftmost path of the
right sibling, both of which are reachable within two swaps.

In [17], a generic generation algorithm was given which moves the job of
finding this rightmost child k into a subroutine Oracle(s, t, γ). If Oracle(s, t, γ)

runs in time O(k), then we have a CAT algorithm. In general, this may not be
possible, and a generic Oracle tests for each child from left to right whether it
is in the language. Because of the bubble property, after the first negative test,
we know that no more children will be in the language, and the running time
of the algorithm is amortized that of the membership tester. The crucial trick
is that we do not need a general membership tester, since all we want to know
is which of the children of a node already known to be in L are in L; moreover,
the membership tester is allowed to use other information, which it can build up
iteratively while examining earlier nodes.

3 Combinatorial Generation of Prefix Normal Words

In this section we prove that the set of prefix normal words LPN is a bubble
language. Then, by providing some properties regarding membership testing, we
can apply the cool-lex framework to generate all prefix normal words of a given
length n and density d in O(f(n))-amortized time, where f(n) is the average
critical prefix length of a prefix normal word of length n. (Proofs omitted.)

Lemma 1. The language LPN is a bubble language.

The computation tree in Fig. 2 highlights the subtree corresponding to LPN∩
B74. Since LPN is a bubble language, by Prop. 1 it is closed w.r.t. left siblings
and parents. However, we still have to find a way of identifying the rightmost
child of a node that is still in LPN.

The following lemma states that, given a prefix normal word w, in order
to decide whether one of its children in the computation tree is prefix normal,
it suffices to check the PN-property for one particular length only: the critical
prefix length of the child node. Moreover, this check can be done w.r.t. γ only.

Lemma 2. Let w ∈ LPN, with w = 1s0tγ, with γ ∈ 1{0, 1}∗ ∪ {ε}. Let γ =
γ0s+t, i.e. γ padded with 0s to length n. Let w′ = swap(w, s, s + i). Then w′ ∈
LPN, unless one of the following holds:

1. γ has a substring of length s+ i− 1 with at least s 1s, or
2. the string w′s+i · · ·w′2(s+i−1) has at least s 1s.

Moreover, the latter is the case if and only if P (γ, s + 2(i − 1) − t) ≥ s − 1
(where by convention, we regard a prefix of negative length as the empty word).

Corollary 1. Given w = 1s0tγ ∈ LPN. If we know F (γ, j) and P (γ, j) for all
j ≤ s+ t, then it can be decided in constant time whether w′ = swap(w, s, s+ i),
for i ≤ t, is prefix normal.

Lemma 3. Let γ′ = 10rγ, with γ ∈ 1{0, 1}∗∪{ε}. Then for all i = 0, 1, . . . , |γ′|,

F (γ′, i) =

{
max(P (γ′, i), F (γ, i)) for i ≤ |γ|
max(P (γ′, i), F (γ, |γ|)) for i > |γ|.

Corollary 2. The F -function of γ for node w = 1s0tγ, up to entry s + t, can
be computed in time O(s+ t) based on the F -function of w’s parent node.

By applying these results, the algorithm GeneratePN(d, n−d, ε) will generate
LPN ∩ Bnd in cool-lex Gray code order, see Fig. 3. Starting from the left child and
proceeding right (with respect to the computation tree T d

n), the algorithm will
make a recursive call finding a child which is not prefix normal. The membership
test is done in the subroutine isPN, which uses the conditions of Lemma 2. The
algorithm maintains an array F which contains the maximum number of 1s in
i-length substrings of γ (the F -function of γ), and a variable z. Before testing
the first child, in update(F, s+ t), it computes the current γ’s F -function based
on the parent’s (Corollary 2). Note that it is not necessary to compute all of the
F -function, since all nodes in the subtree have critical prefix length smaller than
s+ t, thus this update is done only up to length s+ t. After the recursive calls
to the children, the array is restored to its previous state in restore(F, s + t).
The variable z contains the number of 1s in the prefix of γ which is spanned by
the substring of case 2. of Lemma 2, for the first child. It is updated in constant
time after each successful call to isPN, to include the number of 1s in the two
following positions in γ.

Algorithm GeneratePN(s, t, γ)
(∗ w = 1s0tγ must be prefix normal ∗)
1. if s > 0 and t > 0
2. then update(F, s+ t)
3. z ← P (γ, s− t)
4. i← 1
5. while i ≤ t and isPN(swap(w, s, s+ i))
6. do w ← swap(w, s, s+ i)
7. GeneratePN(s− 1, i, 10t−iγ)
8. update(z)
9. i← i+ 1
10. w ← swap(w, s, s+ i)
11. restore(F, s+ t)
12. Visit()

Fig. 3. Algorithm generating all prefix normal words in the subtree rooted in 1s0tγ.

By concatenating the lists of prefix normal words with densities 0, 1, . . . , n,
we obtain an exhaustive listing of LPN ∩ Σn, see Fig. 4. As an example,
GeneratePN(5) produces the following list of prefix normal words: 00000, 10000,
10100, 10010, 10001, 11000, 11010, 10101, 11001, 11100, 11011, 11101, 11110, 11111.
Since the fixed-density listings are a cyclic Gray code (Theorem 3.1 from [15]), it
follows that this complete listing is also a Gray code. In fact, if the fixed-density
listings are listed by the odd densities (increasing), followed by the even densities
(decreasing), the resulting listing would be a cyclic Gray code.

Algorithm GeneratePN(n)
(∗ generates all prefix normal words of length n ∗)
1. for d = 0, 1, . . . , n
2. do initialize F of length n with all 0s
3. GeneratePN(d, n− d, ε)

Fig. 4. Algorithm generating all prefix normal words of length n.

Theorem 1. Algorithm GeneratePN(n) generates all prefix normal words of
length n in amortized O(f(n)) time per word, where f(n) is the average critical
prefix length of prefix normal words of length n. In particular, f(n) = O(n).

Proof. Since 1d0n−d is prefix normal for every d, we only need to show that the
correct subtrees of Tn

d are generated by the algorithm. By Lemma 2, only those
children will be generated that are prefix normal; on the other hand, by the
bubble property (Prop. 1), as soon as a child tests negative, no further children
will be prefix normal. The running time of the recursive call on w ∈ LPN consists
of (a) updating and restoring F (lines 2 and 9): the number of steps equals the
critical prefix length cr(w) of w; (b) computing z (line 3): again cr(w) many
steps; and (c) work within the while-loop (lines 5 to 8), which, for a word with k
prefix normal children, consists of k positive and 1 negative membership tests, of
k updates of z, and the recursive calls on the positive children. The membership
tests take constant time by Corollary 1, so does the update of z. Since w has
k prefix normal children, we charge the positive membership tests and the z-
updates to the children, and the negative test to the current word. So for one
word w ∈ LPN, we get 3 · cr(w) +O(1) + 2 ·O(1) = O(cr(w)) work. ut

Next we present experimental evidence for the following conjecture:

Conjecture 1. f(n) = Θ(log n).

4 Experimental results

In this section we present some theoretical and numerical results about the
number of prefix normal words and their structure. These have become available
thanks to the algorithm presented, which allowed us to generate LPN up to
length 50 on a home computer. Let pnw(n) := |LPN ∩Σn|. The following lemma
follows from the observation that 1dn/2ew is a prefix normal word of length n for
all words w of length bn/2c.

Lemma 4. The number of prefix normal words grows exponentially in n. We
have that pnw(n) ≥ 2bn/2c.

The first members of the sequence pnw(n) are listed in [18], and these values
suggest that the lower bound above is not sharp. We turn our attention to the
growth rate of pnw(n) as n increases. Note that 1 ≤ pnw(n)/pnw(n−1) ≤ 2. The
lower bound follows from the fact that all prefix normal words can be extended
by adding a 0 to the end, and the upper bound is implied by the prefix-closed

Fig. 5. The value of pnw(n)/pnw(n−1) (left), and of f(n) = E(cr(w)) for prefix normal
words w of length n, for n ≤ 50 (right, loglinear scale).

property of LPN. Fig. 5 (left) shows the growth ratio for small values of n. The
figure shows two interesting phenomena: the values seem to approach 2 slowly,
i.e., the number of prefix normal words almost doubles as we increase the length
by 1. Second, the values show on oscillation pattern between even and odd values.
We have so far been unable to establish these observations theoretically.

The structure of prefix normal words is relevant for the generation algorithm,
since the amortized running time of the algorithm is bounded from above by the
average value f(n) of the critical prefix length cr(w), taken over all prefix normal
words w. Note that this differs from the expected critical prefix length of the
prefix normal form of a uniformly random word, for which we have the following:

Lemma 5. Given a random word w of length n, let w′ = PNF(w). Let Z ′ be
the r.v. denoting the critical prefix length of w′. Then for the expected value of
Z ′ we have E(Z ′) = Θ(log n).

In contrast, the average value f(n) of critical prefix length for prefix normal
words is shown in Fig. 5 (right) for n ≤ 50. The linear alignment of the data
points together with Lemma 5 supports the conjecture that also f(n) = Θ(log n).

5 Conclusion and Open Problems

Based on the observation that prefix normal words form a bubble language, we
presented a Gray code for all prefix normal words of length n in O(n) amor-
tized time per word. Moreover, we conjecture that our algorithm runs in time
Θ(log(n)) per word. The number of words that are not prefix normal grows expo-
nentially and greatly dominates prefix normal words (e.g., pnw(30)/230 < 0.05),
so the gain of any algorithm whose running time is proportional to the output
size, over brute-force testing of all binary words, is considerable.

We gave a linear time testing algorithm for words which are derived from
a word w already known to be prefix normal. We pose as an open problem to
find a strongly subquadratic time testing algorithm for arbitrary words. Another
open problem is the fast computation of prefix normal forms, which would lead
immediately to an improvement for indexed binary jumbled pattern matching.

Acknowledgements: We thank two anonymous referees whose suggestions
significantly improved the presentation of the paper.

References

1. G. Badkobeh, G. Fici, S. Kroon, and Zs. Lipták. Binary jumbled string matching
for highly run-length compressible texts. Inf. Process. Lett., 113(17):604–608, 2013.

2. P. Burcsi, F. Cicalese, G. Fici, and Zs. Lipták. On Table Arrangements, Scrabble
Freaks, and Jumbled Pattern Matching. In Proc. of the 5th Intern. Conference on
Fun with Algorithms (FUN 2010), volume 6099 of LNCS, pages 89–101, 2010.

3. P. Burcsi, F. Cicalese, G. Fici, and Zs. Lipták. On approximate jumbled pattern
matching in strings. Theory Comput. Syst., 50(1):35–51, 2012.

4. A. Butman, R. Eres, and G. M. Landau. Scaled and permuted string matching.
Inf. Process. Lett., 92(6):293–297, 2004.

5. F. Cicalese, G. Fici, and Zs. Lipták. Searching for jumbled patterns in strings.
In Proc. of the Prague Stringology Conference 2009 (PSC 2009), pages 105–117.
Czech Technical University in Prague, 2009.

6. F. Cicalese, T. Gagie, E. Giaquinta, E. S. Laber, Zs. Lipták, R. Rizzi, and A. I.
Tomescu. Indexes for jumbled pattern matching in strings, trees and graphs. In
Proc. of the 20th String Processing and Information Retrieval Symposium (SPIRE
2013), volume 8214 of LNCS, pages 56–63, 2013.

7. F. Cicalese, E. S. Laber, O. Weimann, and R. Yuster. Near linear time construction
of an approximate index for all maximum consecutive sub-sums of a sequence. In
Proc. 23rd Annual Symposium on Combinatorial Pattern Matching (CPM 2012),
volume 7354 of LNCS, pages 149–158, 2012.

8. G. Fici and Zs. Lipták. On prefix normal words. In Proc. of the 15th Intern. Conf.
on Developments in Language Theory (DLT 2011), volume 6795 of LNCS, pages
228–238. Springer, 2011.

9. T. Gagie, D. Hermelin, G. M. Landau, and O. Weimann. Binary jumbled pattern
matching on trees and tree-like structures. In Proc. of the 21st Annual European
Symposium on Algorithm (ESA 2013), pages 517–528, 2013.

10. E. Giaquinta and Sz. Grabowski. New algorithms for binary jumbled pattern
matching. Inf. Process. Lett., 113(14-16):538–542, 2013.

11. T. Kociumaka, J. Radoszewski, and W. Rytter. Efficient indexes for jumbled pat-
tern matching with constant-sized alphabet. In Proc. of the 21st Annual European
Symposium on Algorithm (ESA 2013), pages 625–636, 2013.

12. L.-K. Lee, M. Lewenstein, and Q. Zhang. Parikh matching in the streaming model.
In Proc. of 19th International Symposium on String Processing and Information
Retrieval, SPIRE 2012, volume 7608 of Lecture Notes in Computer Science, pages
336–341. Springer, 2012.

13. T. M. Moosa and M. S. Rahman. Indexing permutations for binary strings. Inf.
Process. Lett., 110:795–798, 2010.

14. T. M. Moosa and M. S. Rahman. Sub-quadratic time and linear space data struc-
tures for permutation matching in binary strings. J. Discrete Alg., 10:5–9, 2012.

15. F. Ruskey, J. Sawada, and A. Williams. Binary bubble languages and cool-lex
order. J. Comb. Theory, Ser. A, 119(1):155–169, 2012.

16. F. Ruskey, J. Sawada, and A. Williams. De Bruijn sequences for fixed-weight
binary strings. SIAM Journal of Discrete Mathematics, 26(2):605–517, 2012.

17. J. Sawada and A. Williams. Efficient oracles for generating binary bubble lan-
guages. Electr. J. Comb., 19(1):P42, 2012.

18. N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences. Available elec-
tronically at http://oeis.org. Sequence A194850.

19. A. M. Williams. Shift Gray Codes. PhD thesis, Univ. of Victoria, Canada, 2009.

