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Abstract

We explicitly construct the first universal cycles for strings with fixed-content—also known as strings with the
same Parikh vector, or multiset permutations—using their shorthand encoding, which omits the final symbol
as it is redundant. For example, 112312131132 is a universal cycle for content S = {1, 1, 2, 3}. Its first three
windows—112, 123, and 231—are the shorthand representatives of 1123, 1231, and 2311, respectively.

Our first construction V(S) applies the classic cycle-joining approach on the first-inversion tree of necklace
cycles with content S. For example, when S = {1, 1, 2, 3} the root is the necklace cycle 1123 and its children
are 1213 and 1132 by swapping their first (i.e., leftmost) inversions. From this construction, we derive a
successor rule to generate successive symbols of V(S) in O(n)-time, where n = |S| is the cardinality of S.

Our second construction U(S) concatenates fixed-content necklaces together in a cool-lex order using the
necklace-prefix algorithm. For example, U(S) = 1123 · 1213 · 1132 for S = {1, 1, 2, 3}. Central to this
construction is the first shift Gray code for fixed-content necklaces, and a new efficient algorithm for generating
these strings. From this construction, we can generate successive symbols of U(S) in O(1)-amortized time
while using O(n)-space. We complete our investigation with a pleasant surprise: V(S) = U(S).

Our new results simultaneously generalize universal cycle constructions of shorthand permutations by Ruskey,
Holroyd, and Williams [Algorithmica 64 (2012)] and shorthand fixed-weight binary strings by Ruskey, Sawada,
and Williams [SIAM J. on Disc. Math. 26 (2012)]. They also provide a prefix-shift Gray code for multiset
permutations in which the first symbol moves into the last or second-last position, which tightens the previous
prefix-shift Gray code by Williams [Proc. Annu. ACM-SIAM Symp. Discrete Algorithms (2009)]. Finally, we
draw parallels between our constructions and the well-known granddaddy de Bruijn sequence for binary strings.

Funding Joe Sawada: Natural Sciences and Engineering Research Council of Canada (NSERC) grant RGPIN
400673-2012

1 Introduction

A universal cycle for a set E of length n strings2 is a circular string of length |E| where each string
in E, or an encoding of it, appears exactly once as a substring [6]. Universal cycles generalize de
Bruijn sequences, where E is the set of k-ary strings of length n [9, 51] (and see [10]). For example,
00010111 is a de Bruijn sequence for k = 2 and n = 3 since its substrings — 000, 001, 010, 101,
011, 111, 110, 100 — are precisely the kn = 23 = 8 binary strings of length 3. When visualizing de
Bruijn sequences and universal cycles it is common to picture a window moving through the circular
string, where the width of the window is equal to the length of the encodings of the objects in E. See
[18, 19] and a new website [40] for recent surveys on the rich history of these objects.

This paper constructs the first fixed-content universal cycle. More precisely, we construct two different

1 The corresponding author is Aaron Williams aaron.williams@williams.edu.
2 Universal cycles can also be defined for objects other than strings (e.g., graphs [3]).
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universal cycles with content S: V(S) and U(S). Then we show that the constructions are equivalent
(i.e., V(S) = U(S)), and develop efficient algorithms for generating our universal cycle.

Throughout the article, S is a multiset of symbols referred to as the content. By convention, S has k
distinct symbols 1, 2, . . . , k, and its cardinality (including repetitions) is n. For example, k = 3 and
n = 4 when S = {1, 1, 2, 3}. The symbol · denotes concatenation and is optional, so a · b = ab.

1.1 Fixed-Content Universal Cycles

De Bruijn sequences are examples of universal cycles that store the contents of E without any
encoding, and additional examples exist for many other interesting sets [6, 11, 25, 26, 30, 31, 47]. But
this is not possible for many other natural sets, including the permutations of {1, 2, . . . , n} in one-line
notation, and the n-bit binary strings with weight w (i.e., w copies of 1). To illustrate this point, if the
permutations of n = 3 (i.e., E = {123, 132, 213, 231, 312, 321}) had a universal cycle, then 123abc
would be such a cycle (as any cycle could be rotated to have 123 as its first substring). Since 23a is a
window of the universal cycle, it must be that 23a ∈ E, and hence a = 1. Similarly, b = 2 and c = 3.
But 123abc = 123123 is not a universal cycle for E. Likewise, there is no universal cycle for the
binary strings of length n = 4 and weight w = 2 (i.e., S = {0011, 0101, 0110, 1001, 1010, 1100}).

Fortunately, permutations and fixed-weight binary strings have a simple alternate encoding: The
shorthand representation of a string omits its final symbol. This is a suitable choice since permutations
and fixed-weight strings are determined by their length n−1 prefixes, as the final symbol is redundant.

Example 1 Consider the set E1 = {12, 13, 21, 23, 31, 32} of shorthand permutations for n = 3.
Observe that 231321 is a universal cycle for E1.

Example 2 Consider the set E2 = {0001, 0010, 0100, 1000, 0011, 0110, 0101, 1001, 1010,
1100} of shorthand fixed-weight strings of length n = 5 and weight w = 2. Observe that
1010011000 is a universal cycle for E2.

In this paper, we consider the natural generalization of permutations and fixed-weight binary strings,
namely strings with fixed-content. These objects are also known strings with the same Parikh vector
and as multiset permutations. Owing to the latter term, we let P erm(S) denote the strings with
content S. For example, the set of strings with content S = {1, 1, 2, 3} is

P erm(S) = {1123, 1132, 1213, 1231, 1312, 1321, 2113, 2131, 2311, 3112, 3121, 3211}.

We let Short(S) denote the shorthand representation of strings with content S. For example, the set
of shorthand representations of strings with content S = {1, 1, 2, 3} is

Short(S) = {112, 113, 121, 123, 131, 132, 211, 213, 231, 311, 312, 321}.

As with permutations and fixed-weight binary strings, the final symbol of a string with content S is
redundant, so the shorthand encoding can be used in a universal cycle without any loss of information.
Such a cycle can be referred to as universal cycle of Short(S), or as a shorthand universal cycle of
P erm(S), or simply as fixed-content universal cycle over S. Regardless of the name, the windows
provide the strings in Short(S), which provide a simple encoding of the strings in P erm(S).
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Example 3 Observe that 112312131132 is a universal cycle of Short(S) with S = {1, 1, 2, 3}.
It can also be described as a shorthand universal cycle for P erm(S), or as a fixed-content
universal cycle over S.

1.1.1 First Symbol or Missing Symbol

If β = b1 · b2 · · · bn−1 ∈ Short(S), then b1 is β’s first symbol. The missing symbol from β is bn for
the unique bn with β · bn ∈ P erm(S). We also use z = bn for the missing symbol to emphasize
that it is not included in β. For example, if S = {1, 1, 2, 3} and β = 213 ∈ Short(S), then β’s
first symbol is b1 = 2 and its missing symbol is z = b4 = 1. When viewed symbol-by-symbol,
fixed-content universal cycles repeatedly select between the first symbol and the missing symbol of
the current window, as formalized by the following lemma.

I Lemma 1. LetW be a fixed-content universal cycle over S and β = b1 ·b2 · · · bn−1 ∈ Short(S)
with missing symbol z. The window β appears exactly once inW and it is immediately followed by
its first symbol b1 or its missing symbol z. Equivalently, if β′ is the window following β inW , then

Case 0: β′ = b2 · · · bn−1 · z or
Case 1: β′ = b2 · · · bn−1 · b1.

Proof. Since z is missing from β ∈ Short(S), we have β · z = b1 · b2 · · · bn−1 · z ∈ P erm(S)
and S = {b1, b2, . . . , bn−1, z}. Since β′ follows β, we have β′ = b2 · · · bn−1 · x ∈ Short(S) for
some symbol x ∈ S. Thus, the claim holds by the following (where − denotes multiset difference),

x ∈ S − {b2, . . . , bn−1} = {b1, b2, . . . , bn−1, z} − {b2, . . . , bn−1} = {b1, z}. J

It is important to note that a window’s first symbol and missing symbol can be equal. For example, if
S = {1, 1, 2, 3} then b1 = z = 1 for 123 ∈ Short(S) and 132 ∈ Short(S). In these situations,
the two cases of Lemma 1 are identical, and there is only one choice for next symbol and window.

1.2 Characterizations using Graphs

Fixed-content universal cycles can be characterized using several different directed graphs with
labeled edges. Each characterization provides its own insights into this new type of universal cycles.

1.2.1 Transition Graphs: Hamilton Cycles and Binary Representation

The graph T (S) has vertex set Short(S) and edges uv for u = b1 · b2 · · · bn−1 ∈ Short(S) and
v = b2 · b3 · · · bn with label bn. In other words, the vertices are windows, and edges transition from
window to window by shifting in their label. This type of graph is often known as a transition graph
within the universal cycle literature, and it leads directly to the characterization in Remark 2, which
views universal cycles and Hamilton cycles as cyclic objects (i.e., they are unchanged by rotation).

I Remark 2. Universal cycles with fixed-content S are in one-to-one correspondence with the
concatenation of the edge labels along the Hamilton cycles in T (S).

For our purposes, it is helpful to consider an augmented transition graph T ′(S). This graph has vertex
set Short(S) and its edge set is defined based on the first and missing symbols from Lemma 1. That
is, if u = b1 · b2 · · · bn−1 ∈ Short(S) is missing z, then there are two edges of the form uv where
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(a) The transition graph T (S) with a Hamilton cycle.
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(b) The augmented transition graph T ′(S).

Figure 1 Transition graphs for S = {1, 1, 2, 3}. Our universal cycle 112312131132 follows the Hamilton
cycle from vertex 132 in (a). It has binary representation 001000110001 starting from vertrex 112 in (b), where
thick straight and thin curved edges are of type 0 and 1, respectively. Its weight of 4 is minimum possible for S.

Edge 0: v = b2 · · · bn−1 · z with label z, and
Edge 1: v = b2 · · · bn−1 · b1 with label b1.

This definition ensures that each vertex has out-degree two. Furthermore, each vertex has in-degree
two. This is because the edges partition into two vertex-disjoint directed cycle covers: one includes
the 0 edges, and the other includes the 1 edges. Figure 1 shows T (S) and T ′(S) for S = {1, 1, 2, 3}.

The augmented transition graph visualizes a simple consequence of Lemma 1: fixed-content universal
cycles can be represented in binary. More precisely, a binary representation is an initial window in
Short(S) and a binary string of length |Short(S)| whose bits follow the cases of Lemma 1 or
the edge types of T ′(S). If we use the convention that the initial window is the lexicographically
smallest string in Short(S) (e.g., 112 for S = {1, 1, 2, 3}), then the binary string suffices by itself.
A fixed-content universal cycle has weight w if it has a binary representation of weight w, and it has
minimum-weight if it has a binary representation of minimum possible weight for its content S.

1.2.2 Arc Digraphs: Eulerian Circuits and Universal Cycle Existence

To prove that universal cycles exist we can model the windows as edges rather than vertices. Let the
vertices of A(S) be the (n− 2)-permutations of S (i.e., two symbols are absent from S) with an edge
from u = b1 · b2 · · · bn−2 to v = b2b3 · · · bn−1 with label bn−1 if b1 · b2 · · · bn−1 ∈ Short(S). This
type of graph is known as an arc digraph within the literature, and it leads to a second characterization.

I Remark 3. Universal cycles with fixed-content S are in one-to-one correspondence with the
concatenation of the edge labels along the Eulerian circuits in A(S).

Figure 2 shows A(S) for S = {1, 1, 2, 3}. The fact that A(S) is always Eulerian is a consequence of
our new results; it also provides a nice exercise for active readers. Remark 3 was previously proven
for permutations (i.e., k = n) by Jackson [27] and fixed-weight binary strings (i.e., k = 2) [35].

1.2.3 Rotator Graphs: Shift Gray Codes for (Multiset) Permutations

Recall that the vertex set of T ′(S) is Short(S). By replacing each vertex with its corresponding
member of P erm(S) we obtain our final graph R(S). Figure 3 illustrates R(S) for S = {1, 1, 2, 3}.

The edges of R(S) can be understood as applying an operation known as a shift. Given string
α = b1 · b2 · · · bn, let shiftα(i, j) (or simply shift(i, j)) be the result of moving bi into the jth position.
In the special case of i = 1 (i.e., the first symbol is moved to the right) we let σj denote shift(i, j). If
u = b1 · b2 · · · bn−1bn ∈ P erm(S), then R(S) contains two edges of the form uv where
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Figure 2 The arc digraph A(S) for S = {1, 1, 2, 3}. Our shorthand universal cycle 112312131132 starts
at vertex 32 and then travels to 21 and 11.

Edge 0: v = shiftu(1, n) = b2 · · · bn−1 · bn · b1 with label σn, and

Edge 1: v = shiftu(1, n− 1) = b2 · · · bn−1 · b1 · bn with label σn−1.

In other words, an edge shifts the first symbol into the last or second-last position. Thus, Hamilton
cycles ofR(S) provide a shift Gray code of P erm(S), meaning that each succesive string is obtained
by a shift. The Gray codes are also cyclic since a shift transforms the last string into the first string.

I Remark 4. Universal cycles with fixed-content S are in one-to-one correspondence with the Hamil-
ton cycles of R(S). In turn, the Hamilton cycles are in one-to-one correspondence with cyclic Gray
codes of P erm(S) in which each α ∈ P erm(S) is followed by shiftα(1, n) or shiftα(1, n−1).
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(a) The graph R(S) for S = {1, 1, 2, 3}.
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Figure 3 The graph R(S) for S = {1, 1, 2, 3} in (a). The Hamilton cycle in R(S) starting from vertex
1321 corresponds to our universal cycle V(S) = U(S) = 112312131132 in (b).

Our main results contribute to the literature on shift Gray codes for (multiset) permutations due to
Remark 4. Corbett provided the first such result with a Hamilton cycle in the rotator graph whose
vertices are permutations (i.e., P erm(S) with n = k) and whose edges apply σi for all 2 ≤ i ≤ n
[8]. The rotator graph is used as a multiprocessor network topology and Corbett’s cycle can be
generated by the greedy Gray code algorithm [54]. It is possible to create a Hamilton cycle using only
the following three operations [49]: τ = σ2; σ3; σ = σn. If edges in the opposite direction are also
allowed, then σ, σ−1, and τ are sufficient [7]. When n is odd, σ and τ allow for Hamilton paths [43]
and cycles [44], but only Hamilton paths are possible when n is even [33, 50]. When S is a multiset
rather than a set, then Gray codes do not exist using σ, σ−1, and τ when k = 2 [5]. However, a cyclic
Gray code known as cool-lex order had been shown to exist using all σi [52]. Cool-lex order was
first discovered for fixed-weight binary strings (i.e., P erm(S) with k = 2) which are also known as
combinations, and its name comes from its similarity to co-lexicographic order [36].
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1.3 Necklaces and Necklace Cycles

A necklace is a lexicographically smallest string in an equivalence class of strings under rotation.
Let N(S) be the set of necklaces with content S. For example, N(S) = {1123, 1132, 1213} for
S = {1, 1, 2, 3}. A necklace cycle is a cyclic order of length n strings obtained by repeatedly applying
shift(1, n). In general, the length of a necklace cycle divides n. For example, the necklace cycle
containing 132132 has length 3. A necklace cycle contains one necklace, which is its representative.
For example, the thick straight edges in Figure 3a create necklace cycles with representatives 1123,
1213, and 1132 from left-to-right. The aperiodic prefix of a string is its shortest prefix that can be
repeated to create it. For example, the aperiodic prefix of 132132 is 132.

1.4 New Results

It is important to note that the graph-based models in Figure 1.2 require exponential space with
respect to n, and so they do not lead to efficient algorithms for generating a single universal cycle.
With this point in mind, we now summarize our main results below.

1. The construction of a minimum-weight universal cycle V(S) using cycle-joining in Section 2.
More specifically, necklace cycles are joined together according to a first-inversion tree.

A successor rule that generates successive symbols of V(S) in O(n)-time.
2. The construction of universal cycle U(S) using a necklace concatenation approach in Section 4.

More specifically, we concatenate N(S) in reverse cool-lex order (using aperiodic prefixes).
A new shift Gray code for fixed-content necklaces with an O(n)-amortized time algorithm.
The reversal of U(S) can be generated in O(1)-amortized time per symbol using O(n) space.

3. A proof that the two constructions are equivalent in Section 5. That is, V(S) = U(S).

Our constructions are implemented in C and are provided in the Appendix. The output can be viewed
at debruijnsequence.org [40]. Section 6 concludes with future work and open problems.

Prior to this article, universal cycles for shorthand permutations (where n = k) and shorthand
fixed-weight binary strings (where k = 2) were constructed and efficiently generated under slightly
different names (see [37, 24] and [35]). Note that these previous works use lexicographically largest
representatives for necklaces. Our use of lexicographically smallest representatives is more standard,
but it requires an adjustment to the original definition of cool-lex order in Section 4. A preliminary
version of this paper presented our necklace concatenation construction [45].

1.5 Granddaddy and Cool-Daddy

Besides our main results, we wish to suggest to the reader that our fixed-weight universal cycle is both
natural and fundamental. As a point of comparison, we consider the most famous de Bruijn sequence.

The granddaddy de Bruijn sequence Gk(n) (as coined by Knuth [29]) is the lexicographically smallest
de Bruijn sequence for k-ary strings of length n. For example, G2(4) = 0000100110101111 is the
granddaddy for n = 4 and k = 2. The granddaddy can be constructed in several elegant ways.

The granddaddy is constructed by a simple prefer-smallest greedy algorithm (see [32]).
The granddaddy is constructed by a simple cycle joining approach. More specifically, necklace
cycles are joined together according to a last non-k tree (see [18, 19]); here we use the term last-0
tree when referring to the binary case (i.e., k = 2).
The granddaddy is constructed by a simple necklace concatenation approach. More specifically,
necklaces are concatenated in lexicographic order (using aperiodic prefixes) (see [15, 16]).

debruijnsequence.org
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To our knowledge, no simple greedy algorithm constructs our fixed-content universal cycle. However,
our contributions match the latter two bullets quite closely, especially in the binary case.

In terms of cycle joining, when constructing the granddaddy G2(6), the necklace cycle represented
by 001011 is joined to the necklace cycle represented by 001111 by complementing the last zero (as
underlined). Similarly, when constructing our fixed-content universal cycle with S = {1, 1, 2, 2, 3, 3},
the necklace cycle represented by 123123 is joined to the necklace cycle represented by 121323 by
swapping the first inversion (as underlined).

In terms of necklace concatenation, when n = 4 and k = 3, the granddaddy G3(4) is equal to

0·000001·000011·000101·000111·001·001011·001101·001111·01·010111·011·011111·1 (1)

owing to the lexicographic order of binary necklaces of length 6 (and their aperiodic prefixes).
Similarly, our fixed-content universal cycle U(S) with content S = {1, 1, 2, 2, 3, 3} is equal to

112233·122313·123213·122133·121233·112332·123132·132·121332·113322·131322·113232·112323·123·121323·113223 (2)

owing to the reverse cool-lex order of necklaces in N(S) (and their aperiodic prefixes).

These comparisons with the binary granddaddy are summarized in Figure 4. Due to the similarities,
we refer to our fixed-content universal cycle as the cool-daddy.

Greedy Cycle-Joining Necklace Concatenation
Binary Granddaddy prefer-smallest last-0 lexicographic order

Cool-Daddy N/A first-inversion reverse cool-lex order

Figure 4 Comparing the binary granddaddy de Bruijn sequence G2(n) for n-bit binary strings, and our
fixed-content universal cycle U(S) = V(S) with content S. See Figure 5 and (1)–(2) for specific examples.

2 Cycle Joining feat. the First-Inversion Spanning Tree

We begin this section by outlining the classic cycle-joining approach used to construct de Bruijn
sequences and universal cycles. We then apply the approach to derive a simple successor rule for a
fixed-content universal cycle. The rule is based on a string’s “first-inversion”, where an inversion in a
string a1 · · · an is a consecutive pair ai, ai+1 where ai > ai+1.

2.1 Cycle Joining

Call a string in Short(S) a state. A function f : Short(S) → S is said to be a feedback
function. Given such a feedback function f , let function F : Short(S)→ Short(S) map a state
β = b1b2 · · · bn−1 to state b2 · · · bn−1f(β). A cycle is a sequence of distinct states β1, β2, . . . , βj
such that F (βi) = βi+1 for 1 ≤ i < j and F (βj) = β1. Each cycle can be represented by a single
string c1 · · · cj where ci corresponds to the first symbol of βi.

Example 4 Consider content S = {1, 1, 2, 2, 3, 3}. Let f(β) = z, recalling βz has content S.
That is, β ∈ Short(S) and z is its missing symbol with respect to S. Then the cycles

12132, 21323, 13231, 32312, 23121, 31213 and 12312, 23123, 31231

can be represented by the strings C1 = 121323 and C2 = 123, respectively.
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Note that C1 is a universal cycle for {12132, 21323, 13231, 32312, 23121, 31213} and C2 is a
universal cycle for {12312, 23123, 31231}.

If β1 = xb2 · · · bn−1 and β2 = yb2 · · · bn−1 are both states where x 6= y then we say β1 and β2 form
a conjugate pair. For each state β there is at most one other state that forms a conjugate pair with
β because of the content restrictions. If C1 and C2 are disjoint cycles where C1 contains one state
from a conjugate pair and C2 contains the other, then the two cycles can be “joined” together to form
a single cycle by swapping the successors of the conjugate states. This “cycle-joining” process is
well known, and formally stated in [13, Thm. 1] and [46, Lemma 3]. The process is a special case of
Hierholzer’s cycle joining algorithm for producing Euler cycles [23].

Example 5 Consider the cyclesC1 andC2 from Example 4 and the conjugate pair 32312, 12312;
the state 32312 is in C1 and the state 12312 is in C2. By swapping the successors of these states
we obtain a single cycle for the union of the states from C1 and C2:

12132, 21323, 13231, 32312, 23123, 31231, 12312,23121, 31213

corresponding to C = 121323123.

This cycle-joining process has been formalized in [18, 19] to produce a number of simple successor
rules for de Bruijn sequences and universal cycles. Next we apply the cycle-joining approach to
construct a universal cycle for Short(S).

2.2 The First-Inversion Tree

Let β = b1b2 · · · bn−1 ∈ Short(S), where z denotes the missing symbol, and consider the following
feedback function

f(β) = z. (3)

This function can be used to partition Short(S) into necklace cycles whose representatives are
in N(S). More specifically, each b1b2 · · · bn−1 ∈ Short(S) with missing symbol z is followed
by b2 · · · bn−1z ∈ Short(S) in a cycle. For example, the cycle associated with 112233 ∈ N(S)
includes the strings 11223, 12233, 22331, 23311, 33112, 31122 ∈ Short(S).

Let tail(S) denote the unique non-decreasing string composed of all the elements of S; it is a
necklace. The cycles can be joined together into a spanning tree rooted at tail(S) where the parent
of every necklace α, not including tail(S), is obtained by transposing the two symbols in the “first
inversion” of α. We call the resulting tree the first-inversion tree3. For example, see the first-inversion
tree in Figure 5b for content S = {1, 1, 2, 2, 3, 3}. It is easy to see that such a mapping always
induces a tree since the parent of each necklace α is lexicographically smaller than α. In fact, the
paths from each node to the root resembles insertion sort (or more accurately, gnome sort [39]).

3 This generalizes the decreasing spanning tree presented in [24], but with the relative values of the symbols inverted.
4 The non-binary grand-daddy sequences (i.e., with k > 2) are similar, but somewhat more complicated. Specifically,

the necklace cycles do not group into conjugate pairs, but rather groups of size k. Thus, the actual cycle joining is
more complicated, even though a similar tree-like structure is present.
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(a) The last-0 tree for binary strings of length n = 6
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Figure 5 Necklace cycles are joined into tree-like structures in both the (a) (binary) grand-daddy de Bruijn
sequence Gk(n)4, and (b) our cool-daddy universal cycle V(S). In both figures, the underlines illustrate the
parent rule, and each necklace cycle is denoted by the aperiodic prefix of its representative. For example, in (a)
the necklace cycle containing 010101 is denoted 01, and in (b) the necklace cycle 123123 is denoted 123.

2.3 A Simple Successor Rule

When the symbols involved in the first inversion of a necklace are rotated to the front of both the
necklace and its parent, then the length n− 1 suffixes correspond to conjugate pairs whose successors
are swapped during the cycle joining process. For example, given the necklace 113322 and its parent
113232, the conjugate pairs are 22113 and 32113. Let X(S) denote the set of all 2|N(S)− 1| states
from such conjugate pairs. Repeated application of the cycle-joining approach yields a universal
cycle for Short(S) with the following successor-rule:

g(β) =
{
b1 if β ∈X(S)
z otherwise.

Let V(S) denote the universal cycle for Short(S) obtained by starting with tail(S) and repeatedly
applying g on the last n− 1 symbols. In other words, g(β) is the symbol following β in the universal
cycle V(S). For example, V({1, 1, 2, 2, 3, 3}) =

112233122313123213122133121233112332123132132121332113322131322113232112323123121323113223.

Testing whether or not a state β is in X(S) can be done in O(n) time as follows. Let h(β) be the
rotation of β that takes the longest non-decreasing suffix of b3 · · · bn and rotates it to the front of β.
For example h(123321233) = 123312332.

I Lemma 5. Let β = b1b2 · · · bn−1 be a state with missing symbol z. Then β ∈X(S) if and only if

b1 > z and h(b1zb2 · · · bn−1) is a necklace and b1 ≥ bn−1, or
z > b1 and h(zb1b2 · · · bn−1) is a necklace and z ≥ bn−1.

Proof. Let x, y denote the elements z and b1 listed in decreasing order. For β to be in X(S), the
conjugate pair zb1b2 · · · bn−1 and b1zb2 · · · bn−1 must satisfy the properties that x 6= y and xy is
the first inversion in the necklace representative for xyb2 · · · bn−1. Since xy is the first inversion,
h(xyb2 · · · bn−1) must be a necklace and x ≥ bn−1. J
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Together, Lemma 5 and Lemma 9 (in Section 4.2) imply the following result.

I Corollary 6. If β = b1 · · · bn−1 is in X(S) then both h(zβ) and h(b1zb2 · · · bn−1) are necklaces.

Example 6 If β = b1 · · · b5 = 32113 for content S = {1, 1, 2, 2, 3, 3}, then z = 2 and b1 = 3.
Since b1 > z, h(322113) = 113322 is a necklace, and b1 ≥ b5, the state belongs to X(S).

Based on Lemma 5, the following is a successor rule to construct V(S). An illustration is in Figure 6.

Successor rule for fixed-content universal cycle V(S)

Let β = b1b2 · · · bn−1 be a state where z is the missing symbol. Then

g(β) =


b1 if z > b1 and h(zb1b2 · · · bn−1) is a necklace and z ≥ bn−1 (4a)

b1 if b1 > z and h(b1zb2 · · · bn−1) is a necklace and b1 ≥ bn−1 (4b)

z otherwise. (4c)

Since testing if a string is a necklace can be done in O(n) time [2] we obtain the following theorem.
The minimum-weight property is a direct consequence of using the feedback function in (3) since the
spanning tree joins the necklace cycles (which use weight 0 edges) using as few weight 1 edges as
possible.

I Theorem 7. V(S) is a minimum-weight universal cycle for Short(S) that can be constructed
in O(n) time per symbol.

3 A Shift Gray Code for Multiset Permutations

An immediate consequence of the successor rule described in the previous section is a shift Gray
code for P erm(S) whose successor-rule, defined as follows, shifts the first symbol to either the nth
or (n−1)st position in the string.

Successor rule for P erm(S) using two operations

Let α = a1a2 · · · an ∈ P erm(S). Then

nextMultiPerm(α) =
{ shiftα(1, n−1) if g(a1 · · · an−1) = a1, (5a)

shiftα(1, n) if g(a1 · · · an−1) = an. (5b)

I Theorem 8. Starting with any initial string α in P erm(S) and repeatedly applying the function
nextMultiPerm(α) a total of |P erm(S)−1| times produces a cyclic shift Gray code for P erm(S).
Moreover, the Gray code can be generated in O(n)-time per string.

Example 7 Let S = {1, 1, 2, 3} and consider V(S) = 112312131132. It corresponds to the
following shift Gray code for P erm(S), with the index where the first symbol is shifted to obtain
the next string in the listing given in the final column:
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β = b1b2b3b4b5 case N(S)
11223 (4c)
12233 (4c)
22331 (4b) 121233
23312 (4b) 122133
33122 (4b) 122313
31223 (4c)
12231 (4c)
22313 (4c)
23131 (4c)
31312 (4b) 123213
13123 (4c)
31232 (4c)
12321 (4c)
23213 (4c)
32131 (4c)
21312 (4a) 123213
13122 (4a) 122313
31221 (4c)
12213 (4c)
22133 (4c)
21331 (4c)
13312 (4a) 122133
33121 (4c)
31212 (4c)
12123 (4c)
21233 (4c)
12331 (4a) 121233
23311 (4c)
33112 (4b) 112323
31123 (4b) 112332

β = b1b2b3b4b5 case N(S)
11233 (4c)
12332 (4c)
23321 (4b) 121332
33212 (4b) 123132
32123 (4c)
21231 (4c)
12313 (4c)
23132 (4c)
31321 (4b) 132132
13213 (4c)
32132 (4c)
21321 (4a) 132132
13212 (4a) 123132
32121 (4c)
21213 (4c)
12133 (4c)
21332 (4c)
13321 (4a) 121332
33211 (4b) 113232
32113 (4b) 113322
21133 (4c)
11332 (4c)
13322 (4c)
33221 (4b) 131322
32213 (4c)
22131 (4c)
21313 (4c)
13132 (4c)
31322 (4c)
13221 (4a) 131322

β = b1b2b3b4b5 case N(S)
32211 (4c)
22113 (4a) 113322
21132 (4c)
11323 (4c)
13232 (4c)
32321 (4c)
23211 (4a) 113232
32112 (4c)
21123 (4a) 112332
11232 (4c)
12323 (4c)
23231 (4b) 121323
32312 (4b) 123123
23123 (4c)
31231 (4c)
12312 (4a) 123123
23121 (4c)
31213 (4c)
12132 (4c)
21323 (4c)
13231 (4a) 121323
32311 (4b) 113223
23113 (4c)
31132 (4c)
11322 (4c)
13223 (4c)
32231 (4c)
22311 (4a) 113223
23112 (4a) 112323
31122 (4c)

Figure 6 The fixed-content universal cycle V(S) for S = {1, 1, 2, 2, 3, 3} in column-major order, as
generated by the successor rule in (4). More specifically, the columns labeled β show successive states of the
universal cycle, and any single column (e.g., b1 or b5) provides the universal cycle. Each state is a member of
Short(S) and hence is shorthand for a member of P erm(S). The columns labeled case provide the symbol
following β in the universal cycle; the next symbol is β’s first symbol b1 when (4a) or (4b) applies, and is β’s
missing symbol z = b6 when (4c) applies. For example, the first state β = 11223 has case (4c) applied. In other
words, βz = 112233 appears in the universal cycle (as opposed to βb1 = 112231). As a check, note that this
next symbol 3 is the final symbol in the next state 12233. When (4b) applies, the N(S) column provides the
necklace h(zb1b2 · · · bn−1), and these cases correspond to going downward in the first-inversion tree (see Figure
5b). Similarly, when (4a) applies, the N(S) column provides the necklace h(b1zb2 · · · bn−1), and these cases
correspond to going upward in the first-inversion tree. In both of these cases, the necklace comes from the child of
the parent-child conjugate pair. For example, 121233 appears twice in the N(S) column, first going downward
from the root 112233 via state 22331, and then going upward to the root 112233 via state 12331 (where 22331
and 12331 are conjugates of each other). The Gray code for P erm(S) using two operations, as generated
by (5), can be obtained from this figure as follows: Add the missing symbol to each β, and map the cases
(4a)–(4b) to (5a), and (4c) to (5b). For example, 112233 ∈ P erm(S) is followed by 122331 ∈ P erm(S)
using shift(1, n) = shift(1, 6) in this order because (4c) maps to (5b). Similarly, a minimum-weight binary
representation is obtained by using 1 for each (4a) or (4b), and 0 for each (4c).
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Shorthand Shift Gray code Shift index
112 1123 (4)
123 1231 (4)
231 2311 (3)
312 3121 (4)
121 1213 (4)
213 2131 (4)
131 1312 (3)
311 3112 (3)
113 1132 (4)
132 1321 (4)
321 3211 (4)
211 2113 (3)

Note that the first symbol is shifted in to the n−1st position exactly 2|N(S)− 1| times.

4 Necklace Concatenations feat. Cool-lex Order

In this section we start by providing a brief background of fixed-content necklaces. We introduce
cool-lex order for P erm(S) and provide a successor rule to produce the corresponding listing; a
special focus is given to N(S). We then describe a known necklace concatenation approach that
is applied to construct a universal cycle for Short(S). We conclude by providing a recursive
description of cool-lex and use it to efficiently list N(S) in cool-lex order.

4.1 Necklaces with Fixed-Content

Let α = a1a2 · · · an be a string. Let αt denote the string composed of t copies of α. The period of α
is the smallest value p such that α = (a1 · · · ap)t for some integer t. Let ap(α) = a1 · · · ap where p
is the period of α; we say ap(α) is the aperiodic prefix of α. If α has period n we say it is aperiodic;
otherwise we say it is periodic.

The number of fixed-content necklaces in N(S) can be deduced using Pólya theory as discussed
in [21]. In the following formula, it is assumed that the content S is composed of ni ≥ 1 occurrences
of each symbol i, |S| = n, and k ≥ 1:

|N(S)| = 1
n

∑
j|gcd(n1,n2,...,nk)

φ(j) (n/j)!
(n1/j)! · · · (nk/j)!

(6)

where Euler’s totient function φ(j) denotes the number of positive integers less than or equal to j that
are relatively prime to j.

There exists a O(1)-amortized time algorithm to list N(S) in reverse lexicographic order [41].

4.2 Cool-lex Order

Cool-lex order for fixed-content strings was introduced in [52]. In the binary case, when k = 2,
cool-lex order has been well-studied under two natural equivalences [34, 35, 42]. When extending
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cool-lex to fixed-content strings where k > 2, there are a number of equivalent ways to present the
ordering. The presentation we give here differs from the original presentation in [52]. In particular,
we consider the longest non-decreasing prefix instead of the longest non-increasing prefix of the
strings in question. Cool-lex order for P erm(S) is a shift Gray code, where successive strings differ
by the shift of a single symbol. If α = a1a2 · · · an ∈ P erm(S), then recall that

shiftα(t, s) = a1 · · · as−1atasas+1 · · · at−1at+1 · · · an,

denotes the operation that shifts at into position s. This operation can be implemented in constant time
by using a doubly-linked list data structure, so long as pointers to the symbol and position are provided.
Cool-lex order provides a prefix-shift Gray code for P erm(S) meaning that successive strings differ
by a single prefix-shift corresponding to the operation shiftα(t, 1). Moreover, the next value of t
can be updated in constant time after each shift. The ordering is also cyclic because a prefix-shift
transforms the last string in the order into the first. As an example, the set P erm({1, 1, 2, 2, 3, 3})
is listed in cool-lex order on the left side of Figure 7.

One of the most notable features of cool-lex order is that it has a simple successor rule; the prefix-shift
that creates the next fixed-content string in the order can be specified by the following rule.

Cool-lex Successor Rule for Fixed-Content Strings
Let α = a1a2 · · · an ∈ P erm(S) and let j denote the length of α’s longest non-decreasing prefix. The
string following α in cool-lex order, denoted next(α), is obtained from α by the prefix-shift in the following
cumulative cases

next(α) =


shiftα(j, 1) if j = n (7a)

shiftα(j+1, 1) if j = n− 1 or aj > aj+2 (7b)

shiftα(j+2, 1) otherwise. (7c)

Another benefit of cool-lex order is that its relative order provides shift Gray codes for numerous
interesting subsets of P erm(S). This phenomenon was discussed in the binary case in [34],
and more generally in [53]. In particular, this occurs for necklaces, as illustrated in Figure 7 for
S = {1, 1, 2, 2, 3, 3}. By adapting the techniques from [34, 53], we obtain the following successor
rule for fixed-content necklaces5.

Cool-lex Successor Rule for Fixed-Content Necklaces
Let α = a1a2 · · · an ∈ N(S) and let j denote the length of α’s longest non-decreasing prefix. When
j < n − 1, let α′ = a1 · · · ajaj+2aj+1aj+3 · · · an; it is α with aj+1 and aj+2 transposed. The necklace
following α in cool-lex order, denoted next(α), is obtained from α by the shift in the following cumulative
cases

next(α) =


shiftα(j, s) if j = n (8a)

shiftα(j+1, s) if j = n−1 or aj > aj+2 or α′ /∈ N(S) (8b)

shiftα(j+2, s) otherwise, (8c)

where s is the smallest index such that the result of shifting the specified element yields a necklace.

5 In this presentation, we use the lexicographically smallest representative for necklaces rather than the lexicographi-
cally largest.
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311223 132312 132231 113223
131223 313212 213231 121323
113223 331212 321231 123123
211323 133212 231231 112323
121323 213312 123231 113232
312123 321312 312321 131322
132123 231312 132321 113322
213123 323112 313221 121332
321123 332112 331221 132132
231123 233112 133221 123132
123123 123312 213321 112332
112323 112332 321321 121233
311232 211233 231321 122133
131232 121233 323121 123213
113232 212133 332121 122313
311322 221133 233121 112233
131322 122133 123321
313122 312213 212331
331122 132213 221331
133122 213213 322131
113322 321213 232131
211332 231213 223131
121332 123213 322311
312132 212313 232311
132132 221313 323211
213132 322113 332211
321132 232113 233211
231132 223113 223311
123132 122313 122331
312312 312231 112233

Figure 7 Cool-lex order for the strings with content S = {1, 1, 2, 2, 3, 3} (i.e., P erm(S)) appear to the
left of the vertical line in column-major order, as generated by the successor rule in (7). Observe that each of
these strings is obtained from the previous by a prefix-shift (i.e., shift(i, 1) for some i > 1). For example, the
third string 113223 is transformed into the fourth string 211323 by moving the underlined symbol to the left into
the first position (or equivalently by rotating the prefix 1132 one position to the right to obtain 2113). The order
is also cyclic in this regard, since the last string is transformed into the first by a prefix-shift. The column to the
right of the vertical line illustrates the necklaces with content S (i.e., N(S)) as they appear in cool-lex order.
Observe that each necklace is obtained from the previous by a shift given by (8). For example, the first necklace
113223 is transformed into the second necklace 121323 by moving the underlined symbol two positions to the
left (or equivalently by rotating the substring 132 one position to the right to obtain 213). The order is again
cyclic in this regard, since the last string is transformed into the first by a shift. The fixed-content universal cycle
U(S) is obtained by reversing the order of these necklaces, and concatenating their aperiodic prefixes, as shown
in Figure 9. In particular, note that 112233 is last here, and first in Figure 9.
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Example 8 Consider the necklace α = a1a2a3a4a5a6 = 122133 with longest non-decreasing
prefix of length j = 3. Since a3 < a5 and 122313 is a necklace, next(α) = lshiftα(j + 2). We
can determine the result of lshiftα(5) by bubbling the symbol a5 = 3 to the left, starting from α,
as follows:

a1a2a3a4a5a6 = 122133 is a necklace;
a1a2a3a5a4a6 = 122313 is a necklace;
a1a2a5a3a4a6 = 123213 is a necklace;
a1a5a2a3a4a6 = 132213 is not a necklace;
a5a1a2a3a4a6 = 312213 is not a necklace.

The result is the last necklace in this list. Hence, lshiftα(5) = a1a2a5a3a4a6 = 123213.

Observe from the previous example, that the necklaces that result from shifting the specified symbol
to the left are all contiguous. This property is formalized in the upcoming Lemma 10. Its proof
requires the following technical result.

I Lemma 9. If a1a2 · · · an is a necklace that contains a smallest index t such that at > at+1, then
a1 · · · at−1at+1atat+2 · · · an is a necklace.

Proof. Let β = b1b2 · · · bn = a1 · · · at−1at+1atat+2 · · · an. Let βj denote the rotation of β starting
at bj and let αj denote the rotation of α = a1a2 · · · an starting at aj . If β ≤ βj for each 2 ≤ j ≤ n,
then β is a necklace. Since α is a necklace, each ai ≥ a1 and thus each bi ≥ b1. Since b1 · · · bt−1
is non-decreasing it is straightforward to observe that βj > β for 2 ≤ j ≤ t+ 1. Now consider the
prefix of length t for βj where t+ 2 ≤ j ≤ n. This prefix is the same as the length t prefix of αj . If
this prefix is less than or equal to b1 · · · bt, then it must be strictly less than a1 · · · at since at > bt.
But this contradicts the fact that α is a necklace. Thus this prefix must be strictly greater than b1 · · · bt.
Thus βj ≥ β for each 2 ≤ j ≤ n and hence β is a necklace. J

Given α = a1a2 · · · an ∈N(S), then from (8), let t correspond to the index of the element shifted
to position s so

next(α) = a1 · · · as−1atas · · · at−1at+1 · · · an.

Using this notation, the following result illustrates the “bubble property” that necklaces have with
respect to cool-lex order.

I Lemma 10. For s ≤ i < t, a1 · · · ai−1atai · · · at−1at+1 · · · an is a necklace.

Proof. When i = s, next(α) = a1 · · · as−1atas · · · at−1at+1 · · · an is a necklace by definition.
For i > s, we step through the cases of (8) and the possible values of t, recalling that j is the
length of the longest non-decreasing prefix of α. If |N(S)| = 1, then the necklace is either 1n or
1n−12, and the result clearly holds as part of case (8a). Otherwise there are at least two symbols
that are not 1. Case (8a) implies that α is non-decreasing and t = n. From the definition of a
necklace, it is easy to observe that s = dn1/2e + 1, where n1 is the number of occurrences of the
symbol 1. Moreover, shiftα(n, i) is a necklace for all s ≤ i < n. Otherwise, if t = j + 1 (from
case (8b)) then by Lemma 9, shiftα(t, t − 1) is a necklace; if t = j + 2 (from case (8c)) then the
successor-rule itself requires shiftα(t, t− 1) is a necklace. Now, suppose there exists some r, where
s < r < t − 1, such that σ = d1 · · · dn = shiftα(t, r) = a1 · · · ar−1atar · · · at−1at+1 · · · an is not
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a necklace. Since a1 · · · at−2 is non-decreasing, Lemma 9 implies that d1 · · · dr is non-decreasing.
Thus, by the definition of a necklace, there is some suffix σ′ of dr+1 · · · dn that is less than or equal
to d1 · · · dr (namely, a prefix of a rotation that is a necklace). If at > ds, then since next(α) also has
suffix σ′, a1 · · · as−1at is greater than σ′, contradicting the fact that next(α) is a necklace. Otherwise
it must be that each element in as · · · ar−1 is at and hence σ = next(α) which we already stated is a
necklace, a contradiction. J

Since O(n) time is sufficient for testing whether or not a string is a necklace [2], the necklace
successor rule runs in O(n2) time. In Section 4.4, a recursive description of cool-lex order is
provided. When focusing on necklaces, an optimization allows N(S) to be listed in cool-lex order in
O(n)-amortized time per necklace.

4.3 Necklace Concatenation Construction

As mentioned in Section 1.5, the most well-known de Bruijn sequence is the so-called grand-daddy
de Bruijn sequence; it is the lexicographically smallest k-ary de Bruijn sequence of order n. It can
be generated very elegantly using an approach that is often referred to as the FKM construction or
FKM algorithm, due to its discoverers [15, 16]. As discussed in [35], the authors of this article prefer
to describe the construction using a slightly different approach called the necklace-prefix algorithm.
The difference between the algorithms is that the former uses an ordering of Lyndon words (i.e.,
aperiodic necklaces) whose length divides n, while the latter uses an order of necklaces that is then
reduced to the same set of Lyndon words6. For example, the FKM algorithm is based on column (b)
of Figure 8, while the necklace-prefix algorithm uses column (a). When using lexicographic order,
the resulting constructions are identical, but this is not true for other orders. For example, the two
concatenation schemes give different results when using co-lexicographic order (which orders strings
from right-to-left), with the necklace-prefix algorithm creating the grandmama de Bruijn sequence
[12] and the FKM algorithm not working. Similarly, we use the necklace-prefix algorithm when
working with cool-lex order, since cool-lex order is only defined for strings of the same length.

Formally, the necklace-prefix algorithm takes an order of strings, filters out the non-necklaces, reduces
the remaining necklaces to their aperiodic prefix, and concatenates the prefixes. Amazingly, the
granddaddy de Bruijn sequence is created by applying the necklace-prefix algorithm to the k-ary
strings of length n in lexicographic order. This is illustrated in Figure 8 for n = 6 and k = 2. The
approach has been generalized to other sets in [47].

Unfortunately, the magic runs out when we consider fixed-content strings, even in their shorthand
representatives. As an illustration, note that the lexicographic order of necklaces with content
S = {1, 1, 2, 2, 3, 3} places the following necklaces consecutively,

. . . 113322, 121233, . . . ,

and so, the necklace-prefix algorithm generates · · · 113322121233 · · · . The bold substring of length
n−1 = 5 is not shorthand for a string with the content S because it has too many 2’s. The cause
of the issue is also clear: The leftmost 2 moves several positions to the left from 113322 to 121233.
This issue leads us to instead use reverse cool-lex order, since this will ensure that individual symbols
move at most one position to the left between successive necklaces.

6 Note that the aperiodic prefix of a necklace of length n is a Lyndon word whose length divides n.
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necklaces aperiodic grand-daddy de Bruijn sequence
prefixes G2(6)

lexicographic
order

000000 0 0 · 0 0 0 0 0 1 ·
0

0
0

0
1

1
·

0
0

0
1

0
1
·

0
0

0
1

1
1

·001·001011·001101·
0

0
1

1
1

1
·

0
1
·

0
1

0
1

1
1
·

0
1

1

· 0 1 1 1 1 1 · 1 ·

000001 000001
000011 000011
000101 000101
000111 000111
001001 001
001011 001011
001101 001101
001111 001111
010101 01
010111 010111
011011 011
011111 011111
111111 1

(a) (b) (c)

Figure 8 The grand-daddy de Bruijn sequence Gk(n) for n = 6 and k = 2 is constructed by the necklace-
prefix algorithm applied to the binary strings of length 6. The algorithm starts with the lexicographic order of
binary strings of length 6 (which are not shown), then reduces the order to the necklaces in column (a), and their
aperiodic prefixes in column (b), and concatenates these prefixes to get the grand-daddy de Bruijn sequence
in (c). The FKM algorithm yields the same concatenation directly from column (b), since it contains the Lyndon
words of length 1, 2, and 3 (i.e., the divisors of n = 6) in lexicographic order.

necklaces aperiodic cool-daddy fixed-content universal cycle
N(S) prefixes U(S)

cool-lex
order

112233 112233
1 1 2 2 3 3 · 1 2 2 3 1 3 · 1 2 3 2

1
3
·

1
2

2
1

3
3
·

1
2

1
2

3
3
·112332·123132·132·121332·1

13322·
1313

2
2
·1

1
3

2
3

2
· 1

1
2

3
2

3
· 1

2 3
· 1

2 1 3 2 3 · 1 1 3 2 2 3 ·122313 122313
123213 123213
122133 122133
121233 121233
112332 112332
123132 123132
132132 132
121332 121332
113322 113322
131322 131322
113232 113232
112323 112323
123123 123
121323 121323
113223 113223

(a) (b) (c)

Figure 9 Our cool-daddy fixed-content universal cycle U(S) for content S = {1, 1, 2, 2, 3, 3}. The cycle
uses the shorthand representation, and is constructed using the necklace-prefix algorithm on reverse cool-lex
order. The fixed-content necklaces over S are given in reverse cool-lex order in column (a), they are reduced to
their aperiodic prefix in column (b), and their concatenation gives the universal cycle in column (c).
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Let α1, α2, . . . , αm denote the necklaces N(S) listed in reverse cool-lex order. Amazingly, by
applying the necklace-prefix algorithm outlined with respect to cool-lex order, we obtain a universal
cycle for Short(S). Let

U(S) = ap(α1) ap(α2) · · · ap(αm).

An example of U(S) is provided in Figure 9 for S = {1, 1, 2, 2, 3, 3}.

I Theorem 11. U(S) is universal cycle for Short(S). Moreover, U(S) = V(S).

This concatenation construction does not attain the sufficient conditions provided in [17] for when
concatenating smaller cycles yields a larger universal cycle. Instead, this theorem is proved in
Section 5 by demonstrating that the symbol following a given length n− 1 substring β in U(S) is
given by the successor-rule g(β) used to generate V(S). By applying an efficient algorithm to list
N(S) in cool-lex order, as presented in the next section, we obtain the following result.

I Theorem 12. The reversal of U(S) can be generated in O(1)-amortized time per symbol using
O(n) space.

4.4 Recursive Generation of Fixed-Content Necklaces in Cool-lex

In [52], a recursive description is given to list all strings with fixed-content S in cool-lex order. In
that description, the focus is on strings in reverse lexicographic order, whereas, we will focus on
lexicographic order. In this section, we restate this recurrence using the original terminology and then
apply it to generate the necklaces N(S) in cool-lex order.

Recall tail(S) denotes the unique non-decreasing string (and necklace) with content S. A scut7 of S
is any non-decreasing string α composed of some of the elements of S such that α is not a suffix of
tail(S), but every proper suffix of α is a suffix of tail(S). Let αi(S) (or simply, αi) denote the i-th
scut of S when the scuts are listed in decreasing order of the first symbol, then by decreasing length.
Let Ri denote the multiset S with the content of αi(S) removed.

Example 9 Consider S = {1, 1, 2, 2, 3, 3}. Then tail(S) = 112233 and the scuts of S in
decreasing order of the first symbol, then decreasing length, are:

23, 2, 1233, 133, 13, 1.

Note α4(S) = 133 and R4 = {1, 1, 2, 2, 3, 3} \ {1, 3, 3} = {1, 2, 2}.

If S is a multiset with j scuts, then the following recurrence C(S, γ) (simplified from Definition 2.4
in [52]) produces a listing for all strings of the form βγ where β has content S as they appear in
cool-lex order:

C(S, γ) = C(R1, α1γ),C(R2, α2γ), . . . ,C(Rj , αjγ), tail(S)γ.

Note that C(S, ε) will produce a listing of all strings with fixed-content S. Recall Figure 7 il-
lustrating the cool-lex order for P erm({1, 1, 2, 2, 3, 3}). This is the same listing generated by

7 In nature, a scut is a short tail. Here, it is a suffix of tail(S) with a small symbol prepended.
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Algorithm 1 Recursive algorithm to list the necklaces N(S) as they appear in cool-lex order. The string
a1a2 · · · an is intialized to tail(S), and the initial call is COOL(n).

1: procedure COOL( t)
2: i← t

3: while ai 6= a1 do
4: while ai = ai−1 do i← i−1
5: for j from i to t do
6: SWAP(j−1, j)
7: if a1a2 · · · an is a necklace then COOL(j−1)
8: for j from t down to i do SWAP(j−1, j)
9: i← i−1

10: VISIT( )

C({1, 1, 2, 2, 3, 3}, ε). In particular observe that the strings are ordered by suffixes corresponding to
the scuts: 23, 2, 1233, 133, 13, 1.

We now focus on how to modify this recurrence to list N(S) as they appear in cool-lex order.

I Lemma 13. C(S, γ) contains a necklace if and only if tail(S)γ is a necklace.

Proof. (⇐) tail(S)γ is in C(S, γ) by definition. Thus if tail(S)γ is a necklace then C(S, γ) contains
a necklace. (⇒) If C(S, γ) contains necklace then it must be of the form λγ where λ has content S.
If λ = tail(S), then we are done. Otherwise, repeated application of Lemma 9 implies that tail(S)γ
is a necklace. J

Based on Lemma 13, the recurrence C(S, γ) can be updated to list only the necklaces as follows
(where 〈 〉 denotes an empty list).

N (S, γ) =
{
〈 〉 if tail(S)γ is not a necklace;
N (R1, α1γ), . . . ,N (Rj , αjγ), tail(S)γ otherwise,

Note that N (S, ε) will produce a listing of all necklaces with fixed-content S as they appear in
C(S, ε). Recall from (8), the corresponding successor-rule which implies that successive necklaces in
this ordering differ by a shift.

The function COOL(t) in Algorithm 1 implements the recurrence for N (S, γ). Given content
S, by initializing the global string a1a2 · · · an to tail(S), the initial call COOL(n) generates the
necklaces N(S) in cool-lex order. The parameter t passed in the function COOL(t) indicates how the
string a1a2 · · · an is partitioned into the two pieces based on N (S′, γ): a1a2 · · · at = tail(S′) and
at+1 · · · an = γ. Each call COOL(t) corresponding to N (S′, γ) iterates through the scuts of S′ in the
proper order. This is done by scanning tail(S′) = a1 · · · at from right to left until we reach an index
i where ai 6= ai−1 (Line 4). To produce all scuts starting with ai−1, and their corresponding recursive
calls if a necklace can be produced, we iteratively shift this symbol through positions i, i+ 1, . . . , t
obtaining a new scut for each swap (Lines 5-7). Once all scuts starting with ai−1 have been processed
we restore a1 · · · at to tail(S′) (Line 8). We repeat this approach by continuing to traverse tail(S)
from right to left until we reach a symbol that is the same as a1 (Line 3). The function VISIT() outputs
the string a1a2 · · · an, and the function SWAP(i, j) swaps the symbols at index i and j in a1a2 · · · an.

When analyzing this algorithm, if every string tested in Line 7 was a necklace, then the work done
by each necklace test can be assigned to the following recursive call. Since each recursive call
generates at least one necklace, and since the necklace testing can be done in O(n)-time [2], the



XX:20 Constructing a fixed-content universal cycle

overall algorithm runs in O(n)-amortized time per necklace. However, within each recursive call,
there can be a number of negative necklace tests. For instance, consider the string α = 112233112233
and the call to COOL(6). This results in necklace tests for the following 6 strings, none of which are
necklaces since the rotation starting with the suffix 112233 is smaller than string in question:

112323112233, 112332112233, 121233112233,

122133112233, 122313112233, 122331112233.

Fortunately there exists a simple optimization: once a string tested on Line 7 is not a necklace, then
by Lemma 10 none of the following strings tested will be either. This optimization can be applied to
COOL(t) by replacing Line 7 with the following fragment:

if a1a2 · · · an is a necklace then COOL(j−1)
else

for s from j down to i do SWAP(s−1, s)
VISIT( )
return

This optimization ensures that at most one necklace test is negative per recursive call.

I Theorem 14. If a1a2 · · · an is initialized to tail(S), then a call to the optimized COOL(n) lists
the necklaces N(S) in cool-lex order in O(n)-amortized time per string.

In the binary case when k = 2, N(S) can be generated in O(1)-amortized time [42].

4.4.1 Application: Efficient Construction of U(S) in Reverse

To construct the reverse of the universal cycle U(S), which itself is a fixed-content universal cycle
over S, we can directly apply the optimized Algorithm 1 to list N(S) in cool-lex order with a simple
modification. Instead of outputting the current necklace α = a1a2 · · · an, the function VISIT( )

. determines the period p of α and then

. outputs apap−1 · · · a1.

Since the aperiodic prefix of α can be determined in O(n) (see [2]), the modified algorithm still runs
in O(n)-amortized time per necklace. Since the total length of U(S) is proportional to n|N(S)|
(see Section 5 in [41] which implies |U(S)| ≥ n|N(S)|/2) we obtain the result previously stated in
Theorem 12.

5 Proof of Theorem 11

If |N(S)| = 1, then the content of S is either all 1s, or all 1s and a single 2; the necklaces are 1n and
1n−12, respectively. In these cases we clearly have U(S) = V(S). Otherwise, let α1, α2, . . . , αm
denote the necklaces of N(S) listed in reverse cool-lex order, allowing αm+1 = α1. Recall that

U(S) = ap(α1) ap(α2) · · · ap(αm).

We focus on consecutive necklaces αi and αi+1, where 1 ≤ i ≤ m. Let αi = c1c2 · · · cn and let
αi+1 = a1a2 · · · an. From (8), there exists some s and t such that

αi = a1 · · · as−1atas · · · at−1at+1 · · · an.
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Applying this notation, we obtain the following result.

I Lemma 15. The length n− 1 suffix of ap(αi) ap(αi+1) is the same as the length n− 1 suffix of
αi+1.

Proof. Let p be the period of αi+1. If p = n, the result is trivial. Otherwise αi+1 is periodic, and
from the definition of a necklace and the assumptions on the content, a1 = ap+1 = 1 and ap > 1.
Since αi+1 is periodic it is a simple exercise to demonstrate that αi is aperiodic since it is the cool-lex
successor of αi+1. Let ajaj+1 be the leftmost inversion in αi+1. Clearly j ≤ p. If j < p, then
t ≤ p+ 1 and the result follows. If j = p then a1 · · · ap is non-decreasing. We consider two cases
based on (8b). If ap > ap+2 = a2, then t = p+ 1 and again the result follows. Otherwise, it must
be that a2 · · · ap are all the same symbol, namely 2. Swapping ap+1 = 1 and ap+2 = 2 in αi+1 to
obtain γ does not yield a necklace because the rotation starting from position p + 2 in γ will be
lexicographically smaller than γ. Thus based on (8b), t = p+ 1, and again the result follows. J

We now prove that U(S) = V(S). Let β = b1 · · · bn−1 be a substring of U(S). We show (i) β is an
element of Short(S) with missing symbol z and (ii) the symbol following β in U(S) is g(β), and
hence one of z or b1.

Suppose β is completely contained in some ap(αi). Then clearly β is an element of Short(S) and
ap(αi) = αi, which means αi is an aperiodic necklace. Thus βz = αi or zβ = αi. Since each
necklace in N(S) begins with 1, the symbol following β in each case is the missing symbol z. In
both cases h(zβ) is not a necklace since it is a proper rotation of the aperiodic necklace αi. Thus
by Corollary 6, β is not in X(S) and hence g(β) = z. For the remaining cases, β = σ1σ2 where σ2
is a non-empty prefix of some ap(αi+1), and by applying Lemma 15, σ1 is a non-empty suffix of
αi. Let |σ2| = x and thus σ2 = a1a1 · · · ax and σ1 = cx+2 · · · cn. Note x < n− 1 and the symbol
following β in U(S) is ax+1. Let p denote the period of αi+1.

Case 1: σ2 = ap(αi+1). This means αi+1 is periodic, i.e., αi+1 = (a1 · · · ap)j , for some j > 1. By
Lemma 15, β is a suffix of αi+1 which means zβ = αi+1. Both z and the symbol following β are 1 as
they are each the first symbol of some necklace in N(S). If a1 · · · ap contains an inversion, then h(zβ)
is rotation of αi+1 that must be lexicographically larger than αi+1 by the definition of p. Thus by
Corollary 6, g(β) = z. Otherwise, suppose a1 · · · ap is non-decreasing. If z = b1, g(β) = z from (4).
Otherwise b1 > z. By the content assumptions, it must be that b1 = 2. If b1 < bn−1, then g(x) = z

from (4). Otherwise, a1 · · · ap = 12p−1, and h(b1zb2 · · · bn−1) = 12p−1212p−2(a1 · · · ap)j−2 is not
a necklace. Again g(x) = z from (4).

Case 2: σ2 is a proper prefix of ap(αi+1). Consider three cases for x, noting that x < p:

(A): t− 1 < x. In this case σ1 = ax+2 · · · an and σ2ax+1σ1 = αi+1. Clearly, β is in Short(S)
with missing symbol z = ax+1. Since t− 1 < x < n− 1, by the definition of t and (8), σ2 must
contain an inversion. Since αi+1 is a necklace with period p, its rotation h(zβ) must be strictly
larger than αi+1, and hence is not a necklace. Thus, by Corollary 6, g(β) = z.

(B): s− 1 ≤ x < t− 1. In this case σ1 = ax+1 · · · at−1at+1 · · · an and thus β is in Short(S)
with missing symbol z = at. Note ax+1 = b1. If z = b1, then clearly g(β) = b1 = z. Otherwise,
by the definitions of s and t and Lemma 10, both h(zb1 · · · bn−1) and h(b1zb2 · · · bn−1) are
necklaces. Also, by the definition of t, ax+1(= b1) is greater than or equal to ax(= bn−1). Thus,
the larger of z and b1 is greater than or equal to bn−1. Thus g(β) = b1, from Lemma 5.

(C): x < s− 1. In this case σ2 = c1 · · · cx and σ2cx+1σ1 = αi. Clearly, β is in Short(S) and
z = cx+1 = ax+1. By the definition of s, γ = c1 · · · cs−2cscs−1cs+1 · · · cn is not a necklace. If
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x = s − 2, then γ = h(b1zb2 · · · bn−1) and by Corollary 6 β is not in X(S). Thus g(β) = z.
Otherwise x < s − 2 and by the definition of t, cx+1 ≤ cx+2. If cx+1 = cx+2 = b1, then
g(β) = z = b1. Otherwise it is a simple exercise to demonstrate that h(b1zb2 · · · bn−1) is not a
necklace since γ is not a necklace. Again, by Corollary 6, β is not in X(S) and thus g(β) = z.

For each case, we have demonstrated that β is in Short(S) and the symbol following β in U(S) is
g(β). Thus U(S) = V(S), completing the proof of Theorem 11.

6 Final Remarks

In this paper we presented two algorithms that construct the first fixed-content universal cycle.

1. We developed a successor-rule based on the first-inversion tree of necklaces that runs in O(n)
time per symbol using O(n) space.

2. We developed concatenation construction based on cool-lex order of fixed-content necklaces that
runs in O(1)-amortized time per symbol using O(n) space.

The first result provides a cyclic shift Gray code for multiset permutations (i.e., string with a given
Parikh vector) in which the next multiset permutation is obtained by the shifting the first symbol into
the last or second last position. The Gray code can be generated in O(n)-time per string, starting
from any string in the set. The second result involved the creation of an O(n)-time per string shift
Gray code algorithm for listing necklaces of fixed content in cool-lex order.

6.1 Additional Observations

We conclude with additional observations and avenues for future research, some of which are
expanded upon online [40].

Cycle-Joining. The first-inversion tree swaps the leftmost inversion in a necklace, and paths to the
root node (i.e., tail(S)) resemble insertion sort or gnome sort [39]. Different fixed-content universal
cycles can be created by using other trees. For example, one could instead swap rightmost inversions
according to the last-inversion tree. Alternatively, one could focus on the smallest value that is not in
sorted order. This change results in paths to the root that follow selection sort, and generalizes the
decrementing spanning tree from [24] and its associated bell ringer universal cycle for permutations.

Feedback Functions. Our cycle-joining construction is based on the underlying feedback function
f(b1b2 · · · bn−1) = z, which returns the missing symbol z and creates necklace cycles. Instead, one
could start with the feedback function f(b1b2 · · · bn−1) = b1, which creates initial cycles that are not
necklace cycles. Universal cycles resulting from this feedback function would have maximum-weight
rather than minimum-weight cycles.

With regard to the choice of feedback function, it is worth noting some connections between this
article and foundational work in the area. In the special case when k = 2, recall that multiset
permutations correspond to fixed-weight binary strings. In this case, the feedback function f(β) = z

corresponds to two of the “simple” feedback functions presented in [22, Ch. 7], depending on the
weight w of the strings. The pure summing register (PSR) and the complementing summing register
(CSR) apply feedback functions defined as follows, where the operator ⊕ denotes addition modulo 2:

PSR(β) = b1 ⊕ b2 ⊕ · · · ⊕ bn−1 and CSR(β) = b1 ⊕ b2 ⊕ · · · ⊕ bn−1 ⊕ 1.

If w is even, then f(β) = PSR(β); if w is odd, then f(β) = CSR(β). Cycle-joining using these
feedback functions has been previously studied in [14]. As we proved in Theorem 11, they also are



XX:23

the underlying feedback function used in the constructions from [35] which were later applied to
construct weight-range universal cycles in [46].

Shift Gray Codes and Applications. Our Gray codes using shift(1, n) and shift(1, n−1) can be
used to optimize exhaustive computations for objective function focused on the (ordered) pairs of
symbols in a string. For example, consider a directed traveling salesman problem, where each
permutation of {1, 2, . . . , n} represents a Hamilton path in the graph, and each ordered pair of
symbols represents a directed edge. Notice that the operation shift(1, n) changes only one edge in
the associated path, while shift(1, n−1) changes two8. Thus, the cost of each successive paths can be
updated in O(1)-time. These Gray codes are also helpful when ordering events with repetition (e.g.,
multiple deliveries along the same route in a stacker crane problem [1]).

Other interesting questions can be asked about the existence of Gray codes using various sets of
strings and shifts. For example, there is no Gray code for P erm(S) using shift(n, 1), shift(1, n), and
shift(1, 2), even for fixed-weight binary strings (i.e., k = 2) [5]. However, the latter two operations
are sufficient for permutations (i.e., n = k) [44] (also see [38]). A specific open question is whether
P erm(S) has a Gray code using shift(1, 2), shift(1, 3), and shift(1, n) (see [49] when n = k).

Encodings. Shorthand representation is not the only encoding of P erm(S) that could be considered
for use in universal cycles. In particular, order isomorphism [28, 20], relaxed shorthand [55], and
graphical representations [4] have all been considered for permutations.
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Appendix A - Successor-rule approach to construct V(S)

//-----------------------------------------------------------------------------
// SHORTHAND UNIVERSAL CYCLES FOR FIXED-CONTENT STRINGS IN O(n)-TIME PER SYMBOL
//-----------------------------------------------------------------------------
#include <stdio.h>
int N,K,a[100],b[100],total=0;

//----------------------------------------------------------------------------------------
// Returns length of longest aperiodic prefix if b[1..n] is a necklace; return 0 otherwise
//----------------------------------------------------------------------------------------
int IsNecklace(int b[], int n) {

int i, p=1;

for (i=2; i<=n; i++) {
if (b[i-p] > b[i]) return 0;
if (b[i-p] < b[i]) p = i;

}
if (n % p != 0) return 0;
return p;

}
//---------------------------------
int Coollex(int z) {

int j,t,count,b[100],c[100];

// Set b[1..N] = z a[1..N-1], swapping the first two elements if not an inversion
b[1] = z;
for (j=1; j<N; j++) b[j+1] = a[j];
if (b[1] < b[2]) { b[1] = b[2]; b[2] = z; }

// Rotate the longest increasing suffix b[j..N] of b[3..N] to the front of b[1..N]
j = N;
while (b[j-1] <= b[j] && j > 3) j--;
count = 1;
for (t=j; t<=N; t++) c[count++] = b[t];
for (t=1; t<=j; t++) c[count++] = b[t];

if (b[1] >= b[N] && b[1] != b[2] && IsNecklace(c, N) ) return a[1];
return z;

}
//---------------------------------
void GenUC(int z) {

int i,x;

while (1) {
printf("%d", a[1]); total++;
x = Coollex(z);
if (z == x) z = a[1]; // Update missing symbol

for (i=1; i<N-1; i++) a[i] = a[i+1];
a[N-1] = x;

// Break when at initial increasing
i = 1;
while (a[i] <= a[i+1] && i <N-1) i++;
if (i == N-1 && a[N-1] <= z) break;

}
}
//---------------------------------
int main() {

int i,j,tmp;

printf("Enter K: "); scanf("%d", &K);
N = 0;
for (i=1; i<=K; i++) {

printf("N_%d: ", i); scanf("%d", &tmp);
for (j=1; j<=tmp; j++) a[N+j] = i;
N += tmp;

}
GenUC( a[N] );
printf("\nTotal = %d\n", total);

}
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Appendix B Appendix - Concatenation approach to construct the reverse of U(S)

#include <stdio.h>
int N, K, a[100];
//------------------------------------------------------------------
// If a[1..n] is a necklace return its period p; otherwise return 0
//------------------------------------------------------------------
int Necklace() {

int i, p=1;

for (i=2; i<=N; i++) {
if (a[i-p] > a[i]) return 0;
if (a[i-p] < a[i]) p = i;

}
if (N % p != 0) return 0;
return p;

}
//------------------------------
void Visit() {

int i;
for (i=Necklace(); i>=1; i--) printf("%d ", a[i]);

}
//------------------------------
void Swap(int i, int j) {

int temp;
temp = a[i]; a[i] = a[j]; a[j] = temp;

}
//---------------------------------
void Gen(int t) {

int i,j,s;

i = t;
while (a[i] != a[1]) {

while (a[i] == a[i-1]) i--;
for (j=i; j<=t; j++) {

Swap(j-1,j);
if (Necklace()) Gen(j-1);
else {

for (s=j; s>=i; s--) Swap(s-1,s);
Visit();
return;

}
}
for (j=t; j>=i; j--) Swap(j-1,j);
i--;

}
Visit();

}
//---------------------------------
int main() {

int i,j,tmp;

printf("Enter K: "); scanf("%d", &K);
N = 0;
for (i=1; i<=K; i++) {

printf("N_%d: ", i); scanf("%d", &tmp);
for (j=1; j<=tmp; j++) a[N+j] = i;
N += tmp;

}
Gen(N);

}
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