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Abstract
A cut-down de Bruijn sequence is a cyclic string of length L, where 1 ≤ L ≤ kn, such that every substring
of length n appears at most once. Etzion [Theor. Comp. Sci 44 (1986)] introduced an algorithm to construct
binary cut-down de Bruijn sequences requiring o(n) simple n-bit operations per symbol generated. In this paper,
we simplify the algorithm and improve the running time to O(n) time per symbol generated using O(n) space.
Additionally, we develop the first successor-rule approach for constructing a binary cut-down de Bruijn sequence
by leveraging recent ranking/unranking algorithms for fixed-density Lyndon words. Finally, we develop an
algorithm to generate cut-down de Bruijn sequences for k > 2 that runs in O(n) time per symbol using O(n)
space after some initialization.

1 Introduction

A de Bruijn sequence (DB sequence) of span n, over an alphabet of size k, is a cyclic sequence of
length kn such that every k-ary string of length n appears as a substring exactly once. For example,
the following is a DB sequence for n = 6 and k = 2:

[ 0000001111110111100111000110110100110000101110101100101010001001 ]. (1)

The de Bruijn graph of span n, over an alphabet of size k, is the directed graph G(n, k) = (V,E)
where V is the set of all k-ary strings of length n and there is a directed edge e = (u, v) ∈ E from
u = u1u2 · · ·un to v = v1v2 · · · vn if u2 · · ·un = v1 · · · vn−1. Each edge e is labeled by vn. In
this paper, the term cycle corresponds to a sequence of edge labels obtained by traversing some
cycle/circuit in the de Bruijn graph (or a related edge-labeled graph), and the notation [α] denotes
that the sequence α is cyclic. For example, Figure 1 illustrates G(3, 2) and the cycles [01] and
[1101100001]. It is well known that a DB sequence of span n is in one-to-one correspondence with
an Euler cycle in G(n−1, k).

For some applications it may be more convenient to produce a cycle of arbitrary length such that
there are no repeated length-n substrings, i.e., a cycle of arbitrary length in G(n− 1, k). For instance,
it may be more natural to consider the de Bruijn card trick [7] using 52 cards rather than 32. Also, for
applications in robotic vision and location detection [7, 30, 31], instead of forcing a location map
to have length kn, an arbitrary length allows for more flexibility. This gives rise to the notion of a
cut-down de Bruijn sequence1 (cut-down DB sequence), which is a cyclic sequence of length L over
an alphabet of size k, where 1 ≤ L ≤ kn, such that every substring of length n appears at most once.

1 The term cutting-down is perhaps first used in [19] to describe such sequences.
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Figure 1 The de Bruijn graph G(3, 2) highlighting cut-down DB sequences [10] (blue) and [1101100001]
(red) of length two and ten, respectively.

As an example, the following is a binary cut-down DB sequence of length 52:

[ 0000001111001110001101101001100001011101011001010001 ].

Note that every substring of length n = 6, including in the wraparound, appears at most once. Any
cut-down DB sequence of length L with respect to k and n is also a cut-down DB sequence with
respect to k and n+ 1 [9]. Thus, throughout this paper we assume kn−1 < L ≤ kn.

Cut-down DB sequences are known to exist for all lengths L and any alphabet of size k [23] (for
k=2 see [32]). In bioinformatics, the alphabet {C,G,A, T} of size k = 4 is of particular interest
and there are a number of applications that apply DB sequences and their relatives [2, 26]. A simple
algorithm to construct binary cut-down DB sequences based on linear feedback shift registers and
primitive polynomials is given by Golomb [15, P. 193]; it runs in O(n)-amortized time per symbol
usingO(n) space. However, the construction has an exponential-time delay before producing the first
symbol, requires a specific primitive polynomial for each order n, and there is no way to determine
if a given length-n string appears as a substring without generating the entire cycle. This approach
is generalized to construct cut-down DB sequences where k is a prime power, and subsequently
extended to handle arbitrary sized alphabets by applying additional number theoretic results [21].
Although no formal algorithmic analysis is provided, the formulation appears to share properties no
better than the related binary construction. An algebraic approach for when k is a prime power is also
known [17].

A cycle-joining based approach to construct cut-down DB sequences was developed by Etzion [9]
for k = 2; it requires o(n) simple n-bit operations to generate each symbol. The approach follows
two main steps:

First, an initial cycle is constructed with length L+ s, where 0 ≤ s < n, using the well-known
cycle-joining approach.
Second, depending on s, up to dlogne small cycles are detected and removed to obtain a cycle of
length L.

The resulting algorithm can construct an exponential number of cut-down DB sequences for any given
L; however, their algorithm is not optimized to generate a single cut-down DB sequence. Etzion’s
construction also has a downside for some applications: It starts with a specific length-n string and
the historical context matters to produce successive symbols. This means testing whether or not an
arbitrary string belongs to the cycle may involve generating the entire cycle.

The main results of this paper are as follows:

1. We simplify Etzion’s approach and develop an algorithm to construct a binary cut-down DB
sequence in O(n) time per symbol using O(n) space.
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2. We develop the first successor-rule approach to construct a binary cut-down DB sequence inO(n)
time per symbol using O(n) space. The algorithm can start with any string on the cycle and
the context does not matter when producing successive symbols. Determining whether or not a
length-n string appears as a substring on the sequence can be determined using O(n3) operations
on n-bit numbers.

3. We develop an algorithm to generate cut-down DB sequences for k > 2 that runs in O(n) time
per symbol using O(n) space. A number of non-trivial adaptations to the binary algorithm are
required to generalize to larger alphabets.

All three algorithms require a polynomial time and space initialization step.

Related work. A generalized de Bruijn sequence, as defined in [4], is a cut-down DB sequence of
length kn−1 < L ≤ kn with an additional property: every k-ary string of length n−1 appears as a
substring. Their existence is known for all L and k [11]. For special values of L, these sequences can
be generated by considering the base k expansion of 1/L [4, 5, 24]. An algorithm based on Lempel’s
D-morphism [22] has recently been proposed to construct these sequences [25] that have an even
stronger property: every k-ary string of length j ≤ L appears either bL/kjc or dL/kje times as a
substring. We call sequences with this latter property balanced cut-down de Bruijn sequences. The
proposed algorithm can generate the sequences in O(1)-amortized time per symbol, but it requires
exponential space and there is an exponential time delay before outputting the first symbol.

Repeat-free sequences have all of the properties of cut-down DB sequences except the cyclic
property; they are prefixes of a DB sequence and correspond to paths in the de Bruijn graph. They were
considered from an algorithmic perspective in [3, 8] and discussed from a combinatorial perspective
under the name partial de Bruijn `-sequences in [6].

Outline of paper. In Section 2, we provide some background on the cycle-joining method and
a simple successor rule to construct DB sequences. In Section 3, we review Etzion’s approach
for constructing binary cut-down DB sequences. In Section 4, we present in detail our simplified
algorithm to construct binary cut-down DB sequences; in Section 4.3, we present the first successor-
rule algorithm for constructing binary cut-down DB sequences. In Section 5 we extend our binary
algorithm to work for k > 2. Implementation of our algorithms are available for download at http:
//debruijnsequence.org/db/cutdown [1]; this resource also provides a comprehensive
background on DB sequences and their constructions.

2 Background

Let Σ denote the alphabet {0, 1, . . . , k−1} where k ≥ 2. Let Σn denote the set of all length-n strings
over Σ. Let α = a1a2 · · · an be a string in Σn. Let αt denote t copies of α concatenated together.
The period of α, denoted per(α), is the smallest integer p such that α = (a1 · · · ap)t for some t > 0.
If α has period less than n it is said to be periodic; otherwise it is aperiodic. The lexicographically
smallest element in an equivalence class of words under rotation is called a necklace.

A Lyndon word is an aperiodic necklace. The weight of a string is the sum of its elements (when
k = 2, weight is sometimes referred to as density). Let Tk(n,w) denote the number of k-ary strings
of length n and weight w. Note T2(n,w) =

(
n
w

)
. Let Lk(n,w) denote the number of k-ary Lyndon

words of length n and weight w. By partitioning the strings of Tk(n,w) into equivalence classes
under rotation and considering the period of the string in each class (see Example 1) observe that
Tk(n,w) =

∑
d|n

n
dL( n

d ,
w
d ). By applying Mobiüs inversion we have:

Lk(n,w) = 1
n

∑
d| gcd(n,w)

µ(d) Tk

(n
d
,
w

d

)
,

http://debruijnsequence.org/db/cutdown
http://debruijnsequence.org/db/cutdown
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where µ is the Mobiüs function. When k = 2, the formula is derived in [14] and applied in [16].
A feedback function is a function f : Σn → Σ. A feedback shift register (FSR) is a function

F : Σn → Σn defined as F (α) = a2a3 · · · anf(α), given a feedback function f . An FSR is said to
be nonsingular if it is one-to-one. The pure cycling register (PCR) is the FSR with feedback function
f(α) = a1. It partitions Σn into equivalence classes of strings under rotation. Thus, the cycles
induced by the PCR, called PCR cycles, are in one-to-one correspondence with the necklaces of order
n and also with Lyndon words whose lengths divide n. They also appear as cycles in G(n− 1, k).
Recall, we use the notation [α] to denote a cycle. When n is understood, we say a cycle contains a
string α if α has length n and is found as a substring on the cycle (by possibly traversing around the
cycle more than once); we say α belongs to the cycle.2 For example, when n = 6, the PCR cycle [01]
(see the upcoming Example 1) contains the two strings 010101 and 101010; the cycle [0001] (not a
PCR cycle) contains the four strings 000100, 001000, 010001, and 100010.

Example 1 Let Σ = {0, 1} and let n = 6. The following are the 14 equivalence classes of Σ6 under
rotation, where the first string in each class is a necklace.

000000 000001 000011 000101 000111 001001 001011
000010 000110 001010 001110 010010 010110
000100 001100 010100 011100 100100 101100
001000 011000 101000 111000 011001
010000 110000 010001 110001 110010
100000 100001 100010 100011 100101

001101 001111 010101 010111 011011 011111 111111
011010 011110 101010 101110 110110 111110
110100 111100 011101 101101 111101
101001 111001 111010 111011
010011 110011 110101 110111
100110 100111 101011 101111

The following 14 PCR cycles are in one-to-one correspondence with the set of Lyndon words of lengths 1,
2, 3, and 6 (lengths that divide n = 6):

[0] [000001] [000011] [000101] [000111] [001] [001011]
[001101] [001111] [01] [010111] [011] [011111] [1].

Note the strings belonging to a PCR cycle all have the same weight. Thus, let the weight of a PCR
cycle be the weight of its corresponding length n necklace. For example, when n = 6 the weight of
[000001] is one and the weight of [01] is three since its corresponding necklace is 010101.

A universal cycle for a set S of length-n strings is a cyclic sequence of length |S| such that
every string in S appears as a substring exactly once. Two universal cycles for S1 and S2 are said
to be disjoint if the sets S1 and S2 are disjoint. Of course, a DB sequence is a special case of a
universal cycle when S corresponds to all k-ary strings of length n. A cut-down DB sequence of
length L also corresponds to a universal cycle of length L; however, the corresponding set S is not
necessarily known a priori. A UC-successor for S is a feedback function whose corresponding FSR
can be repeatedly applied to construct a universal cycle for S starting from any string in S (see the

2 Consider the infinite word αt; it contains the length-n word β if β appears as a substring (factor) of αt.
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upcoming Algorithm 1 for a specific example). When S = Σn a UC-successor is said to be a de
Bruijn-successor.

2.1 Cycle joining

One of the most common ways to construct a DB sequence is by applying the cycle-joining
method [15], which is akin to Hierholzer’s method for finding Euler cycles in graphs [18]. This
approach repeatedly joins pairs of disjoint (universal) cycles that share a node v = a2 · · · an in
G(n− 1, k). The two cycles are said to be joined via a conjugate pair (xa2 · · · an, ya2 · · · an), where
x and y correspond to the labels of incoming edges to v for each cycle. This leads to the following
lemma which is implicitly applied in all cycle-joining constructions and formalized for k = 2 in [28].

I Lemma 1. Let S1 and S2 be disjoint subsets of Σn such that xa2 · · · an ∈ S1 and ya2 · · · an ∈ S2;
(xa2 · · · an, ya2 · · · an) is a conjugate pair. If U1 is a universal cycle for S1 and U2 is a universal
cycle for S2, each with prefix a2 · · · an, then U = U1U2 is a universal cycle for S1 ∪ S2.

When the initial cycles are those induced by an underlying nonsingular FSR, the joining of the
cycles can be viewed as a tree in the binary case. As an example, Figure 2 illustrates the PCR
cycles for n = 6 and k = 2, and one way they can be joined together to create a DB sequence, or
equivalently, an Euler cycle in G(5, 2). When extending this idea to larger alphabet sizes, the tree
visualization no longer applies in general (see [13] and the upcoming Figure 3).

A general framework based on the cycle-joining approach leads to many simple UC-successors [12].
Application of this framework rediscovers many previously known DB sequence constructions includ-
ing one by Jansen [20] that was revisited in [29] with respect to the PCR. This particular construction
starts with [0] as the root cycle and repeatedly joins PCR cycles by increasing weight via conjugate
pairs (1a2 · · · an, 0a2 · · · an), where a2 · · · an1 is the necklace representative of the new PCR cycle
begin joined. This construction is illustrated in Figure 2, where the symbol pointed to by a downward
edge is the “last symbol” in the corresponding cycle’s necklace representative. Thus, given a necklace
α = a1 · · · an 6= 0n, the parent cycle of [α] in the “cycle-joining tree” rooted at [0] is [a1 · · · an−10];
the conjugate pair that joins them is (0a1 · · · an−1, 1a1 · · · an−1). The resulting de Bruijn successor
(below), labeled PCR3 in [12], is perhaps the simplest of all de Bruijn successors. Note x denotes
the complement of the bit x.

PCR3 de Bruijn successor:

PCR3(α) =
{
a1 if a2a3 · · · an1 is a necklace;
a1 otherwise.

When the FSR with feedback function PCR3 is repeatedly applied to the starting string 000000 for
n = 6, as illustrated in Figure 2, it produces the DB sequence in (1), where the first bit of the current
string α is output before each application of the rule (see the upcoming Algorithm 1). The arcs
between cycles in Figure 2 correspond to the cases when PCR3 returns a1.

Of course, the cycle-joining process yielding PCR3 can be applied to any subset of PCR cycles
as long as they are “connected” via the defined conjugate pairs, i.e., the PCR cycles form a subtree of
the complete cycle joining tree induced by PCR33. Given such a subtree, let S denote the set of all
length-n strings that belong to some PCR cycle in the subtree.

3 See a related discussion in [27].
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Figure 2 The 14 PCR cycles for n = 6 joined by applying the de Bruijn successor PCR3. Starting with the
cycle [0] at the top, the cycles are visited in a clockwise fashion until a blue arc transitions to a different PCR
cycle. Each blue arc leaves from a string (corresponding to the previous n-symbols) belonging to a conjugate
pair used to join two cycles. For instance, the top two cycles [0] and [000001] are joined via the conjugate pair
(000000, 100000). Tracing through the cycles and returning to [0] produces a DB sequence for n = 6.

Example 2 Consider the cycle-joining tree in Figure 2 based on PCR3 for n = 6. Consider the subtree
consisting of the cycles [0], [000001], [001]. The set S corresponding to this subtree is

S = {000000}∪{000001, 000010, 000100, 001000, 010000, 100000}∪{001001, 010010, 100100}.

Let S denote the collection of all sets S, ranging over all unique subtrees. In particular, we will be
interested in a set S ∈ S obtained from the PCR cycles with weight less than some m > 0 together
with a subset of PCR cycles with weight m (see Example 3). A UC-successor for any S ∈ S can be
obtained from the PCR3 de Bruijn successor by additionally ensuring that PCR3(a1a2 · · · an) maps
to a1 only if a2 · · · ana1 is in S, i.e., it does not attempt to join a cycle outside the specific subset.

PCR3 UC successor for S ∈ S:

PCR3′(α) =
{
a1 if a2a3 · · · an1 is a necklace and a2a3 · · · ana1 ∈ S;
a1 otherwise.

Observe that PCR3 is just a special case of PCR3′ when S is the set of all binary strings of
length n. Note that if a1 · · · an is in S, then so is a2 · · · ana1 since they belong to the same PCR
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cycle. Starting with any string α ∈ S, Algorithm 1 applies this UC-successor to construct a universal
cycle for S, applying the original definition for PCR3. Later, we will specify further implementation
details for a specific S.

Algorithm 1 Pseudocode for constructing a universal cycle for S ∈ S assuming α = a1a2 · · · an ∈ S.

1: procedure UC(α)
2: for i← 1 to |S| do
3: PRINT(a1)
4: x← PCR3(α)
5: β ← a2 · · · anx

6: if β /∈ S then x← x

7: α← a2 · · · anx

I Lemma 2. Algorithm 1 generates a universal cycle for S, where S ∈ S.

This DB sequence constructed by PCR3 has an important property not shared by the other simple
feedback functions presented in [12]: The strings belonging to Zi (defined in Section 4.2) appear
contiguously as substrings in the corresponding DB sequence.

3 Etzion’s approach

In this section, we outline Etzion’s [9] approach for constructing a binary cut-down DB sequence.
Recall that L is the length of the cut-down DB sequence and 2n−1 < L ≤ 2n. The two primary steps
in Etzion’s construction are as follows, where the surplus s is an integer in {0, 1, . . . , n−1}:
1. Construct a Main Cycle (MC) that has length L+ s.
2. Cut out up to dlog se small cycles from the MC to yield a cycle of the desired length L.

It is important to note that the small cycles being cut out of the MC, are not necessarily PCR
cycles. To construct an MC, a subset of the PCR cycles are selected based on their weight and period.
Enumeration of strings by weight and period determine which cycles to include. Considering the set
of k-ary strings (so we can generalize in later sections) of length n , let

A(w) denote the number of strings with weight ≤ w,
B(w, p) denote the number of strings with weight w, and period p, and
C(w, p) denote the number of strings with weight w, and period ≤ p.

In the binary case when k = 2, clearlyA(w) =
∑w

j=0
(

n
j

)
. Recall from the observations in Example 1

that B(w, p) = pLk(p, wp/n), assuming p divides n. Using these values, let

m = the smallest weight m such that A(m) ≥ L,
h = the smallest period such that A(m− 1) + C(m,h) ≥ L, and
t = the smallest integer such that A(m− 1) + C(m,h− 1) + th ≥ L.

These values can be used to define the surplus s as A(m− 1) + C(m,h− 1) + ht− L.
An MC is the result of joining together all PCR cycles of weight less than m together with all

PCR cycles of weight equal to m and period less than h together with exactly t PCR cycles of weight
m and period h. As cycles are joined, a counter is maintained to keep track of the number of cycles
of weight m and period h already joined into the MC. Thus, the specific t PCR cycles joined are
not necessarily known a priori. Etzion’s original presentation adds cycles of weight m starting with
the largest period. We made one minor departure from this approach by adding cycles of weight m
starting from the smallest period, which handles a special case defined later.
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Example 3 Consider L = 46 and n = 6. Since A(3) = 42 and A(4) = 57, we have m = 4. Since
B(4, 1) = B(4, 2) = 0, B(4, 3) = 3, B(4, 4) = B(4, 5) = 0, B(4, 6) = 12, we have C(4, 5) = 3
and C(4, 6) = 15. Thus h = 6. Since A(3) + C(4, 5) + h = 42 + 3 + 6 = 51, we have t = 1 and
surplus s = 5. Applying PCR3 as the underlying method for joining cycles, the following illustrates the
construction of the MC starting with 000000.

The MC joins all cycles with weight less than m = 4, all cycles with weight m = 4 and period less than
h = 6, and exactly t = 1 cycles with weight m = 4 and period h = 6. Note that the cycle pointed to by
the dashed arc labeled m is not added since it has weight greater than m = 4. The cycle pointed to by
the dashed arc labeled t is not added since there was already t = 1 cycles added with weight m = 4 and
period h = 6. The resulting MC with length 51 is

[ 000000111100111000110110100110000101100101010001001 ].

The second step involves cutting out small cycles whose combined length totals the surplus s.
When s = 1, the cycle [0] is easily removed. However, for arbitrary lengths, finding and removing
such small cycles is non-trivial when the cycles are not PCR cycles. The construction of the MC is
critical for the ease in which these small cycles can be removed. Etzion’s approach requires cutting
out up to dlog se cycles of the form [0i−11] where i < s is a power of 2. For example, when s = 14,
the possible cycles to remove would be of the form [01], [0001], [00000001]. Depending on s, the
cycle [0] may also need to be cut out (the removal of a single 0). Details on how to cut such cycles
out are discussed in Section 4.2. There are two special cases that Etzion addresses to ensure that the
aforementioned small cycles are indeed on the MC.

Special case #1: When n = 2m, the cycle [01] with weight m must be included.

Special case #2: When n = 2m− 1 the cycle [(01)m−11] with weight m must be included.
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As noted earlier, by considering the cycles of weight m in increasing order by period, Special
case #1 is handled since the cycle [01] is the unique cycle with period 2 and will always be added in
that case. Special case #2 requires extra care when adding cycles of weight m and period n, noting
that there are clearly no cycles of weight m and period less than n when n = 2m− 1.

4 Efficiently constructing binary cut-down DB sequences

In this section we apply the following two enhancements to simplify and improve Etzion’s original
approach for constructing a cut-down DB sequence.

1. We apply PCR3 and focus on a single cut-down DB sequence construction.
2. We consider all cycles of the form [0i−11] for 1 ≤ i ≤ dn/2e and cut out at most two small

cycles.

The latter step involves changing the definition of PCR3 for at most two strings. As noted in the
previous section, when defining an MC, the cycles of weight m will be added by increasing (instead
of decreasing) period, thus handling Special case #1. To account for Special case #2, we assume
that S contains all strings from the cycle [(01)m−11] when n = 2m− 1. Details for ensuring this are
provided in the upcoming Algorithm 3.

We conclude this section by applying a ranking algorithm for fixed-weight Lyndon words to
produce the first successor-rule construction of cut-down DB sequences.

4.1 Constructing a Main Cycle with PCR3′

Recall that the substrings of length n from an MC of length L+ s correspond to the set S of
all length-n binary strings belonging to PCR cycles with weight less than m,
all length-n binary strings belonging to PCR cycles with weight m and period less than h, and
all length-n binary strings from t PCR cycles with weight m and period h,

where m,h, t, s are the precomputed variables described in the previous section. Thus, Algorithm 1
can be applied to construct a universal cycle for S.

For the remainder of this section, let MCS denote the universal cycle for S obtained from
Algorithm 1.

4.2 Cutting out small cycles

In order to cut down MCS to a cycle of length L, ideally we cut out a single substring of length s.
However, cutting out such a substring without introducing duplicate length-n substrings is a challenge.
When s ≤ dn

2 e we will demonstrate that finding such a substring is possible; otherwise we cut out
two substrings whose combined length totals s.

When s = 1, it is straightforward to cut out the cycle Z1 = [0] by cutting the unique substring
z(1) = 0n down to 0n−1. Otherwise, consider cycles of the form Zi = [0i−11] for 1 < i ≤ dn

2 e.
Etzion [9] considers similar cycles, but only those with length that is a power of two. Let Zi denote
the set of i length-n strings belonging to Zi. When i divides n, the strings in Zi belong to a single
PCR cycle. However, if i does not divide n, then the strings in Zi belong to two PCR cycles with
different weights. We cannot cut out a cycle [0s−11] when dn/2e < s < n because the length-n
strings belonging to Zi do not appear contiguously on MCS.

I Lemma 3. Let dn/2e < s < n. The length-n strings belonging to [0s−11] do not appear
contiguously on MCS.
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Proof. Let F (a1a2 · · · an) = a2 · · · anx where x = PCR3′(a1a2 · · · an). Consider two length-
n strings α = 0s−110n−s and β = 0n−s10s−1 belonging to [0s−11]. By the definition of s,
s−1 > n−s. Thus, 0s−210n−s1 is a necklace, but 0n−s−110s−11 is not. Therefore, neither
F (α) = 0s−210n−s1, nor F (β) = 0n−s−110s belongs to [0s−11]. This implies the length-n strings
belonging to [0s−11] do not appear contiguously on MCS. J

For 1 < i ≤ dn
2 e, let w(i) = 0b1(0i−11)a−10i−1 = w1w2 · · ·wn−i+1, where a = dn

i e and
b = n+ i− 1− ai. Observe, that w(i) contains each string in Zi as a substring.

Example 4 Let n = 10 and consider Z3 = {1001001001, 0010010010, 0100100100}. Ob-
serve that w(3) = 100100100100 (noting a = 4 and b = 0) has length 12; it contains each
string in Z3 as a substring.

The upcoming lemma implies that the i strings in Zi appear contiguously as substrings on MCS,
with the string z(i) = 0b1(0i−11)a−1 appearing first as the length-n prefix of w(i).

I Remark 4. A string 0x1u0x+1v is not a necklace for any integer x and binary strings u, v.

I Lemma 5. w(i) is a substring of MCS (considered cyclically), for 1 < i ≤ dn
2 e.

Proof. For n ≥ 2, the strings in Zi have weight at most dn
2 e. This upper limit is obtained only when

i = 2 for Z2 = [01]. Thus, the strings in Zi always appear as substrings in MCS since we already
accounted for the two special cases defined at the end of Section 3. Let wj(i) denote the length-n
substring of w(i) starting at index j, for 1 ≤ j ≤ i. We show that PCR3′(wj(i)) = wj+n = 0, for
1 ≤ j < i. If i divides n, then b = i−1 and by Remark 4, PCR3′(wj(i)) = wj = 0. Suppose i does
not divide n. If j 6= b+1, then wj = 0 and by Remark 4, PCR3′(wj(i)) = wj = 0. If j = b+1, then
wj = 1 andwj+1 · · ·wj+n−11 = (0i−11)a−10b1 is a necklace. Thus, PCR3′(wj(i)) = wj = 0. J

Observe that the prefix w1 · · ·wn−1 is the same as length-(n−1) suffix of w(i). Let w0 denote
the bit that appears before the prefix w1 · · ·wn−1 in MCS; PCR3′(w0w1 · · ·wn−1) = wn. Thus,
applying the above lemma, we can modify Algorithm 1 to cut out the cycle Zi by checking if β is
z(i) after Line 6, and if it is, complement the bit x, which effectively continues the cycle as after
w(i). When considering the de Bruijn graph G(n, 2), this corresponds to cutting out the cycle Zi that
starts and ends at the vertex with label w1 · · ·wn−1. The resulting Algorithm 2 is obtained by making
the following three modifications to Algorithm 1 for some 1 ≤ i ≤ dn

2 e:

1. the initial string α is in S \ Zi (i.e, it is not one of the strings being cut out),
2. the value for x is complemented after Line 6 if β = z(i) (cutting out the cycle Zi), and
3. the for loop iterates i less times (to account for the cycle being cut out).

I Lemma 6. Algorithm 2 constructs a cut-down DB sequence of length L+ s− i.

Let j = dn/2e. If s ≤ j, then let R = {z(s)}; otherwise let R = {z(j), z(s−j)}. Since the
strings in each Zi are distinct, we can modify Line 7 of Algorithm 2 to test if β ∈ R to remove
either one or two small cycles; it follows from Lemma 6 that the resulting algorithm will generate a
cut-down DB sequence of length L. Algorithm 3 applies this modification along with implementation
details required to efficiently test if a string belongs to S. It starts with α = 0n−11, which is a string
that does not belong to any Zi. Computing the weight and period of the current length-n string α
leads to an O(n)-time membership tester for S. Since the length-n strings belonging to the t PCR
cycles with weight m and period h are not known a priori, we keep track of how many cycles of
weight m and period h we have seen so far, adding them if we do not exceed t. This is maintained by
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Algorithm 2 Pseudocode for constructing a universal cycle for S \ Zi, where α ∈ S \ Zi. Assume S
includes the strings from the cycle [(01)m−11] when n = 2m− 1.

1: procedure UC2(α)
2: for i← 1 to L+ s− i do
3: PRINT(a1)
4: x← PCR3(α)
5: β ← a2 · · · anx

6: if β /∈ S then x← x

7: if β = z(i) then x← x

8: α← a2 · · · anx

the counter t′. In the special case when n = 2m− 1, a flag is set to make sure the cycle [(01)m−11]
is included; the first string visited on this cycle is (01)m−11.

I Theorem 7. Algorithm 3 generates a binary cut-down DB sequence of length L in O(n) time
per symbol using O(n) space.

Example 5 Recall the MC from Example 3 of length 51 where L = 46 and s = 5. Setting
R = {001001, 010101}, the cycles [001] and [01] are cut out to obtain a cut-down DB sequence of length
L. This is illustrated below where the dashed red arcs are not followed.

The resulting cut-down DB sequence of length L = 46 starting from α = 000001 is

[ 0000011110011100011011010011000010110010100010 ].

Note: Cutting out cycles Zi where i does not divide n involves cutting chunks out of two PCR cycles.

4.3 A successor-rule construction

In this section we define a successor rule that can be used to construct a binary cut-down DB sequence
of length L. Unlike the algorithm in the previous section, no context is required when iterating
through the successor rule; furthermore, determining whether or not a length-n string is found on the
sequence can be computed efficiently.
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Algorithm 3 Pseudocode for constructing a binary cut-down DB sequence of length L assuming precom-
puted values m,h, t and the set R

1: procedure CUT-DOWN

2: α = a1a2 · · · an ← 0n−11
3: t′ ← 0
4: if n = 2m− 1 then flag ← 1
5: else flag ← 0

6: for i← 1 to L do
7: PRINT(a1)

8: . UC-successor for the Main Cycle
9: w ← weight of α

10: x← PCR3(α)
11: β ← a2 · · · anx

12: if w = m and w − a1 + x = m+ 1 then x← x

13: if w = m− 1 and w − a1 + x = m then
14: if per(β) > h then x← x

15: if per(β) = h then
16: if β = (01)m−11 then flag ← 0
17: . Cut out excess cycles of weight m and period h
18: if t′ = t or (t′ + 1 = t and flag = 1) then x← x

19: else t′ ← t′ + 1

20: if β ∈ R then x← x . Cut out small cycle(s)

21: α← a2 · · · anx

Recall that the set S, which contains the length-n substrings of an MC, depends on t PCR cycles
of weight m and period h that are not known a priori. The key to our upcoming successor rule is
to define a specific set of PCR cycles with weight m and period h. Let T denote the set of length-n
strings belonging to PCR cycles corresponding to the t lexicographically largest Lyndon words
of length h and weight mh/n. Considering the t largest Lyndon words instead of the t smallest is
important since it ensures the cycles required in the special cases are always included; each special
cycle corresponds to the lexicographically largest Lyndon word for a given weight. Let γ be the
Lyndon word with rank L2(h,mh/n)− t+ 1 in the lexicographic ordering of Lyndon words with
length h, and weight mh/n; there are t Lyndon words with length h and weight mh/n that are
lexicographically greater than or equal to γ. Applying a recent unranking algorithm for fixed-weight
Lyndon words in lexicographic order, γ can be computed in O(h4) operations on h-bit numbers [16].
Thus, given γ, we can determine whether or not β is in T by applying a simple string comparison
(see Line 12, noting β is a necklace, in the upcoming Algorithm 4).

Let S′ denote the set S that includes the specific subset T. Let C denote the set of strings cut out
from the main cycle. Specifically,

C =
{

Zs if s ≤ dn
2 e;

Zdn
2 e ∪ Zs−dn

2 e otherwise.
By precomputing γ, we adapt Algorithm 3 to obtain the procedure CUTDOWNSUCCESSOR(α), given
in Algorithm 4, that constructs a cut-down DB sequence of length L; it is a universal cycle for S′ \C.
The algorithm can be initialized with any string α in S′ \C.
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Algorithm 4 A successor rule based construction of a cut-down DB sequence of length L based on the
precomputed values m,h, t, the Lyndon word γ, and the set R.

1: procedure CUTDOWNSUCCESSOR(α = a1a2 · · · an)
2: for i← 1 to L do
3: PRINT(a1)

4: . Context-free UC-successor for the Main Cycle
5: w ← weight of α
6: x← PCR3(α)
7: β ← a2 · · · anx

8: if w > m or (w = m and per(β) > h) then x← x

9: if w = m− 1 and w − a1 + x = m then
10: if per(β) > h then x← x

11: if per(β) = h and a2a3 · · · ah+1 < γ then x← x

12: if β ∈ R then x← x . Cut out small cycle(s)

13: α← a2 · · · anx

I Theorem 8. CUTDOWNSUCCESSOR(α) generates a cut-down DB sequence of length L starting
from any α ∈ S′ \C in O(n) time per symbol using O(n) space.

Proof. Every operation in the for loop can be computed in linear time. Thus, each symbol can be
computed in O(n) time. Clearly, the algorithm requires O(n) space to store a constant number of
length-n strings. J

To determine whether or not a string is in S′ \C, we can compute γ via an unranking algorithm
and apply the logic from Algorithm 4; the result is a membership tester that requires O(n4) n-bit
operations. However, by applying a related ranking algorithm for fixed-weight Lyndon words [16],
we can perform this test using O(n3) operations on n-bit numbers.

I Lemma 9. Determining whether or nor a length-n string β belongs to S′ \C can be computed
in O(n3) operations on n-bit numbers.

Proof. Consider a length-n string β. Since there are less than n strings in C, testing whether or not
β is in C can be determined in O(n2) time. If β has weight less than m, or if it has weight m and
period less than h, then it belongs to S. If β has weight greater than m, or weight equal to m and
period greater than h, then it does not belong to S. These cases can be handled in O(n) time. If β
has weight m and period h, let `1`2 · · · `n denote the lexicographically smallest rotation of β. If the
rank of `1 · · · `h is greater than or equal to L2(h,mh/n) − t + 1, then β is in T and hence in S′;
otherwise, β is not in S′. As noted earlier, the rank can be computed using O(n3) operations on n-bit
numbers. Thus, since Lk(n,w) and the variables m,h, t, s can be easily be computed in O(n3) time,
testing whether or not β is in S′ \C can be computed using O(n3) operations on n-bit numbers. J
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5 Cut-down DB sequences for k > 2

In this section we extend the strategy for constructing binary cut-down DB sequences to alphabets
of arbitrary size.4 When generalizing the binary approach, the selection of an underlying de Bruijn
successor is critical to a simple construction for a cut-down DB sequence when k > 2. The PCR3
successor applied in the binary case has two natural generalizations for k ≥ 2. These generalizations
have been previously defined as g3 and g′3 in [13]. The key to selecting an underlying de Bruijn
successor is to allow for the simplest possible method to cut out small cycles; for our purposes, g′3 is
the one that allows for this. It can be computed in O(n) time using O(n) space [13]; we relabel this
de Bruijn successor to PCR3k below5, noting α = a1a2 · · · an.

PCR3k de Bruijn successor:

Let y be the smallest symbol in {1, 2, . . . , k−1} such that a2a3 · · · any is a necklace, or y = 0
if no such symbol exists. Then:

PCR3k(α) =


k−1 if y > 0 and a1 = y−1;
a1−1 if y > 0 and a1 > y−1;
a1 otherwise.

Interestingly, the original presentation of PCR3k is described as a UC-successor for k-ary strings
with weight less than or equal to some fixed w. However, we choose to apply the restriction separately
from the successor as we additionally must consider the periods of the cycles.

The challenge when extending to larger alphabets is that the cycle-joining approach may no longer
apply disjoint conjugate pairs. Instead, several cycles which have common substrings of length n−1
can be joined in a cyclic fashion; the same string can belong to more than one conjugate pair used
during the cycle-joining process. As an example, see Figure 3 which illustrates how PCR3k joins
PCR cycles for n = 3 and k = 4 to obtain the DB sequence

[ 0003303203103002302202102001301201133132131123122333232221211101 ].

As a specific example of how PCR3k joins cycles, consider the cycles [003], [031], [032], and [033].
Consider a UC that has joined [003] but none of the other listed cycles. Then [031] is joined via the
conjugate pair (003, 103). Subsequently, [032] is joined via the conjugate pair (003, 203), and finally
[033] is joined via the conjugate pair (003, 303). Observe that 003 is used in all three conjugate
pairs. This leads to the substring 003303203103 highlighted in the above DB sequence obtained via
repeated application of Lemma 1. Starting from 003, the cycles are visited in the order [003], [033],
[032], [031] as illustrated in Figure 3.

5.1 The MC for k > 2
As in the binary case, let S denote the set of strings belonging to an MC with a corresponding subset T
of ht strings belonging to t cycles of weightm and period h. Recall |S| = L+s and kn−1 < L ≤ kn.
The choice of the underlying de Bruijn successor PCR3k allows for a simple construction of the MC
when k > 2.

4 In [9], Etzion concludes by stating that his binary construction of cut-down DB sequences can be generalized to
alphabets of arbitrary size; however, no details are provided.

5 PCR3k is labeled PCR3 (alt) in [1].
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[001]

[011]

[122]

[002]

[003]

[112] [031]

[032]

[033]

[021]

[022]

[023]

[012]

[013]

[113]

[132][123]

[133][223]

[233]

[3]

[2]

[0]

[1]

Figure 3 Joining PCR cycles for n = 3, k = 4 by applying PCR3k. The cycles drawn at the same level
have the same weight. When constructing an MC with maximum weight m = 4, the dashed red edge illustrates
how the cycles [032] and [033] can be cut out while still including [031]. The directions of the arrows indicate
the order the cycles are visited when starting from [0].

Given α = a1a2 · · · an, let Fk(α) = a2 · · · anPCR3k(α). Like in the binary case, we need only
make a minor modification to the de Bruijn successor when attempting to branch to a PCR cycle with
larger weight that does not belong to the MC. In particular, if Fk(α) is not in S, then it must be that
y = a1 + 1 is the smallest value such that a2 · · · any is a necklace. This is the only case where Fk(α)
has weight greater than α, noting PCR3k(α) = k − 1. Instead, the next symbol in the universal
cycle should be the largest symbol so the resulting string belongs to S. This ensures we only cut
out PCR cycles containing strings that do not belong to S. The resulting algorithm is detailed in
Algorithm 5. It differs from Algorithm 1 only at Line 6 to handle when attempting to branch to a
PCR cycle not in the MC.

I Lemma 10. Algorithm 5 generates a universal cycle for S.

Example 6 Consider Figure 3 where m = 4 and h = 3. Consider α = 003, which belongs
to the cycle [003]. Observe that Fk(α) = 033. This string belongs to [033] with weight 6 and
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Algorithm 5 Pseudocode for constructing a universal cycle for S assuming the input α = a1a2 · · · an ∈ S
and k > 2.

1: procedure k-MC(α)
2: for i← 1 to |S| do
3: PRINT(a1)
4: x←PCR3k(α)
5: β ← a2 · · · anx

6: if β /∈ S then x← the largest symbol such that a2 · · · anx ∈ S
7: α← a2 · · · anx

hence is not on the MC. If we stay on the cycle 003 by setting x = 0, then we also cut out
cycles [032] and [031] which may contain strings on the MC. However, if we have not already
visited t cycles with weight m = 4, then we still want to join the cycle [031], as illustrated by
the red dashed edge in Figure 3; i.e., x should be assigned 1, which is the largest symbol such
that 03x ∈ S.

Using the same notation as in the binary case, let MCS denote the universal cycle for S obtained
from Algorithm 5. Next, we demonstrate how small cycles Zi can be cut out of MCS to obtain a
universal cycle of the desired length L.

5.2 Cutting out small cycles for k > 2
Like in the binary case, Algorithm 5 can be applied to construct a specific MC by counting the
number of cycles added to the MC of weight m and period h. By the choice of the successor PCR3k,
we can cut out the same small cycles Zi using the same set R from the binary case. The resulting
Algorithm 6 will construct a cut-down DB sequence of length L for k > 2. The key differences from
the binary algorithm are as follows:

The initial string is generalized to 0n−1(k−1), as it is the substring following 0n in the DB
sequence generated by PCR3k.
The two special cases no longer need to be considered since m will always be greater than dn/2e
with k > 2. Thus, the variable flag is no longer required.
Lines 9-15 apply simple operations to cut out appropriate cycles based on the definition of PCR3k

to obtain the desired MC.
Line 17 assigns x to 0, which is the same as complementing x when x = 1 in the binary case.
The strings in R remain the same.

I Theorem 11. Algorithm 6 generates a cut-down DB sequence of length kn−1 < L ≤ kn where
k > 2 requiring O(n) time per symbol and using O(n) space.

Proof. The modifications from Algorithm 5 to include only PCR cycles in MCS are straightforward
(Lines 9-15). Thus, we focus on Line 17, which cuts out one or two cycles of the form Zi, depending
on R. Since the strings in these cycles are disjoint, we focus on a single case of z(i) ∈ R, where
1 < i ≤ dn

2 e. Since k > 2, each string in Zi is clearly a substring of MCS; they have small weight
and L is large. The arguments provided in Lemma 5 for k = 2 also apply for k > 2, that is, w(i) is
a substring of MCS. The arguments for cutting out the cycle are also the same as the binary case.
Since the symbol following w(i) in MCS is PCR3k(wi · · ·wn+i−1) = 0, x is assigned 0 at Line
17; we do not need to consider the case when i = 1, since the algorithm is initialized to 0n−1(k−1)
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Algorithm 6 Pseudocode for constructing a cut-down DB sequence (for k > 2) of length L assuming
precomputed values m,h, t and the set R.

1: procedure k-CUT-DOWN

2: α = a1a2 · · · an ← 0n−1(k−1)
3: t′ ← 0
4: for i← 1 to L do
5: PRINT(a1)

6: . UC-successor for the Main Cycle
7: w ← weight of α
8: x← PCR3k(α)
9: if w − a1 + x ≥ m then

10: x← m− w + a1
11: β ← a2 · · · anx

12: if per(β) > h then x← x− 1 . Cut out cycles of weight m and period > h

13: if per(β) = h then
14: if t′ = t then x← x− 1 . Cut out excess cycles of weight m and period h
15: else t′ ← t′ + 1

16: β ← a2 · · · anx

17: if β ∈ R then x← 0 . Cut out small cycle(s)

18: α← a2 · · · anx

and the string α = 10n−1 is visited in the final iteration of the for loop. By limiting the number of
iterations of the for loop to L to account for cutting out the one or two small cycles, the resulting
Algorithm 6 generates a cut-down DB sequence of length L. J

5.3 Precomputing m, h, t, s for k > 2
The time to precompute the values m,h, t, s for k > 2 depends on the time to enumerate Tk(n′, w)
for all 0 ≤ n′ ≤ n and 0 ≤ w ≤ (k − 1)n. These values can be computed in O(k2n2) time by
applying dynamic programming techniques to the following recurrence for n ≥ 0:

Tk(n′, w) =


0 if w < 0 or (n′ = 0 and w > 0);
1 if n′ = 0 and w = 0;∑k−1

j=0 Tk(n′ − 1, w − j) otherwise.

Example 7 We illustrate the computations of m,h, t, s for n = 6, k = 3 and L = 617. First,
we compute the following table of values for T (n′, w):

n′ \ w 0 1 2 3 4 5 6 7 8
1 1 1 1 0 0 0 0 0 0
2 1 2 3 2 1 0 0 0 0
3 1 3 6 7 6 3 1 0 0
4 1 4 10 16 19 16 10 4 1
5 1 5 15 30 45 51 45 30 15
6 1 6 21 50 90 126 141 126 90

Recall the definitions of A(w), B(w, p), and C(w, p) defined in Section 3, for n = 6 and k = 3.
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Since A(7) = 561 and A(8) = 651, we have m = 8. Since B(8, 1) = B(8, 2) = 0, B(8, 3) =
6, B(8, 4) = B(8, 5) = 0, and B(8, 6) = 84, we have C(8, 5) = 6 and C(8, 6) = 90. Thus
h = 6. Since A(8) + C(8, 5) + 9h = 621, we have t = 9 and surplus s = 4.

6 Summary and future work

In this paper, we have enhanced Etzion’s algorithm [10] to construct binary cut-down DB sequences.
Moreover, we generalize the algorithm to alphabets of arbitrary size by selecting an appropriate
underlying feedback function. The resulting algorithms run in O(n)-time per symbol using O(n)
space after some initialization requiring polynomial time and space; they are available for download
at http://debruijnsequence.org/db/cutdown [1]. By utilizing an efficient algorithm
to rank/unrank fixed-weight Lyndon words, we developed the first successor-rule construction for
binary cut-down DB sequences that only requires the current length-n substring to determine the next
bit. It also requires O(n)-time per symbol using O(n) space after an initialization phase. However, it
is important to note that the efficient ranking algorithm only applies to the binary case.

It is not difficult to observe that the cut-down DB sequences produced by our algorithms are not
balanced. Thus, avenues for future research include:
1. Develop an efficient (cycle-joining) construction for generalized DB sequences.
2. Develop an efficient (cycle-joining) construction for balanced cut-down DB sequences.
3. Develop an efficient ranking algorithm for fixed-weight Lyndon words and necklaces for k > 2.
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