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Abstract

A graph G is k-vertex-critical if χ(G) = k but χ(G − v) < k for all v ∈ V (G) where
χ(G) denotes the chromatic number of G. We show that there are only finitely many k-critical
(P3 + ℓP1)-free graphs for all k and all ℓ. Together with previous results, the only graphs H

for which it is unknown if there are an infinite number of k-vertex-critical H-free graphs is
H = (P4 + ℓP1) for all ℓ ≥ 1. We consider a restriction on the smallest open case, and show
that there are only finitely many k-vertex-critical (gem, co-gem)-free graphs for all k, where
gem= P4 + P1. To do this, we show the stronger result that every vertex-critical (gem, co-gem)-
free graph is either complete or a clique expansion of C5. This characterization allows us to give
the complete list of all k-vertex-critical (gem, co-gem)-free graphs for all k ≤ 16.

1 Introduction

For a given k ≥ 3, determining the k-colorability graphs is a classic NP-complete problem [29].
When the graphs are from a special family, however, polynomial-time algorithms have been devel-
oped to determine the k-colorability for some (and sometimes all) values of k. Families of particular
interest are hereditary families defined by one or more forbidden induced subgraphs. A founda-
tional result to this end is the polynomial-time algorithm to determine the k-colorability of perfect
graphs [18]. On the negative side, determining the k-colorability of H-free graphs for any k ≥ 3 re-
mains NP-complete if H contains an induced cycle [27, 33] or claw [24, 31]. Thus, assuming P 6=NP,
if k-colorability of H-free can be determined in polynomial time for some k ≥ 3, then H must be
the disjoint union of paths. Seinsche [36] proved that P4-free graphs are perfect and therefore their
k-colorability is polynomial-time solvable. A recursive polynomial-time algorithm exploiting dom-
inating structures to determine the k-colorability of P5-free graphs for all k was developed in [22].
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The strength of this algorithm was further highlighted when it was shown that determining the
k-colorability of Pt-free graphs is NP-complete if t ≥ 7 and k ≥ 4 or t = 6 and k ≥ 5 [25]. In the
same work, it was also conjectured that the 4-colorability of P6-free graphs could be determined in
polynomial time. This conjecture was proved in a series of two preprints [12, 13] (see also a concise
conference paper of the results [14]). This completed the complexity dichotomy for determining
4-colorability of H-free graphs when H is connected. For smaller k, the 3-colorability of P7-free
graphs can be determined in polynomial time [1] and the complexity remains an open question for
Pt-free when t ≥ 8.

When we consider H-free graphs for disconnected H, things are still very interesting. The
polynomial-time algorithm to determine k-colorability of P5-free graphs for any k was later gener-
alized for (P5 + rP1)-free graphs for any r ≥ 0 in [16]. The 3-colorability of (P6 + rP3)-free graphs
can determined in polynomial time for any r ≥ 0, while for k ≥ 5, k-colorability of (P5 + P2)-free
graphs is NP-complete [10]. Very recently it was shown that the 5-colorability of rP3-free graphs
can be determined in polynomial time, while the k-colorability of (r + 1)P4-free graphs remains
NP-complete for any r ≥ 1 and k ≥ 5 [20]. It follows that the graph H of smallest order for
which the complexity of determining the k-colorability of H-free graphs is not known for all k is
H = P3+P2, where it is polynomial-time solvable for k ≤ 5 and has unknown complexity for k ≥ 6.

Beyond the complexity of k-colorability algorithms, there is also interest in developing ones that
are certifying. An algorithm is certifying if together with each output it includes a simple and easily
verifiable witness that the output is correct. In the case of k-colorability algorithms, a k-coloring
serves as a certificate for a positive answer, and an induced (k + 1)-vertex-critical subgraph can
be returned to certify a negative answer. It is well-known that if a hereditary family of graphs
F contains only finitely many (k + 1)-vertex-critical graphs, then a polynomial-time algorithm to
determine the k-colorability of any graph in F can be readily implemented by searching for each of
the (k + 1)-vertex-critical graphs as induced subgraphs and returning one as a certificate if found
(see [4] for more details). In the past decade there has been a push for the development of more
certifying algorithms in general, including the strong stance taken by McConnell et al. [34] that
“for complex algorithmic tasks, only certifying algorithms are satisfactory.” While many of the k-
colorability algorithms cited above return k-colorings if they exists, in most of these cases, how to
efficiently return vertex-critical subgraphs remains either unknown or impossible [15]. However, a
linear-time certifying algorithm for determining the 3-colorability of P5-free graphs was developed
by showing that there are exactly 12 4-vertex-critical P5-free graphs [2, 32]. Unfortunately, the
following theorem asserts that this positive trend does not continue for larger k.

Theorem 1.1 ([23]). If H is not 2K2-free and k ≥ 5, then there is an infinite number of k-vertex-
critical H-free graphs.

This has led to significant interest in classifying k-vertex-critical (Pt,H)-free graphs for t ≥ 5.
There are exactly 13 5-vertex-critical (P5, C5)-free graphs [23] and only finitely many 6-vertex-
critical (P5,banner)-free graphs where banner is the graph obtained from a cycle of order four by
attaching a leaf to one of its vertices [4]. There are only finitely many 4-vertex-critical (P8, C4, C5)-
free graphs [15] and 5-vertex-critical (P6,banner)-free graphs [26]. More generally, there are only
finitely many k-vertex-critical (P5,H)-free graphs for all k ≥ 1 if H = P5 [17] or H = Ks,s (the
complete bipartite graph of order 2s) for any s ≥ 1 [28] where the latter extends an analogous
result for (P6, C4)-free graphs [21] and the former includes a structural characterization. In recent
work, it was shown for k ≥ 5 that there are only finitely many k-vertex-critical (P5,H)-free graphs
for H of order four if and only if H is neither 2P2 nor K3+P1 [7]. Very recently, it was shown that
there are only finitely many k-vertex-critical (P5,H)-free graphs for all k when H = gem (where
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gem= P4 + P1) or H = P3 + P2 [3]. Returning to H-free vertex-critical graphs, substantial progress
was recently made with the following dichotomy theorem.

Theorem 1.2 ([9]). Let H be a graph. There are only finitely many 4-vertex-critical H-free graphs
if and only if H is an induced subgraph of P6, 2P3, or P4 + ℓP1 for some ℓ ∈ N.

It follows that the only open cases of which graphs H there are only finitely many k-vertex-
critical H-free graphs for all k are H = Pn+ ℓP1 for 1 ≤ n ≤ 4 and ℓ ≥ 1. For n = 1 and any ℓ ≥ 1,
the finiteness follows trivially by Ramsey’s Theorem. For n = 2 and any ℓ ≥ 1, the second, third,
and fourth authors showed finiteness [6]. For n = 3 and ℓ = 1, finiteness was shown in [7]. In this
paper, we further resolve some of the remaining open cases by showing the following:

• There are only finitely many k-vertex-critical (P3 + ℓP1)-free graphs for all k ≥ 1 and ℓ ≥ 0.

• There are only finitely many k-vertex-critical (gem, co-gem)-free graphs for all k ≥ 1, and
moreover, every such graph must be complete or a clique-expansion of C5.

1.1 Outline

We prove our result on (P3 + ℓP1)-free graphs in Section 2 and our results on (gem, co-gem)-free
graphs in Section 3. The precise structural characterization of k-vertex-critical (gem, co-gem)-free
graphs allows us to exhaustively generate (with aid of computer search) all such graphs for k ≤ 16
which is outlined in Section 3.1. We conclude with some open problems in Section 4. Before getting
to any of that, we first list many of the definitions and notations that will be used throughout the
paper.

1.2 Definitions and notation

Let G be a graph and a, b be two vertices of G. We write a ∼ b to mean a is adjacent to b, and a ≁ b

otherwise. A k-coloring c(G) of G is a mapping c : V (G) → {1, 2, . . . , k} such that c(x) 6= c(y) if
x ∼ y; c(x) is called the color of x. For a set A of vertices of G and a coloring c(G), c(A) denotes
the set of colors that appear in A. The chromatic number of G, denoted by χ(G) is the smallest k
such that G admits a k-coloring. The graph G is k-vertex-critical if χ(G) = k and χ(G − v) < k

for all v ∈ V (G). For a set A ⊆ V (G), G[A] denotes the subgraph of G induced by A.
Pn denotes the induced path of order n. Kn denotes the clique on k vertices. For graphs G

and H, G +H denotes the disjoint union of G and H. For a positive integer ℓ, let ℓG denote the
disjoint union of ℓ copies of G. The complement of a graph G is denoted G. For S ⊆ V (G), we
let G− S denote the graph obtained from G by deleting all vertices in S along with their incident
edges. For v ∈ V (G), we let G − v denote G − {v}; and we let N(v) denote the set of vertices of
G− v that are adjacent to v.

The gem is the graph P4 + P1 and the co-gem is P4 +P1. A graph G is perfect if χ(H) = ω(H)
for all induced subgraphs H of G. For subsets A and B of V (G), we say A is complete to B if
ab ∈ E(G) for all a ∈ A and b ∈ B and we say A is anti-complete to B if ab 6∈ E(G) for all a ∈ A

and b ∈ B. For M ⊆ V (G), we say M is a module if for all v ∈ V (G) \ M , v is either complete
or anti-complete to M . A module M is non-trivial if M 6= V (G) and |M | 6= 1. Given a graph
G of order n with vertices v1, v2, . . . , vn and any disjoint non-empty graphs H1,H2, . . . ,Hn, the
expansion G(H1,H2, . . . ,Hn) is the graph obtained from G by replacing, for each i, vi with Hi and
joining x ∈ Hi and y ∈ Hj with an edge if and only if vi is adjacent to vj in G. Note that the
expansion depends on an order of the vertices. An expansion is called a P4-free expansion if each
Hi is P4-free and it is called a clique expansion if each Hi is a clique. For a given coloring c of a
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graph G and a subset S ⊆ V (G), let c(S) denote the set of all colors used on vertices in S and Sj

denote the set of all vertices in S colored j provided j is a color used in c. A stable set is a subset
S of V (G) such that S induces no edges. We let α(G) denote the largest order of a stable set in
G. A clique C ⊆ V (G) in a graph G is maximal if C ∪ {v} is not a clique for all v ∈ V (G) \ C. A
stable set S of a graph G is very good is S ∩K 6= ∅ for every maximal clique K of G.

Let R(r, s), for r, s ≥ 1, denote the Ramsey numbers, where R(r, s) is the least positive integer
such that every graph with at least R(r, s) vertices contains either a clique on r vertices or an
independent set on s vertices. We note that R(r, s) always exists by Ramsey’s Theorem [35].

2 (P3 + ℓP1)-free graphs

Throughout this section, assume G is a k-vertex-critical (P3 + ℓP1)-free graph.
Let S be a maximum stable set of G. Then, each vertex in G− S has at least one neighbor in

S. Let A be the vertices in G− S with exactly one neighor in S. Let B = G− (S ∪ A). We note
that every vertex in B has at least two neighbors in S. Let SA be the set of vertices s ∈ S such
that some vertex in A is adjacent to s. Let SB = S − SA.

Lemma 2.1. For k ≥ 3 and ℓ ≥ 0, α(G) < (k − 1)2(ℓ+ 3)

Proof. By way of contradiction, assume k ≥ 3 and ℓ ≥ 0 but |S| ≥ (k − 1)2(ℓ + 3). For a vertex
s ∈ SA, let sA be the neighbors of s in A, i.e., sA = N(s) ∩A.

We will establish a number of claims before proving the Lemma.

Claim 2.2. For each s ∈ SA, sA induces a clique in G.

Proof of Claim 2.2. Let s ∈ SA and suppose a1, a2 ∈ sA such that a1 ≁ a2. By definition, a1 and
a2 are not adjacent to any vertex in S − {s}, so the set containing a1, a2, s and any ℓ vertices in
S − {s} induces a P3 + ℓP1, a contradiction.

Claim 2.3. For any two vertices x, y ∈ SA, xA is anti-complete to yA.

Proof of Claim 2.3. Suppose x, y ∈ SA, a1 ∈ xA and a2 ∈ yA such that a1 ∼ a2. Then the set
containing a1, a2, x and any ℓ vertices in S − {x, y} induces a P3 + ℓP1, a contradiction.

Claim 2.4. B 6= ∅.

Proof of Claim 2.4. Suppose B = ∅. Therefore, SA = S and, by assumption, |SA| ≥ (k−1)2(l+3).
Let s ∈ SA. By Claim 2.2, sA induces a clique. Further, since G is k-vertex-critical, deg(s) ≥ k−1,
so N [s] induces a clique of order at least k. Since G is k-vertex-critical, it follows that G = Kk and
therefore α(G) = 1, a contradiction.

Claim 2.5. Each vertex in B has at most ℓ− 1 non-neighbors in S.

Proof of Claim 2.5. If there is a vertex in B with at least ℓ non-neighbors in S, then the set
containing this vertex together with any two of its neighbors in S and any ℓ of its non-neighbors
in S induces a P3 + ℓP1, a contradiction.

We say that a color class i is big if it has at least (k− 1)(ℓ+3) vertices in S, otherwise we say that
the color class is small.

Claim 2.6. Fix a k-coloring of G. If some color class has exactly one vertex, then some other
color class is big.
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Proof of Claim 2.6. If some color class has one vertex and each of the other k − 1 color classes
contain at most (k − 1)(ℓ+ 3)− 1 vertices from S, then

|S| ≤ (k − 1)((k − 1)(ℓ+ 3)− 1) + 1

= (k − 1)2(ℓ+ 3)− k + 2

< (k − 1)2(ℓ+ 3),

a contradiction. Therefore, some color class has to be big.

Claim 2.7. If a color appears in B, then its color class is small.

Proof of Claim 2.7. If a big color class contains b ∈ B, then b has at least (k − 1)(ℓ + 3) > ℓ − 1
non-neighbors in S, contradicting Claim 2.5.

Now let x be a vertex in S with the least number of neighbors in A among all vertices in S, that is,
|xA| = mins∈S(|sA|). In particular, if SB 6= ∅, then x ∈ SB . Since G is k-vertex-critical, we may fix
a (k− 1)-coloring of G− x with colors from {1, 2, . . . , k− 1} such that all k− 1 colors must appear
in N(x), for otherwise G is (k − 1)-colorable. From Claim 2.6, some color class had to be big.

If x ∈ SB, then all k − 1 colors including one in a big color class appear in B, contradicting
Claim 2.7. Therefore, x ∈ SA and SB = ∅. Since xA is a clique, it has |xA| distinct colors. We may
assume colors 1, . . . , t appear in xA, and colors t+ 1, . . . , k − 1 appear in N(x) ∩ B. If t = k − 1,
then G contains a clique with k vertices. Since G is k-vertex-critical, G is a clique on k vertices.
Thus we have α(G) = 1, a contradiction. Therefore, we may assume t < k − 1. The color classes
of t+ 1, . . . , k − 1 must all be small by Claim 2.7.

Without loss of generality, assume color 1 is big. Let S1 be the set of vertices in SA = S with
color 1. For each vertex s ∈ S1, the clique sA has at least as many vertices as xA by the choice of
x. Thus, for each s ∈ S1 there is a vertex f(s) ∈ sA with a color in the set C = {t + 1, . . . k − 1}.
Let F be the set of all such vertices f(s) for all s ∈ S1. By definition of f(s), we have F ⊂ A.
Since |F | = |S1| ≥ (k − 1)(ℓ+ 3) and 1 ≤ |C| ≤ k − 2, there are at least

⌈

(k − 1)(ℓ+ 3)

k − 2

⌉

> ℓ

vertices in F that have the same color by the Pigeonhole Principle. Let i be a color used on at
least ℓ vertices in F and let I be a set of exactly ℓ vertices colored i in F . By definition of F , i ∈ C.
Let bi be a vertex in N(x) ∩B with color i. Recall that bi exists since colors 1, . . . , t must appear
in xA and colors t+ 1, . . . , k − 1 must appear in N(x) ∩B. Since I ⊂ A, we have bi 6∈ I.

Claim 2.8. bi has at least two neighbors in S −N(I).

Proof of Claim 2.8. By Claim 2.3, a vertex in S cannot be adjacent to two vertices in I. It follows
from the definition of A that |N(I) ∩ S| = |I| = ℓ. Therefore,

|S −N(I)| ≥ (k − 1)2(ℓ+ 3)− ℓ > ℓ+ 1.

Thus, by Claim 2.5, bi has at least two neighbors in S −N(I).

We now continue with the proof of the Lemma.
Let s1, s2 ∈ S −N(I) such that b ∼ s1 and b ∼ s2. Therefore, {bi, s1, s2} ∪ I induces a P3 + ℓP1, a
contradiction.
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Theorem 2.9. There are only finitely many k-vertex-critical (P3 + ℓP1)-free graphs for all k ≥ 1
and ℓ ≥ 0.

Proof. For k = 1, 2, the result is trivial. Fix k > 2 and ℓ ≥ 0 and let G be a k-vertex-critical
(P3 + ℓP1)-free graph. Since G is k-colorable, ω(G) < k+1. Therefore, from Lemma 2.1, |V (G)| <
R(k, (k − 1)2(ℓ + 3)). Hence, by Ramsey’s Theorem, every k-vertex-critical (P3 + ℓP1)-free graph
has order bounded by some constant depending only on k and ℓ. Therefore, there are only finitely
many k-vertex-critical (P3 + ℓP1)-free graphs.

3 (gem, co-gem)-free graphs

From Theorem 2.9, the only graphs H where it is unknown if there are only a finite number of
k-vertex-critical H-free graphs for all k is H = P4+ℓP1 for all ℓ ≥ 1. In this section we will consider
a subclass of (P4 + P1)-free graphs and show that this subclass contains only a finite number of
k-vertex-critical graphs for all k. Our results in this section make extensive use of a structural
characterization due to Karthick and Maffray [30] whose statement requires a few definitions.

Let G1, G2, . . . , G10 be defined as shown in Figure 1 and let Gi and G∗
i denote the set of all

P4-free and clique expansions of Gi, respectively. Throughout, for a graph G ∈ Gi, we will use Ai to
denote the set of vertices used to replace vi in the graph Gi according to the labellings in Figure 1.

v5 v2

v4

v1

v3

(a) G1

v5 v2

v4

v1

v3

v6
v7

(b) G2

v5 v2

v4

v1

v3

v6

v7

(c) G3

v5 v2

v4

v1

v3

v6

v7

(d) G4

v5 v2

v4

v1

v3

v6
v7

(e) G5

v5 v2

v4

v1

v3

v6

v7
v8

(f) G6

v5 v2

v4

v1

v3

v6

v7
v8

(g) G7

v5 v2

v4

v1

v3

v6

v7
v8

(h) G8

v5 v2

v4

v1

v3

v6

v7v8

(i) G9

v5 v2

v4

v1

v3

v6

v7v8

v9

(j) G10

Figure 1: Special (gem, co-gem)-free graphs used in the structural characterization in [30].

Let H be the class of (gem, co-gem)-free graphs G such that V (G) can be partitioned into six
non-empty sets, A1, . . . , A6 such that:

• A1 is complete to A2 ∪A5 and anti-complete to A3 ∪A4 ∪A6,

• A2 is complete to A1 ∪A3 ∪A6 and anti-complete to A4 ∪A5,

• A3 is complete to A2 ∪A6 ∪A4 and anti-complete to A1 ∪A5, and

• A4 is complete to A3 ∪A5 and anti-complete to A1 ∪A2 ∪A6.

Note that Ai is P4-free for all i = 1, 2, . . . , 6 and the adjacencies between A5 and A6 are unspecified
but restricted by the fact that G is (gem, co-gem)-free. A depiction of a graph in H is given in
Figure 2. We can now state the structural characterization.

Theorem 3.1 ([30]). If G is (gem,co-gem)-free, then either G is perfect, or G ∈ Gi for some
i ∈ {1, 2, . . . , 10}, or G ∈ H.
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A1 A3

A5

A2

A4

A6

Figure 2: General form of a graph in H where the thick black lines denote sets which are complete
to each other and the dashed line denotes unspecified adjacency.

Lemma 3.2 ([17]). If G is k-vertex-critical with a non-trivial module M , then M is m-vertex-
critical for some m < k.

Lemma 3.3 ([30]). If G ∈ G∗
1 has order n, then χ(G) = max

(

ω(G),
⌈

n
2

⌉)

.

Lemma 3.4 ([30]). Let i ∈ {2, 3, . . . , 10} and G ∈ G∗
i . If x1 ∈ A1, x4 ∈ A4, and x6 ∈ A6, then

{x1, x4, x6} is a very good stable set in G.

The following observation is easy to establish by the fact that every induced C5 in Gi for each
i = 2, . . . , 10 meets exactly two vertices in the set {v1, v4, v6} (where vi refers to the vertex labels
of each graph as shown in Figure 1).

Observation 3.5. Let i ∈ {2, . . . , 10}. If G ∈ G∗
i and C ⊂ V (G) such that C induces a clique

expansion of C5, then C ∩Ai 6= ∅ for exactly two i ∈ {1, 4, 6}. �

Let H∗ be the set of graphs in H where Ai is a clique for i = 1, 2, 3, 4. Recall from Section 1.2
that Sj denotes the vertices in the set S that are assigned color j.

Lemma 3.6. Let {i, i′} = {1, 4}. If G is a graph in H∗ with χ(G) = k and j, j′ ∈ {1, 2 . . . , k} such
that j′ ∈ c(A6) \ c(Ai) and j ∈ c(Ai) \ c(A6), then a new k-coloring of G can be obtained such that
j 6∈ c(Ai) and j′ ∈ c(Ai) ∩ c(A6) by performing one of the following:

i) Changing the color of a vertex in Ai from j to j′, or

ii) Swapping the colors of the vertices in A
j
i and A

j′

5 and if there is a vertex in Ai′ with color j,
then change the color of this vertex to j′.

Proof. By symmetry we may assume without loss of generality that j′ ∈ c(A6) \ c(A1) and j ∈
c(A1) \ c(A6). If j′ 6∈ c(A5), then simply change the color j in A1 to j′ (operation i)). Note that
j′ 6∈ c(A2) since A6 is complete to A6 and j′ ∈ c(A6) so this is a valid k-coloring. If j′ ∈ c(A5), then

swap the colors of Aj′

5 and A
j
1. Since j 6∈ c(A6), this is a valid k-coloring if and only if j 6∈ c(A4).

Suppose j ∈ c(A4). Since j′ is no longer in c(A5) and is not in c(A3) since A6 is complete to A3,
we can simply change the color j in A4 to j′ and the result is a valid k-coloring (operation ii)).

Lemma 3.7. There are no k-vertex-critical graphs in H.
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Proof. Suppose by way of contradiction that G is a k-vertex-critical graph in H. We will first
establish a number of claims.

Claim 3.8. G ∈ H∗.

Proof of Claim 3.8. By definition of H, Ai is a module for i = 1, 2, 3, 4, and therefore must be
critical by Lemma 3.2. Since each Ai must be P4-free, it follows that Ai is a clique for i = 1, 2, 3, 4.
Thus, G ∈ H∗.

For the rest of the proof, suppose without loss of generality that |A4| ≤ |A1|.

Claim 3.9. χ(G[A6]) < |A4|.

Proof of Claim 3.9. If there exists a k-coloring of G such that |c(A6)| < |A4|, then we are done. So
suppose for every k-coloring of G, |c(A6)| ≥ |A4|. Fix a k-coloring of G such that x ∈ A4 is the
only vertex colored k. By successive applications of Lemma 3.6, we can get a new k-coloring of G
where x is still the only vertex colored k, c(A4 \ {x}) ⊂ c(A6) and |c(A1) ∩ c(A6)| > |A4| − 1. Fix
such a k-coloring of G. So there is a color j ∈ (c(A1) ∩ c(A6)) \ c(A4). Since A1 is complete to A5

and A6 is complete to A3, it follows that j 6∈ c(A3) ∪ c(A5). Therefore, we can change the color of
x from k to j to produce a (k − 1)-coloring of G, a contradiction.

Let G′ be the graph defined by V (G′) = V (G) and E(G′) = E(G) ∪ {a5a6 : a5 ∈ A5 and a6 ∈ A6}.

Claim 3.10. G′ is k-vertex-critical and A5 and A6 are both cliques.

Proof of Claim 3.10. Fix a k-coloring of G such that x is the only vertex colored k. We now show
that no matter which set Ai that x is in, we can obtain a k-coloring of G where x is still the only
vertex colored k and where c(A5) ∩ c(A6) = ∅.

Case 1: x ∈ A2 ∪A3 ∪A5.
If |c(A6)| ≤ |A4|, then by successive applications of Lemma 3.6 we can obtain a new k-

coloring where x is still the only vertex colored k and c(A6) ⊆ c(A4). Therefore c(A5) ∩ c(A6) ⊆
c(A5) ∩ c(A4) = ∅ since A4 is complete to A5. Thus, we may assume |c(A6)| > |A4|. Then by
successive applications of Lemma 3.6 we can obtain a new k-coloring where x is still the only vertex
colored k and c(A4) ⊂ c(A6). From Claim 3.8 and Claim 3.9, |c(A4)| = |A4| > χ(G[A6]). Therefore,
we can obtain a new k-coloring of G by coloring A6 with any χ(G[A6]) colors from c(A4). Note
that this will still be a valid k coloring as c(A4) ∩ c(A5) = ∅ and c(A4) ∩ c(A3) = ∅ since A4 is
complete to both sets and c(A4)∩ c(A2) = ∅ since A6 is complete to A2 and c(A4) ⊂ c(A6). In such
a k-coloring, we have c(A5) ∩ c(A6) = ∅ since c(A4) ∩ c(A5) = ∅.

Case 2: x ∈ A6.
If |c(A6)| ≤ |A4|, then we may successively apply Lemma 3.6 to obtain a new k-coloring of G

where x remains the only vertex with color k and c(A6) \ {k} ⊆ c(A4). Since k 6∈ c(A5), we now
have c(A6)∩ c(A5) ⊆ c(A4)∩ c(A5) = ∅. Thus, we may assume |c(A6)| > |A4|. We may successively
apply Lemma 3.6 to obtain a new k-coloring of G where x remains the only vertex with color k

and c(A4) ⊆ c(A6) \ {k}. By Claim 3.8 and Claim 3.9, it follows that |c(A4) ∩ c(A6)| > χ(G[A6]).
Therefore, we can obtain a new k-coloring of G by coloring A6 with any χ(G[A6]) colors from c(A4)
as in Case 1. In such a k-coloring, we have c(A5) ∩ c(A6) = ∅ since c(A4) ∩ c(A5) = ∅.

Case 3: x ∈ A1 ∪A4.
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Let {i, i′} = {1, 4} and suppose that x ∈ Ai. If |c(A6)| ≤ |Ai′ |, then we may successively apply
Lemma 3.6 to obtain a new k-coloring of G where x remains the only vertex with color k and
c(A6) ⊆ c(Ai′). In this k-coloring, c(A5) ∩ c(A6) = ∅. Thus, we may assume |c(A6)| > |Ai′ |. We
may successively apply Lemma 3.6 to obtain a new k-coloring of G where x remains the only vertex
with color k and c(Ai′) ⊆ c(A6). By Claim 3.8 and Claim 3.9 and since |Ai′ | ≥ |A4|, it follows
that |c(Ai′) ∩ c(A6)| > χ(A6). Therefore, we can obtain a new k-coloring of G by coloring A6 with
any χ(A6) colors from c(Ai′). In such a k-coloring, we have c(A5)∩c(A6) = ∅ since c(Ai′)∩c(A5) = ∅.

In each case, it follows that the k-coloring of G is also a k-coloring for G′. Since G′ is a k-
colorable supergraph of G and χ(G) = k, we must have χ(G′) = k. Further, since x is the only
vertex colored k, G′ − x is (k − 1)-colorable. Since this holds for any x ∈ V (G′), G′ is k-vertex-
critical. Hence, A5 and A6 are modules in G′ and therefore critical by Lemma 3.2. Since A5 and
A6 are P4-free and critical, they must be cliques.

Now, we continue the proof of Lemma 3.7. From Claim 3.10, we may assume G′ is k-vertex-
critical. Fix a k-coloring of G′ such that x ∈ A6 is the only vertex with color k. If there exists
c1 ∈ c(A1) \ (c(A6) ∪ c(A3)) or c1 ∈ c(A4) \ (c(A6) ∪ c(A2)), then c1 6∈ c(A5) so we can change the
color of x from k to c1 and obtain a (k − 1)-coloring of G′, a contradiction. Therefore, we have
c(A1) ⊆ c(A6) ∪ c(A3) and c(A4) ⊆ c(A6) ∪ c(A2). Note that |c(A6)| = |A6| from Claim 3.10 and
since |A6| < |A4| from Claim 3.9, it follows that there is a color c2 ∈ c(A4) ∩ c(A2). Further, if
c(A5) ⊆ c(A2)∪ c(A3), then k = |A6|+ |A2|+ |A3| = χ(G′− (A1∪A4∪A5)), contradicting G′ being
k-vertex-critical. Therefore, there is a color c3 ∈ c(A5) \ (c(A2) ∪ c(A3)). Thus, we can swap the
colors of the vertices in the sets Ac2

4 and Ac3
5 to obtain a new k-coloring of G′. Finally, we can now

change the color of x to c3 to obtain a (k − 1)-coloring of G′, a contradiction. Thus, the Lemma
holds.

Lemma 3.11. There are no vertex-critical graphs in G2 ∪ G3 ∪ · · · ∪ G10.

Proof. Let S = G2∪G3∪ · · · ∪G10 and S∗ = G∗
2 ∪G∗

3 ∪ · · · ∪G∗
10. The proof proceeds by induction on

k. For k = 1, 2, 3 the result is clear. For some k > 3, suppose there are no k′-vertex-critical graphs
in S for all k′ < k and suppose G is a k-vertex-critical graph in S. By Lemma 3.2 and since G is
gem-free, it follows that G ∈ S∗. Note that ω(G) ≤ k − 1 since G is critical and not Kk.

Let x1 ∈ A1, x4 ∈ A4, x6 ∈ A6 and S = {x1, x4, x6}. Then by Lemma 3.4, S is a very good stable
set in G. Since S is a very good stable set and G is k-vertex-critical, G−S must be (k−1)-chromatic
and ω(G − S) < ω(G) ≤ k − 1. Since G− S is (gem, co-gem)-free, it is (C2k+1, C2k+1)-free for all
k ≥ 3, so if G − S is C5-free, then it must be perfect by the Strong Perfect Graph Theorem [11].
This would then imply that G− S is Kk−1, contradicting ω(G) < k − 1.

Therefore assume G− S contains an induced C5. Since χ(G− S) = k − 1, G− S must contain
an induced (k − 1)-vertex-critical subgraph F . By the same reasoning as for G − S, F must also
contain an induced C5. Thus, by Theorem 3.1, F ∈ Gi for some i ∈ {1, . . . , 10} or F ∈ H. But since
F is (k− 1)-vertex-critical, Lemma 3.7 gives F 6∈ H and the inductive hypothesis gives that F 6∈ Gi

for all i ∈ {2, . . . , 10}. Thus, F ∈ G1 and further, by Lemma 3.2 it follows that F ∈ G∗
1 . Since

ω(F ) ≤ ω(G− S) < k − 1, Lemma 3.3 gives k − 1 =
⌈

|V (F )|
2

⌉

. By Observation 3.5, V (F ) ∩Ai 6= ∅

for exactly two i ∈ {1, 4, 6}. Without loss of generality, say V (F ) ∩ A1 6= ∅ and V (F ) ∩ A4 6= ∅.
Thus, G[V (F )∪{x1, x4}] ∈ G∗

1 . However, we now have G[V (F )∪ {x1, x4}] being a proper induced
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subgraph of G and, by Lemma 3.3,

χ(G[V (F ) ∪ {x1, x4}]) ≤

⌈

|V (F ) ∪ {x1, x4}|

2

⌉

=

⌈

|V (F )|

2

⌉

+ 1

= k.

This contradicts G being k-vertex-critical. Therefore there are no critical graphs in S.

Theorem 3.12. For all k ≥ 1, there are only finitely many k-vertex-critical (gem, co-gem)-free
graphs.

Proof. Let G be a k-critcal (gem, co-gem)-free graph. By Theorem 3.1, G is either perfect, or in Gi

for i ∈ {1, 2, . . . , 10} or in H. If G is perfect, then G = Kk. By Lemma 3.7, G 6∈ H. If G ∈ Gi for
some i ∈ {1, 2, . . . , 10}, then, by Lemma 3.11, i = 1. By Lemma 3.2, G must be a clique expansion
of G1. Using liberal upper bounds, each clique can have at most k − 2 vertices and |V (G1)| = 5,
so |V (G)| < 5(k − 2). Therefore, there are only finitely many k-vertex-critical (gem,co-gem)-free
graphs.

3.1 Exact number of k-vertex-critical (gem, co-gem)-free graphs

Lemmas 3.7 and 3.11 give the stronger result that every k-vertex-critical (gem, co-gem)-free graph
is either complete or in G∗

1 , i.e., a clique-expansion of C5. The following theorem provides further
restrictions on the structure of vertex-critical graphs in G∗

1 .

Theorem 3.13 ([17]). Let k ≥ 3. A graph G ∈ G∗
1 is k-vertex-critical if and only if G[Ai] ∼= Kki

such that
∑5

i=1 ki = 2k − 1 and for each i mod 5, ki + ki+1 ≤ k − 1.

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

num(k) 1 1 2 2 4 6 11 17 27 39 58 80 112 148 197 253

Table 1: num(k) denotes the number of k-vertex-critical (gem, co-gem)-free graphs.

This allows for efficient generation of all k-vertex-critical (gem,co-gem)-free graphs for all k ≤ 16
by simply computing all integer compositions of 2k − 1 such that adjacent parts sum to at most
k − 1 and the symmetries of C5 are accounted for. The results of this are summarized in Table 1
and Figure 3 shows all 6-vertex-critical (gem, co-gem)-free graphs. The graphs in graph6 format
as well as Sagemath files used to generate them are available at [5].

4 Conclusion

In this paper we showed that for all k ≥ 1 and ℓ ≥ 0 that there are only finitely many k-vertex-
critical (P3 + ℓP1)-free graphs and only finitely many k-vertex-critical (gem, co-gem)-free graphs.
Our results imply the existence of new polynomial-time certifying algorithms to determine the k-
colorability of graphs in each respective family. This has substantially reduced the number of open
cases for a complete dichotomy on which graphs H are there only finitely many k-vertex-critical
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(a) G1 (b) G2 (c) G3 (d) G4 (e) G5

(f) G6

Figure 3: All 6-vertex-critical (gem, co-gem)-free graphs.

H-free graphs for all k. The only remaining open case is now just H = P4 + ℓP1 (Generalized
Problem 2 in [6]).

The structural characterization we were able to prove for k-vertex-critical (gem, co-gem)-free
graphs and a similar previous for (P5, P5)-free graphs [17] lead us to pose the following open problem
in analogy to the similar open problem on χ-bounding due to Gyárfás [19].

Open Problem 1. For which forests F is there only a finite number of k-vertex-critical (F,F )-free
graphs for all k?

A natural place to start on Problem 1 would be to consider other forests F of order 5. In particular,
F = P2 + P3 would be of interest given the very recent work of Char and Kartick [8].
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