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Abstract

The problem of computing the chromatic number aPafree graph (a graph which contains no path on
5 vertices as an induced subgraph) is known to be NP-hard. However, we show that for every fixedcinteger
there exists a polynomial-time algorithm determining whether or rétfee graph admits A-coloring, and
finding one, if it does.
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1 Introduction

A k-coloring of a graph is an assignment bfcolors to its vertices so that no two adjacent vertices receive the
same color. Thé&-COLORABILITY problem is to determine whether or not a given grépadmits ak-coloring,

and to output one, if it does. The smalléstor which exists ak-coloring of a graph is called itshromatic
number The algorithmic problem of computing it will be referred to@$ROMATIC NUMBER.

The k-COLORABILITY is one of the central problems of algorithmic graph theory with numerous applications
[4]. Itis also one of the most difficult problems: it is NP-complete in general [12] and remains difficult in
many restricted graph families, for example in triangle-free graphs [17] or line graphs [11]. Moreover, even
approximating the chromatic number of a graph is hard [13].

On the other hand, the problem can be solved in polynomial time when restricted to some families of graphs such
as perfect graphs [8]. Efficient polynomial-time algorithms for coloring graphs in particular subclasses of perfect
graphs (including chordal graphs [6], weakly chordal graphs [9], and comparability graphs [5]) are available.

All the families of graphs mentioned above have the property that together with any @rtpty contain all
induced subgraphs @¥. Such classes are callbéreditary Every hereditary class of graphs can be described
by its forbidden induced subgraphse. the unique set of minimal graphs which do not belong to the class. A
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E\t 3 4 5 6 7 8 9 10 11 12
3 | O(m) | O(m) | On*) | O(mn*) | ? ? ? ? ? ?
4 | Om) | O(m)| 22 ? 2| ? |NP. |NP.|NP. | NP,
5 | O(m) | O(m) | 22 ? 2 | NP, | NP. | NP. | NB. | NP,
6 | O(m)| O(m) | 22 ? ? | NP.| NP, | NP, | NP. | NP,
7 | o@m) | om)| 22 ? 2 | NP, | NP, | NP. | NP, | NP,

Table 1: Known complexities fat-colorability of P,-free graphs

comprehensive survey on coloring of graphs in hereditary classes can be found in [18]. An important line of
research on colorability of graphs in hereditary classes dealsiitiee graphs. The induced path bwertices
is calledP;, and a graph is calle®;-freeif it does not contain?; as an induced subgraph.

Sgall and Woeginger showed in [21] tHatC OLORABILITY is NP-complete foPs-free graphs and-COLORABI-

LITY is NP-complete foP;»-free graphs. The last result was improved in [16]; the authors claim that modifying
the reduction from [21}i-COLORABILITY can be shown to be NP-complete Bs-free graphs. On the other
hand, thek-COLORABILITY problem can be solved in polynomial time fBr-free graphs (since they are perfect).
Fort = 5,6, 7, the complexity of the problem is generally unknown, except for the ca3ecafLORABILITY of
Ps-free [20, 21] andPs-free graphs [19]. Known results on theCOLORABILITY problem inP;-free graphs are
summarized in Table In(is the number of the input graph, the number of edges, amds matrix multiplication
exponent known to satisfy < a < 2.376 [2]).

In this paper, we study the class®§-free graphs. This is the minimal class from Table 1 where the complexity of
thek-COLORABILITY problem was not known. This class also proves resistant with respect to other graph prob-
lems. For instancels-free graphs is the unique minimal class defined by a single forbidden induced subgraph
with unknown complexity of themAXIMUM INDEPENDENT SET andMINIMUM INDEPENDENT DOMINATING

SET problems. Many algorithmic problems are known to be NP-hard in the claBsfoée graphs, for example
DOMINATING SET [14] andCHROMATIC NUMBER [15]. In contrast to the NP-hardness of finding the chromatic
number of aP;-free graph, we show thatCOLORABILITY can be solved in this class in polynomial time for ev-

ery particular value of. In the case of a positive answer, our algorithm returns a %atidloring. Along with the
mentioned result on-8OLORABILITY of Ps-free graphs, our solution generalizes several other previously stud-
ied special cases of the problem, suchl-as0LORABILITY of (Ps, C5)-free graphs [16] and-COLORABILITY

of Ps-free graphs containing a dominating clique on four vertices [10]. We also note the algorithm in [7] which
colors a( P5, P5)-free graph using at most the square of its chromatic number of colors.

2 Background and Definitions

Coloring vertices. Graphs considered in this paper are simple and undirected. We denote the number of vertices
of a graph byn. If A is a subset o/, thenG[A] is the subgraph aff induced byA. Anindependent ses a set

of mutually non-adjacent vertices. A set of vertidess called adominating sebf the graph, if every vertex in

V belongs taD or has a neighbor iv. For notions not defined here, we refer the reader to [3].

Recall that a-coloring of a graph is an assignment of numbers from the{set. ., k} (calledcolors) to the
vertices of the graph in such a way that the endpoints of each edge receive different colors. For our purposes, itis
more convenient to study a generalizatiorkefoloring. In this variant of coloring, each vertexhas itspalette



asubset of1,..., &k}, denoted by/(v). For a subset of verticdd’, the union of palettes of the vertices i
will be denoted by(W).

The k-restricted-coloringof a graph with respect to the palettes of its vertices, isaloring such that each
vertex is assigned a color from its palette. Cledkhgoloring is a special case éfrestricted-coloring, where all
palettes are equal tal, . .., k}. We say that an instance bfrestricted-coloring problem is-colorableif there
exists ak-restricted-coloring of this instance. (Belovk-tolorable” will always mean#-colorable with respect
to some instance df-restricted-coloring”, unless stated otherwise.)

Notice that once a vertex is assigned a color, this color can be removed from the palettes of all its neighbors. Also,
when looking for a coloring of a graph, two adjacent vertices with disjoint palettes can be as well thought of as
non-adjacent. Essential are only those pairs of adjacent vertices whose palettes are not disjoint. This observation
motivates the following definition: two adjacent vertices are cadlssentialif their palettes are not disjoint;
otherwise they are calletbn-essentialNotice that the relation of being an essential (a non-essential) neighbor is
symmetric. Assigning a color to a vertex does not change possible color choices for its non-essential neighbors.
Two disjoint sets of vertices are said to $eparatedf no vertex in one of them has an essential neighbor in the
other.

The main algorithmic problem studied in this paper is (RRESTRICTEDCOLORING problem. The input in-
stance is a graph together with palettes for all its vertices. The problem is to decide if the input instance is
k-colorable, and if so, return/arestricted-coloring.

Dominating structure. Our algorithm is based on an interesting structural propertiseffee graphs that has
been described by Bazsand Tuza in [1]. Following their terminology, we say that a grapls dominating inGG

if G contains a dominating set that induces a graph isomorpHit. tim particular, a dominating clique i is a
dominating set which induces a complete graph. Similarly, a domin#&tjng a dominating set which induces a
path on 3 vertices.

THEOREM1 (THEOREM 8 IN [1]) Every connectedPs-free graph has a dominating clique or a dominatifg

We will refer to a dominating set that induces a complete grapR;aesa dominating structure To give an
application of the theorem, let us consider BRRESTRICTED COLORING problem in the class afs-free graphs.
Notice that once 8-coloring of the vertices in a dominating structupes fixed, then the palettes of all vertices

in V' — D can be truncated. For every fixed 3-coloring/of the updated palettes of vertices contain at most
2 colors. The question whether the coloringofcan be extended to the whole graph, can be modeled as a
2-SAT instance and solved in polynomial time. Hence, considering all possibtdorings of D and checking
extendability of each, we can obtain a polynomial-time algorithn8f®ESTRICTED COLORING in the class of
Ps-free graphs. (See [20] for more details.)

Given a dominating structur®, let us fix an ordering, do, . . ., d| p of vertices inD. Next, partition all vertices
of V' — D into disjoint subsets depending on their neighborhoa.itet F; be the neighborhood @f in V' — D,
and fori = 2,...,|D| let F; be the set of vertices i — D adjacent tai; but not to anyl; with j < i. The sets
F;fori=1,...,|D| will be referred to adixed sets

3 The Algorithm

We say that an instancg is compatiblewith a set of instance§ if G is k-colorable if and only if at least one of
the instances ig is k-colorable. Notice that if7 is compatible withG and some € G is compatible withH,
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thenG is compatible withG — H) UH.

Our approach is based on a search tree technique. The nodes of the search tree are instances of the problen
the root corresponds to the input instance, and the children of a node form a set of instances compatible with
the node. The leaves are instances which can be solved in an elementary way. In other words, arristance
replaced be a set of instances compatible w@tbhut (in some sense) simpler théh We proceed recursively

until all instances are easy to solve. Notice that if the degree of each node in the tree is polynomjian@h

the depth of the tree is constant, then the tree has at most a polynomial number of nodes. (Hence, a polynomial
number of leaves.)

The nature of our solution is also recursiveiin Designing the algorithm which solves theRESTRICTED
COLORING problem, we assume there exist polynomial-time algorithms for the same problem with smaller values
of k. The problem can be easily solved for= 1,2, and as we have seen above, foe 3; below we assume

thatk is at leastl.

For the purpose of clarity, we split the presentation of the algorithm into four blocks: finding a dominating
structure, separating independent sets, separating fixed sets and the main algorithm.

Finding a dominating structure. First we find a dominating structui@ of size at mostk. (This can clearly

be done in polynomial time.) If no such set exists, then the instance does not a#lfmasticted-coloring.
Otherwise, we fix an ordering of the vertex set and consider the fixed sets with respect to this ordering. Even
though we consider different instances below, the fixed sets remain the same for the runtime of the algorithm.

Separating two independent setsLet X andY be two independent sets off3-free graph belonging to two
different fixed sets. Also, leX’ (respectivelyY”’) be the set of vertices of (respectivelyY’) that are essential
neighbors of some vertex af (respectivelyX). Note thatX’ is non-empty if and only i is non-empty. We
also want to stress that the séfsandY depend only on the graph (and not the palettes) but theXseand Y’
depend on the instance (the palettes) and can change when a coloring of the graph is modified.

LEMMA 1 If X’ £ (), there exists a vertex iX’ which is adjacent to all vertices ii’.

Proof. Letz; be a vertex ofX’ with a maximal neighborhood iK’. Assume there exists a vertgx € Y’ that is
not adjacent ta;;. Then, there must exist a vertex € X' (different thanr,) adjacent tay,. Also, by the choice
of 1, there must exist a vertex € Y’ that is adjacent ta; but notzo. Remember thak” (Y”) are independent
sets and so there is no edge betweemndzs (y; andys). SinceX andY belong to different fixed sets, there
exists a vertexw in the dominating set such that eithers adjacent tary, x2 but notyy, y», or v is adjacent to
y1,y2 but notzy, xe. ButthenG[{v, z1, x2,y1, y2}] is an induceds; a contradictiond

LEMMA 2 LetH be aninstance df-RESTRICTED-COLORINGand X andY be two independent sets of a graph
belonging to two different fixed sets. There exists a polynomial-time algorithm which outputs a set of instances
‘H compatible withH such that for every instance # setsX andY are separated.

Proof. We split the proof of the lemma into two steps. First we describe a polynomial-time recursive procedure
which outputs a set of instancésxompatible with the input instance, such that for every instan¢etire setX’
is empty or the size of the palette Bf is smaller than the size of the palette in the input instance.

Let us suppose that the procedure was called for an input instandaitialize G to be empty. IfX’ # 0,
then there is nothing to be done. Otherwise, there exists a vereX’ which dominate§™ (Lemma 1). For
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every colorc € ¢(v) N ¢(Y"), create a new instance by coloringvith ¢ and removing: from the color lists of

the neighbors of. Add all these instances td and notice that for the new instandégY”)| is strictly smaller
than|¢(Y”)| in the original instance. Additionally, create an instance in which the color listisftruncated,

L(v) = £(v) — £(Y”) (if non-empty), and run the procedure recursively for this instance. Add the result of the
recursive call ta and returrng.

A run of the procedure can be seen as a search tree. At each level of recursion, we creaté aistaustes plus
the ones coming from the recursive call. As we decrease the si¥é atfeach level, the depth of recursion is at
mostn. Hence, the number of instances created by the procedure is akmost

It follows easily from the search tree structure of the algorithm that at each level of recursion, the node is com-
patible with the set of its children. Hence, by the fact that an instance can be replaced with its compatible set (as
mentioned in the beginning of this section) the input instaide compatible with the output sét

The time spent at every node is clearly polynomial and the number of nodes of the search tree is also polynomial,
thus the procedure runs in polynomial time.

Calling the procedure described above recursively until for all instak¢es empty builds another search tree.
Every node of this search tree is an instance of the problem, the root corresponds to the input iistadda
the leaves setX andY are separated. Notice that the degree of every node is atimastd the depth of the
tree is also at most (we decrease the palette 6f at every step). Hence, the number of nodes is at Ifiost*.
The correctness follows from the correctness of the procedure presented@bove.

Separating fixed sets Now we are ready to present an algorithm which produces a set of instances (compatible
with the input instance) such that in all instances every pair of fixed sets is separated.

LEMMA 3 LetH be aninstance df-RESTRICTED-COLORING. There exists a polynomial-time algorithm which
outputs a set of instancgg compatible withH such that for every instance K all pairs of fixed sets are
separated.

Proof. First let us notice that if an instance admits-eestricted-coloring, then the underlying grapt-isolorable

in the usual sense. Since all vertices of every fixedtsetre adjacent to the same vertexiimn then if H admits

a k-restricted-coloring, then the graph§ F;| must be(k — 1)-colorable in the usual sense. Using our recursive
assumption we can find in polynomial time/a— 1)-coloring of H[F;] for every fixed sef;. Let us find these
colorings for all fixed setd’;. If some fixed set is notk — 1)-colorable (in the usual sense), th&hdoes not
admit ak-restricted-coloring. We will usé — 1)-colorings of the fixed sets only for the purpose of partitioning
these sets and the colorings found have nothing to do with the final restricted colorings of each of the sets.

Now we will present a procedure which for a given input instai@nd two distinct fixed setB; and F; outputs

a set of instance§ such that for every instance f the setsF; and F; are separated. Each color class is an
independent set and for each pair of color classes — onedfiy] and fromG|[F};] — we can run the algorithm
separating two independent sets. Let us do it recursively until all pairs of color classes are separated, and hence
setsF; and F; are separated. The procedure will create at rﬁ(alst)’“)’€2 = (kn)*" instances compatible with

G.

Now, we can run the procedure for the input instaiteand then recursively until all pairs of fixed sets are
separated. There is at mdst different pairs of fixed sets, so the number of output instances is at(m#f.
Each node requires a polynomial-time processing time, so the total running time of the algorithm is polynomial.

The correctness follows recursively from the correctness of the procedure which separates two given fixed sets.
|



Main algorithm . Now we are ready to put all the components of the algorithm together.

THEOREM?2 Thek-RESTRICTED-COLORING problem can be solved in polynomial time in the clas®pfree
graphs.

Proof. First find a dominating structurB. Choose an ordering of vertices bfand partitionV — D into fixed

sets. This can be done in polynomial time. Consider all possible coloringgtbfere is at most”* of them) and

for each coloring: separate all pairs of fixed sets. This, as shown in Lemma 3, can be done in polynomial time.
Now all the instances have all pairs of fixed sets separated.

Let G be an instance in which all pairs of fixed sets are separated. Noticé tigak-colorable if and only
if for every fixed setF; the graphG|[F;] induced byF; is (k — 1)-colorable. Running théx — 1)-coloring
algorithm (which exists by our inductive assumption) for e&gh;], we obtain a polynomial-time algorithm for
the k-RESTRICTEDCOLORING problem. This step can be done in polynomial time, and hérRESTRICTED
COLORING can be solved in polynomial time in the classiffree graphsD

4 Open problems

The algorithm presented in this paper narrows the gap in Table 1 between the cases solvable in NP-complete and
polynomial time solvable cases. Here we would like to suggest some open problems which are in our opinion
should be addressed next:

Is 3-coloring of P;-free graphs solvable in polynomial-time?

Is 4-coloring of Ps-free graphs solvable in polynomial-time?

Cank-coloring of Ps-free graphs be solved in FPT time?

ISMAXIMUM INDEPENDENT SET (andMINIMUM INDEPENDENT DOMINATING SET) solvable in polynomial-
time on Ps-free graphs?
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