
Journal of Algorithms 46 (2003) 21–26

www.elsevier.com/locate/jalgor

Generating Lyndon brackets.
An addendum to: Fast algorithms to generate

necklaces, unlabeled necklaces and irreducible
polynomials over GF(2)

J. Sawadaa,∗,1 and F. Ruskeyb,2

a Basser Department of Computer Science, Madsen Bldg F09, University of Sydney,
NSW 2006, Australia

b Department of Computer Science, University of Victoria, Canada

Received 3 April 2001

Abstract

It is well known that the Lyndon words of lengthn can be used to construct a basis for thenth
homogeneous component of the free Lie algebra. We develop an algorithm that uses a dynamic
programming table to efficiently generate the standard bracketing for all Lyndon words of lengthn,
thus constructing a basis for thenth homogeneous component of the free Lie algebra. The algorithm
runs in linear amortized time; i.e.,O(n) time per basis element. For a single Lyndon word, the table
(and thus the standard bracketing) can be computed in timeO(n2).
 2003 Elsevier Science (USA). All rights reserved.

Keywords: Lyndon word; Free Lie algebra; Lyndon bracket; Basis;nth homogeneous component; Generate;
Dynamic programming

* Corresponding author.
E-mail address: sawada@cs.usyd.edu.au (J. Sawada).

1 Research supported by NSERC and partial support of Czech Grant GAČR 201/99/0242 and ITI under project
LN-00A 056.

2 Research supported by NSERC.

0196-6774/03/$ – see front matter 2003 Elsevier Science (USA). All rights reserved.
PII: S0196-6774(02)00286-9

22 J. Sawada, F. Ruskey / Journal of Algorithms 46 (2003) 21–26

1. Introduction

In the paper “Fast algorithms for generating necklaces, unlabeled necklaces and
irreducible polynomials over GF(2)” Cattell et al. [2] outline a new recursive framework
for generating necklaces and Lyndon words. In this addendum, we use the framework
to generate Lyndon brackets. This introduction will re-iterate some basic definitions;
however, for a complete discussion including examples and a background, [2, Sections 1
and 2] should be consulted.

A necklace is the lexicographically smallest element in an equivalence class of strings
under rotation. Aprenecklace is a prefix of some necklace. ALyndon word is an aperiodic
necklace. Thestandard factorization of a Lyndon wordw (|w| > 1), denotedσ(w), is
the pair of Lyndon words (l,m) such thatw = lm wherem has maximal length andl is
non-empty. According to Lothaire [4, Proposition 5.1.3] such a factorization exists and
furthermore, ifm is the proper right Lyndon factor of maximal length, thenl is also
a Lyndon word. Using this standard factorization, the Lyndon words can be recursively
mapped into their standard bracketing using the following function:

γ (w) =
{

w if |w| = 1,

[γ (l), γ (m)] otherwise, whereσ(w) = (l,m).

Let Lk(n) denote the set ofk-ary Lyndon words of lengthn. If w is in Lk(n), thenγ (w) is
called theLyndon bracket of w. We define the length ofγ (w) to ben. As an example, the
bracketings that occur whenγ is applied toL2(6) is illustrated in Fig. 1.

Lothaire [4] and Reutenauer [6] both demonstrate that the set of standard bracketings
of all Lyndon words inLk(n) is a basis for thenth homogeneous component of the free
Lie algebra over an alphabet of sizek. Munthe-Kaas and Owren [5] discuss applications
in numerical algorithms which use computations in free Lie algebras. Using the Lyndon
words, several finely homogeneous computations (the number of occurrences of each
alphabet symbol is fixed) in free Lie algebras are discussed by Andary [1], including
the computation of a (non-standard) left-bracketing. However, we know of no algorithms
for producing the standard Lyndon bracketing. A naïve implementation of the definitions
gives an algorithm with running timeO(n3) per bracketing; we improve this toO(n) per
bracketing by integrating the computation of a dynamic programming bracketing table into
a fast algorithm for generating Lyndon words. For a single Lyndon word, we show that the
table (and thus the standard bracketing) can be computed in timeO(n2).

[0 , [0 , [0 , [0 , [0 , 1]]]]]
[0 , [0 , [0 , [[0 , 1] , 1]]]]
[0 , [[0 , [0 , 1]] , [0 , 1]]]
[0 , [0 , [[[0 , 1] , 1] , 1]]]
[0 , [[0 , 1] , [[0 , 1] , 1]]]
[[0 , [[0 , 1] , 1]] , [0 , 1]]
[0 , [[[[0 , 1] , 1] , 1] , 1]]
[[0 , 1] , [[[0 , 1] , 1] , 1]]
[[[[[0 , 1] , 1] , 1] , 1] , 1]

Fig. 1. The Lyndon brackets ofL2(6).

J. Sawada, F. Ruskey / Journal of Algorithms 46 (2003) 21–26 23

The algorithm of this paper has been incorporated into the “Combinatorial Object
Server” atwww.theory.cs.uvic.ca/˜cos under the “necklace” section.

2. Generating Lyndon brackets

In this section we develop an algorithm for generating the lengthn Lyndon brackets
over an alphabet of sizek (or equivalently, a basis for thenth homogeneous component
of the free Lie algebra). The Lyndon words can be generated in constant amortized time
(where the computation reflects the total amount of change to the data structures, and not
the time required to print out the object) using Algorithm 2.1 from [2], but the problem of
generating these words with their respective bracketing previously had no fast solution.

The fundamental problem of computing the Lyndon brackets is to find the standard
factorization of an arbitrary Lyndon word. In [3], Duval describes a linear-time algorithm
for factoring a wordw = α1α2 · · ·αm into is unique Lyndon factors such that eachαi is
a Lyndon word andα1 � α2 � · · · � αm. Applying this algorithm, a wordw is a Lyndon
word if m = 1. However, because of the restrictions on the factoring, this algorithm does
not help us further factor a Lyndon word. Thus, we must look at another approach for
finding the standard factorization of a Lyndon word.

A naïve approach to finding the Lyndon bracket ofw ∈ Lk(n) is to first test each proper
right factorm (starting with maximal length) until a Lyndon word is found. Recall that if
w = lm wherem is the longest proper right factor ofw that is Lyndon, then the standard
factorization ofw is σ(w) = (l,m). By repeating this process recursively for each of the
two factors we arrive at the Lyndon bracket ofw (where the stopping condition is when
a Lyndon factor of length 1 is reached). Duval’s algorithm can be used to test whether each
proper right factor is a Lyndon word in linear time. In the worst case, this test will have
to be performed for each proper right factor which implies that to find the initial standard
factorization takes timeO(n2). Since this must be done recursively for each right factor,
the worst case running time to generate the Lyndon bracket forw is O(n3).

A significant improvement can be made to this naïve algorithm from the following
observation. Given a Lyndon wordw = a1a2 · · ·an, if we know ahead of time what the
standard factorization is for each Lyndon subword ofw, then determining the Lyndon
bracket ofw can be done in linear time. Ifai . . . aj is a subword ofw wherei < j then
we definesplit(i, j) to be the starting position of its longest proper right Lyndon factor.
Using this notation, the recursive functionPrintBracket(�, r) displayed in Fig. 2 will print
out the Lyndon bracket ofw. As an example thesplit(i, j) values for the Lyndon word
001001011 are displayed in Fig. 3. In this figure the valuei represents the row number
and the valuej represents the column number, where each value ranges from 1 ton. The
entrysplit(1, n) determines the starting point of the longest proper right Lyndon factor in
the original Lyndon word. Thus the standard factorization of 001001011 is (001,001011).

Observe that the valuesplit(i, j), where i < j , can be defined recursively by the
following recurrence relation:

split(i, j) =
{

i + 1 if ai+1 · · ·aj is a Lyndon word,
split(i + 1, j) otherwise.

24 J. Sawada, F. Ruskey / Journal of Algorithms 46 (2003) 21–26

procedure PrintBracket (�, r : N);
begin

if � = r then print(a�);
else begin

print(“ [”);
PrintBracket(�, split(�, r) − 1);
print(“ , ”);
PrintBracket(split(�, r), r);
print(“] ”);

end;
end;

Fig. 2. A function to print the brackets of a Lyndon word.




− 2 2 4 5 4 7 4 4
− − 3 4 5 4 7 4 4
− − − 4 5 4 7 4 4
− − − − 5 5 7 7 5
− − − − − 6 7 7 7
− − − − − − 7 7 7
− − − − − − − 8 9
− − − − − − − − 9
− − − − − − − − −




Fig. 3. The valuessplit(i, j) for the Lyndon word 001001011.

Thus, the key to obtaining each valuesplit(i, j) is to determine all the Lyndon subwords
embedded in the Lyndon wordw = a1a2 · · ·an. This can be done by modifying the
algorithm for generating Lyndon words outlined in Algorithm 2.1 of [2]. In this algorithm,
the parameterp maintains the length of the longest Lyndon prefix of the prenecklace
a1 · · ·at−1. However, to find all the Lyndon subwords, we must maintain the length of
the longest Lyndon prefix for all stringsai · · ·at−1 where 1� i < t . By storing this value
for eachi in pi , then effectively we can replace the parameterp with the global array of
valuesp1 · · ·pn. Note that the valuep1 maintains the value of the old parameterp.

In our new algorithm, each valuepi is updated in a similar manner as the original
parameterp. Thus whenat = at−pi , the valuepi remains unchanged. Similarly, ifat >

at−pi thenai · · ·at is a Lyndon word and hencepi is updated tot − i + 1 (the length).
The only exceptional case occurs whenat < at−pi . In this case the wordai · · ·at is not
a prenecklace so we assign the value 0 topi . Note that any extension of this string will
never be a prenecklace, and sinceat−pi = at , the value ofpi will remain unchanged at 0.

Now using the valuesp1 · · ·pt , we can determine the values forsplit(i, t) using the
associated recurrence; the stringai+1 · · ·at is a Lyndon word whenpi+1 = t − i. The
function LyndonBracket(t) shown in Fig. 4 is the result of applying these modifications
to Algorithm 2.1 of [2]. Note that the conditionn = p1 is observed before we print the
bracket. In the original algorithm, this test was hidden in thePrintit(p) function. The initial
call to the algorithm isLyndonBracket(1) and the valuespi are initialized to 1. Because the
arrayp is maintained globally, we copy the original values ofp to a local arrayq . We then
restore the original values ofp for each iteration of the outer loop.

J. Sawada, F. Ruskey / Journal of Algorithms 46 (2003) 21–26 25

procedure LyndonBracket (t : N);
local i, j : N; q : array of N;
begin

if t > n then begin
if n = p1 then begin

PrintBracket(1, n);
newline;

end;
end;
else begin

q := p;
for j from at−p1 to k − 1 do begin

at := j ;
for i from 1 to t − 1 do begin

if at < at−pi
then pi := 0;

if at > at−pi
then pi := t − i + 1;

end;
for i from t − 1 downto 1 do begin

if pi+1 = t − i then split(i, t) := i + 1;
else split(i, t) := split(i + 1, t);

end;
LyndonBracket(t + 1);
p := q;

end;
end;

end;

Fig. 4. An algorithm for generating Lyndon brackets.

2.1. Analysis of the algorithm

Prior to each recursive call toLyndonBracket(t) a linear amount of work is done. This
linear work is reflected in the two loops to update the valuespi andsplit(i, t) along with
the array copy ofq to p. Since Algorithm 2.1 of [2] runs in constant amortized time, this
means that the computation of thesplit(i, j) values is done in linear time per Lyndon word
generated. Now since the functionPrintBracket(�, r) also takes linear time, we obtain the
following theorem.

Theorem 1. The algorithm LyndonBracket(t) for generating all k-ary Lyndon brackets of
length n runs in O(n) amortized time.

A small modification of this algorithm can be used to determine the Lyndon bracket for
a given Lyndon wordw = a1a2 · · ·an in O(n2) time. This is done by removing the outer
for loop, the assignment toat , and the array copiesp := q andq := p. Once this is done,
n recursive calls are made, each taking linear time. This dynamic programming approach
will yield an improvement by a factor ofn over the naïve algorithm.

26 J. Sawada, F. Ruskey / Journal of Algorithms 46 (2003) 21–26

Acknowledgments

The authors thank Bob Miers for teaching us about free Lie algebras. We thank the
referees for many helpful comments.

References

[1] P. Andary, Finely homogeneous computations in free Lie algebras, Discrete Math. Theor. Comput. Sci. 1
(1997) 101–114.

[2] K. Cattell, F. Ruskey, J. Sawada, M. Serra, C.R. Miers, Fast algorithms to generate necklaces, unlabeled
necklaces and irreducible polynomials over GF(2), J. Algorithms 37 (2) (2000) 267–282.

[3] J.-P. Duval, Factorizing words over an ordered alphabet, J. Algorithms 4 (1983) 363–381.
[4] M. Lothaire, Combinatorics on Words, Cambridge University Press, 1983.
[5] H. Munthe-Kaas, B. Owren, Computations in a free Lie algebra, Philos. Trans. Roy. Soc. London Ser. A 357

(1999) 957–981.
[6] C. Reutenauer, Free Lie Algebras, Clarendon Press, Oxford, 1993.

