
BINARY BUBBLE LANGUAGES AND COOL-LEX ORDER∗

FRANK RUSKEY† , JOE SAWADA‡ , AND AARON WILLIAMS§

Abstract. A bubble language is a set of binary strings with a simple closure property: The first 01 of any string can

be replaced by 10 to obtain another string in the set. Natural representations of many combinatorial objects are bubble

languages. Examples include binary string representations of k-ary trees, unit interval graphs, linear-extensions of B-posets,

binary necklaces and Lyndon words, and feasible solutions to knapsack problems. In co-lexicographic order, fixed-density binary

strings are ordered so that their suffixes of the form 10i occur (recursively) in the order i = max,max−1, . . . , min +1,min for

some values of max and min. In cool-lex order the suffixes occur (recursively) in the order max−1, . . . , min+1, min, max. This

small change has significant consequences. We prove that the strings in any bubble language appear in a Gray code order

when listed in cool-lex order. This Gray code may be viewed from two different perspectives. On the one hand, successive

binary strings differ by one or two transpositions, and on the other hand, they differ by a shift of some substring one position

to the right. This article also provides the theoretical foundation for many efficient generation algorithms, as well as the first

construction of fixed-density de Bruijn sequences; results that will appear in subsequent papers.

Key words. combinatorial objects, generation, Gray codes, algorithms, necklaces, reversible strings, Lyndon words,

balanced parentheses, trees, Dyck words, interval graphs, knapsack problem

1. Introduction. Binary strings provide natural representations for the instances of many combinato-

rial objects, as illustrated by Figure 1.1.

I

3

4

5

6 7

2

0

0

0

0

0

0

0 0000

0

0

0

0

00

00

1

1

1
1

1
1

111111

1
1

1
1

1

1

1

1

1

1

1

(a) (b) (c) (d) (e)

1001110 01100 11011010 1110001010 1101101000

Fig. 1.1: Combinatorial objects and string representations: (a) combinations (bitwise inclusion), (b) re-
versible strings with two colors (largest reversal), (c) necklaces with two colors (largest clockwise rotation),
(d) binary trees (pre-order traversal omitting last 0), and (e) connected unit interval graph (intervals repre-
sented by parentheses).

Although the combinatorial objects in Figure 1.1 are diverse, their string representations share a basic

property: If the first 01 is replaced by 10, then the resulting string represents another instance of the same

combinatorial object. Similarly, in other combinatorial objects the first 10 can be replaced by 01. This

motivates our definition of bubble languages, which generalize all of the objects found in Figure 1.2.

All strings in this article are binary, with B(n) denoting the set with length n and Bd(n) denoting the

set with length n and density d. Subsets of Bd(n) are said to have fixed-density.

Cool-lex is a variation of co-lexicographic order for Bd(n). In co-lex, strings are recursively ordered

by suffixes of the form 10i for i = n−d, n−d−1, . . . , 0. In cool-lex, strings are instead ordered using i =

∗Research supported in part by NSERC discovery grants.
†Department of Computer Science, University of Victoria, PO Box 3010 STN CSC, Victoria BC, V8W 3N4, Canada

ruskey@cs.uvic.ca
‡School of Computer Science, University of Guelph, 217 Reynolds, Guelph ON, N1G 2W1, Canada jsawada@uoguelph.ca
§School of Mathematics and Statistics, Carleton University 1125 Colonel By Drive, Ottawa ON, K1S 5B6, Canada

haron@uvic.ca

1



2 F. RUSKEY AND J. SAWADA AND A. WILLIAMS

transpositions
· at most k

inversions
· at most k

lexicographic
· less or equal

knapsack problem
· 0-1 feasible solutions

bubble
language

·

·

largest rotation

(aperiodic)

·

·

·

largest reversal

(palindrome)

(complement)

neckties

necklaces

avoid 10
k

linear extensions
of B-posets

k-ary
Dyck words

balanced
parentheses

· connected unit

interval graphs

Lyndon
words

subsets

ordered forests
· at most k trees

Fig. 1.2: Examples of bubble languages. The figure omits variations obtained by bit-complements such as
strings avoiding 01k, strings lexicographically greater than or equal to a given a string, and necklaces using
their smallest rotation.

n−d−1, n−d−2, . . . , 0, n−d. This small change creates a Gray code, meaning that successive strings differ

by a constant amount, regardless of the values of n and d (see Ruskey and Williams [18] [19]). Furthermore,

a simple rule creates this Gray code one string at a time: If α ∈ Bd(n) has a prefix of the form 1s0t1x where

x is a single bit and t > 0, then the next string in cool-lex order replaces this prefix by x1s0t1. The Gray

code ends with the two strings that do not have such a prefix, namely 1n−d−10d1 and 1n−d0d. Figure 1.3

compares co-lex and cool-lex order for B5(9).

Fig. 1.3: B5(9) in co-lex order (top) and cool-lex order (bottom). Columns encode strings and are read from
top-to-bottom where 0 and 1 are black and white squares respectively, and successive strings are read from
right-to-left.

1.1. Results. This article proves that cool-lex order provides a Gray code for every fixed-density bubble

language. More specifically, if L ⊂ Bd(n) is a bubble language, then a Gray code is obtained by ordering

the strings in L according to their relative order in cool-lex. In these Gray codes, successive strings differ by

a prefix-replacement that can be described as the transposition of one or two pairs of bits, or by shifting a

single bit to the left. These cool-lex Gray codes are also cyclic since one transposition (or shift) transforms

the last string into the first. For this reason they can be layered to create Gray codes for strings with a

range of densities (or lengths).

This new framework is used in subsequent articles to create constant amortized time algorithms for



BINARY BUBBLE LANGUAGES AND COOL-LEX GRAY CODES 3

generating all of the specific bubble languages discussed in this paper [22], including the first constant

amortized time Gray code algorithm for fixed-density necklaces and Lyndon words [23]. An algorithm

generates a language L in constant amortized time if it visits each successive string in L in O(1) amortized

time. The cool-lex Gray code is also the basis for the first explicit construction of a fixed-density de Bruijn

sequence [17]. The construction can be generated efficiently, with successive blocks of n bits being created

in amortized O(1)-time while using only O(n log n)-space [23].

1.2. Combinatorial Generation. Combinatorial generation is devoted to Gray codes, universal cy-

cles, and efficient generation of various combinatorial objects. Due to its long history and the variety of

combinatorial objects, it is a difficult subject to summarize. For example, Section 7.2 of The Art of Com-

puter Programming offers excellent coverage on “Generating all possibilities” but requires over 400 pages

(see Knuth [6, 7, 8]). This subsection outlines some general methods in the research area.

One way to add cohesion to the research area is to consider more general combinatorial objects. For

example, Gray codes and efficient algorithms for permutations [24] were extended to permutations of a

multiset [10] [26] [28] [32], which in turn were extended to linear-extensions of partially-ordered sets [16]

[2] [9], and finally to the basic words of an anti-matroid [14]. The approach in this article differs from

this standard evolution since it introduces a new class of combinatorial objects. The simplicity of bubble

languages allow us to prove results for individual objects that were previously the topic of more difficult

articles (for example, see Wang and Savage [31], and Ueda [27] for the previous results on fixed-density

necklaces). This general approach to combinatorial generation was also followed in the thesis by Williams

[33].

Combinatorial generation has also been enriched by using the same technique to create Gray codes and

efficient algorithms for multiple combinatorial objects. For example, reverse search has led to multiple Gray

codes (see Saitoh et al [20] for proper interval graphs). The twisted lexico computation tree has also created

Gray codes and efficient algorithms for multiple combinatorial objects (see Takaoka for multiset permutations

[26]) and generalizes the recursive structure of the reflected Gray code (see Gray [5] and Knuth [6]). The

reflected Gray code inspired Gray codes for reflectable language (see Li and Sawada [12]) and their efficient

generation algorithms (see Xiang et al [34]). A different approach was taken by Vajnovszki [29], who showed

that a Gray code for Lyndon words is obtained by using the relative order of strings in the reflected Gray

code. This sublist approach is used in this article.

The ECO framework enumerative combinatorics has been used to obtain Constant amortized algorithms

for a variety of objects (see Bacchelli et al [1]). More restrictive than a constant amortized time algorithm

is a loopless algorithm that generates successive strings in worst-case O(1)-time. Loopless algorithms for

multiple combinatorial objects were obtained by Walsh [30], who extended those initially given by Ehrlich

[4].

A de Bruijn sequence is a circular string of length 2n containing each binary strings of length n exactly

once as a substring. Universal cycles were introduced in Graham et al [3] as natural generalizations of de

Bruijn sequences, and they proved the existence of universal cycles for a number of combinatorial objects.

Since that time, there has been a tradition of showing that universal cycles exist for classes of combinatorial

objects by proving that their associated de Bruijn graphs are Eulerian. For example, see the results of

Moreno et al [13] and LaBounty-Lay et al [11]. However, one aspect that is commonly missing from these

articles is a discussion of how to efficiently create an individual universal cycles without constructing the

underlying graph, which often has exponential size.



4 F. RUSKEY AND J. SAWADA AND A. WILLIAMS

1.3. Article Outline. This article is organized as follows. Section 2 introduces bubble languages, and

describes their basic properties. Section 3 discusses cool-lex, and proves that the order gives a Gray code

for any bubble language. Section 4 contains recursive algorithms that generate the strings in an arbitrary

bubble language. Section 5 shows that each of the objects mentioned in Figure 1.2 is a bubble language.

2. Bubble Languages. This section defines bubble languages in Section 2.1 and the bubble poset

in Section 2.2. Basic properties of bubble languages are given in Section 2.3. Finally, Section 2.4 gives a

recursive formula for generating the strings in an arbitrary fixed-density bubble language.

2.1. Definitions. A set of binary strings L is a binary bubble language if it satisfies one of the following

two properties:

first-01: if α ∈ L then swapping its first 01 (if it exists) by 10 yields a string in L,

first-10: if α ∈ L then swapping its first 10 (if it exists) by 01 yields a string in L.

More specifically, a language L is a first-01 bubble language if it satisfies the first-01 property, and is a first-10

bubble language if it satisfies the first-10 property. In some situations it is helpful to differentiate between

these two concepts. This is especially true in Section 5, where we prove that the following combinatorial

objects can be represented by bubble languages

first-01 bubble languages first-10 bubble languages

• combinations • combinations

• strings with forbidden 01k
• strings with forbidden 10k

• strings with ≤ k inversions from 1∗0∗
• strings with ≤ k inversions from 0∗1∗

• strings with ≤ k transpositions from 1∗0∗
• strings with ≤ k transpositions from 0∗1∗

• strings ≥ some string ω • strings ≤ to some string ω

• strings > or ≥ their reversal • strings < or ≤ their reversal

• strings ≥ their complemented reversal • strings ≤ their complemented reversal

• necklaces (largest rotation) • necklaces (smallest rotation)

• aperiodic necklaces (largest rotation) • Lyndon words

• k-ary Dyck words

• ordered forests with ≤ k trees

• linear extensions of a B-poset

• connected unit interval graphs

• feasible solutions to 0-1 knapsack.

In other situations there is no need to differentiate between the two varieties, and so we focus on first-01

bubble languages. In particular, the unqualified term bubble language means first-01 bubble language for the

remainder of this document.

To illustrate a specific bubble language, consider the language L ⊆ B(5) containing strings ≥ 10110

L = {10110, 10111, 11000, 11001, 11010, 11011, 11100, 11101, 11110, 11111}. (2.1)

Notice L is a bubble language since it satisfies the stronger condition that replacing any 01 by 10 will result

in another string ≥ 10110. The above example also illustrates an important point stated in Remark 2.1.

Since replacing any 01 by 10 does not change the length or the density of a string, then bubble languages

can be partitioned into fixed-density subsets. For example, L in (2.1) partitions into bubble languages over

its various Bd(n) below

{11000} ∪ {10110, 11001, 11010, 11100}∪ {10111, 11011, 11101, 11110}∪ {11111}.



BINARY BUBBLE LANGUAGES AND COOL-LEX GRAY CODES 5

Remark 2.1. A language is a bubble language if and only if its subsets over each Bd(n) are bubble

languages.

2.2. Bubble Poset. Bubble languages over Bd(n) are the ideals of a partially ordered set that we

call the bubble poset P(n, d). To describe the poset we make the following definitions. As is common, xy

represents y consecutive copies of symbol x. If α = 1d0n−d, then we say α is terminal and τ(α) = α.

Otherwise, τ(α) is obtained by replacing the first 01 in α with 10. Elements of P(n, d) are Bd(n), and the

cover relations are defined by τ(α) ≺ α where α is not terminal. Figure 2.1 shows the Hasse diagram of

P(6, 3) with the ideal for reversible strings in bold.

000111

011001

001011

010011

100011

100101

101001

110001

110010

110100

111000

010101

001101

101100

011100101010

100110

010110

001110

011010

Fig. 2.1: The bubble poset P(3, 3), with its reversible string ideal in bold.

Figure 2.1 illustrates that P(n, d) is always a tree with 1d0n−d as the unique minimum element, and that

its ideals are the subtrees that contain this minimum. This setting makes it easier to count the number of

fixed-density first-01 bubble languages, with [33] showing that there are more than 1036 of them over B5(10)

alone.

2.3. Properties. This section proves three basic lemmas for bubble languages. The first lemma pro-

vides various closure properties. If L is a set of strings and γ is a string, then the quotient of L and γ

is

L/γ = {α | α · γ ∈ L}.

For example, L/10 = {101, 110, 111} given L from (2.1). Notice that we use · for string concatenation.

Lemma 2.1 (Closure). If L and L′ are bubble languages and γ is a string, then L∪L′, L∩L′, and L/γ

are bubble languages.

Proof. The intersection and unions of ideals of any poset are also ideals of that poset, so the first two

closure properties are true.

Let β ∈ L/γ. Then βγ ∈ L, and thus τ(βγ) ∈ L. There are two cases to consider. First suppose that

β is not terminal. It follows that τ(βγ) = τ(β)γ, and thus τ(β)γ ∈ L. Therefore, in this case, τ(β) ∈ L/γ.

Otherwise if β is terminal, then τ(β) = β, and so τ(β) ∈ L/γ. In both cases it was shown that τ(β) ∈ L/γ.

Therefore, bubble languages are closed under quotients.

The next two lemmas prove basic prefix and suffix properties for bubble languages.

Lemma 2.2 (Prefix Property). If L is a bubble language, then L/γ 6= ∅ implies 1s0tγ ∈ L for some



6 F. RUSKEY AND J. SAWADA AND A. WILLIAMS

s, t ≥ 0. In other words, if L is a bubble language that contains a string with suffix γ, then L contains a

string of the form 1∗0∗γ.

Proof. Given a string in L with suffix γ, the string 1∗0∗γ ∈ L is eventually obtained by repeatedly

replacing the first 01 by 10.

Lemma 2.3 (Suffix Property). If L is a bubble language, then L/01γ 6= ∅ implies L/10γ 6= ∅. In other

words, if L contains a string with suffix 01γ, then L contains a string with suffix 10γ.

Proof. If L contains a string with suffix 01γ, then Lemma 2.2 implies that L contains a string of the

form 1s0t01γ. Then, τ(1s0t01γ) = 1s0t10γ proves that L contains a string with suffix 10γ.

2.4. Generation in Co-lexicographic Order. This section gives a recursive formula for generating

the strings in an arbitrary bubble language over Bd(n) in co-lexicographic order. Co-lexicographic (co-lex)

order sorts strings by increasing value of their last symbol. In other words, co-lex order is lexicographic

order except strings are read from right-to-left. We develop our recursive formula for bubble languages in

three steps, and then describe it in terms of a computation tree. Both of these descriptions are helpful in

Section 3, when we modify co-lex order to produce a Gray code.

In our recursive formulae we use three parameters: s, t, and γ. The parameter γ represents the fixed-

suffix that is built from right-to-left, whereas s and t represent the remaining number of 1s and 0s that have

not yet joined the fixed-suffix. The complete lists are obtained by taking s = d, t = n − d, and γ = ǫ. Our

first recursive formula is for generating all of the strings in Bd(n) in co-lex order. Typically this would be

done by extending the fixed-suffix γ by a single bit, starting with 0γ and following with 1γ. Alternatively,

one can extend the fixed-suffix by strings of the form 10i for decreasing i as follows

L(s, t, γ) =







1s0tγ, L(s−1, 1, 10t−1γ), . . . ,L(s−1, t, 1γ) if s > 0

0tγ if s = 0.

Notice that the string 1s0tγ is the special case where all of the remaining copies of 0 join the fixed-suffix. That

is, L(s−1, 0, 10tγ) = 1s0tγ. Also notice that the base case occurs when every copy of 1 has been exhausted.

Now let us generalize this recursive formula so that it generates an arbitrary language L ⊆ Bd(n) in co-lex

order. Since there is no guarantee that an individual string is in L, both cases from the first recursive formula

must be duplicated

L(s, t, γ) =































1s0tγ, L(s−1, 1, 10t−1γ), . . . ,L(s−1, t, 1γ) if s > 0 and 1s0tγ ∈ L

L(s−1, 1, 10t−1γ), . . . ,L(s−1, t, 1γ) if s > 0 and 1s0tγ /∈ L

0tγ if s = 0 and 0tγ ∈ L

if s = 0 and 0tγ /∈ L.

The final case in this recursive formula is undesirable since it is a computational dead-end that generates

no strings. In our final recursive formula we simplify the previous recursive formula by assuming that L

is a bubble language over Bd(n). Recall that the suffix property in Lemma 2.3 ensures that if L/10iγ is

non-empty for i > 0, then L/10i−1γ is also non-empty. Furthermore, if L/10iγ is non-empty, then the prefix

property in Lemma 2.2 ensures that 1s−10t−i10iγ ∈ L. Combining these observations gives the following



BINARY BUBBLE LANGUAGES AND COOL-LEX GRAY CODES 7

10

1 1 110

10 1

1 110

01110 01101 01011

1001110110

1

11100

11001

10101

1 110

10 1

1 1

11010

00111

10

1110

1

101

1101

11

1011 111

11100

11011010

10110

01110 01101 01011 00111

11001

1001110101

ǫ

(a) (b)

Fig. 2.2: (a) The computation tree, and (b) the compact computation tree for B3(2). Co-lex order of B3(2)
is obtained by reading the leaves from left-to-right in (a), or by a pre-order traversal in (b).

simplified formula for generating the co-lex order of a bubble language L ⊆ Bd(n)

L(s, t, γ) =

{

1s0tγ, L(s−1, 1, 10t−1γ), . . . ,L(s−1, t−j, 10jγ) if s > 0 (2.2a)

0tγ if s = 0 (2.2b)

where j is the minimum value such that L contains a string with suffix 10jγ. In each of the last two formulae,

the fixed-suffix is built from right-to-left by strings of the form 10i, so we can always assume that γ is either

empty or begins with 1.

We close this section by visualizing the computation tree that results from (2.2). In the computation

tree, each internal node is labeled with the fixed-suffix γ at that point during the computation. In particular,

the root has label ǫ. The leftmost child of an internal node is the leaf labeled 1s0tγ. The remaining children

of an internal node are labeled from left-to-right as 10iγ for decreasing values of i, and the edges of the tree

are labeled with the corresponding substrings of the form 10i. The leaves of the tree are the strings in the

language L, and the co-lex order of these strings is obtained by reading the leaves from left-to-right. The

computation tree for B3(2) is illustrated in Figure 2.2 (a), with internal nodes in ovals and leaves in boxes.

Since bubble languages have the prefix property found in Lemma 2.2, we can compress the computation

tree by labeling each internal node with the leaf that is its leftmost child. In the compact computation tree,

each internal node is labeled 1s0tγ where γ is the fixed-suffix at that point during the computation. The

children of an internal node are the same as they are in the computation tree, except that the first child is

removed. The compact computation tree for B3(2) is illustrated in Figure 2.2 (b), with every node in a box.

Remark 2.2. If L is a bubble language over Bd(n), then its strings can be obtained in co-lex order by

a pre-order traversal of the compact computation tree.

Although the difference between the computation tree and the compact computation tree may seem

cosmetic, the distinction proves to be helpful in the next section.



8 F. RUSKEY AND J. SAWADA AND A. WILLIAMS

3. Cool-lex Order. This section defines cool-lex order for the strings in an arbitrary bubble language

over Bd(n), and then proves that this order provides a Gray code. The Gray code can be expressed using

transpositions or shifts.

Cool-lex order is generated by making a small change to the recursive formula (2.2) we developed for

generating co-lex order: the string of the form 1s0tγ appears last instead of first. This change is shown by

the following recursive formula

C(s, t, γ) =

{

C(s−1, 1, 10t−1γ), . . . , C(s−1, t−j, 10jγ), 1s0tγ if s > 0 (3.1a)

0tγ if s = 0 (3.1b)

where j is the minimum value such that L contains a string with suffix 10jγ, and γ is either empty or begins

with 1. Cool-lex order can also be described succinctly by its relationship to the compact computation tree

discussed in Section 2.4. When compared to co-lex order, the nodes with labels of the form 1s0tγ are visited

last instead of first in cool-lex order.

Remark 3.1. If L is a bubble language over Bd(n), then its strings can be obtained in cool-lex order by

a post-order traversal of the compact computation tree.

To prove that cool-lex order provides a Gray code for any bubble language, we must understand the

post-order traversal of the compact computation tree. We will break the post-order traversal into three basic

movements: right, up, and down. Each of these movements can be accomplished by a single transposition

or shift, and then we explain how these movements combine to give the post-order traversal.

Right. First suppose α is a non-root node in the compact computation tree and α is not the last child of

its parent. The node to the right of α is its next sibling β. Notice that α must have a label of the form

1s0t10γ for some t > 0, and β must have a label of the form 1s0t01γ. The right movement is illustrated by

Figure 3.1, and can be accomplished by swapping the bits in positions s + t + 1 and s + t + 2.

α = 1s0t10γ β = 1s0t01γ

10i 10i−1

Fig. 3.1: The right movement in the compact computation tree.

Up. Next suppose α is a non-root node in the compact computation tree. The node above α is its parent

β. Notice that α must have a label of the form 1s0t1γ and β must have a label of the form 1s10tγ. The up

movement is illustrated by Figure 3.2, and can be accomplished by swapping the bits in positions s + 1 and

s + t + 1.

α = 1s0t1γ

β = 1s10tγ

10j

Fig. 3.2: The up movement in the compact computation tree.

Down. Finally, suppose α is a non-leaf node in the compact computation tree. The node below α is obtained

from α by successively following the first child of each internal node in the compact computation tree until



BINARY BUBBLE LANGUAGES AND COOL-LEX GRAY CODES 9

reaching a leaf β. Notice that α must have a label of the form 1s0γ and β must have a label of the form

1i01s−iγ, where i is the minimum value such that 1i01s−iγ is in the bubble language L. The down movement

is illustrated by Figure 3.3, and can be accomplished by swapping the bits in positions i + 1 and s + 1. In

the figure, the edge label 10t−1 assumes that α = 1s0tγ′ where γ′ is empty or begins with 1.

α = 1s0γ

1s−101γ

1s−2011γ

β = 1i01s−iγ

10t−1

1

1

1

...

Fig. 3.3: The down movement in the compact computation tree, where i minimizes 1i01s−iγ ∈ L.

Using these three movements, we will now describe how to traverse the compact computation tree for

an arbitrary bubble language L ⊆ Bd(n) in post-order. More precisely, if α = 1s0tγ ∈ L is the label of a

node in the compact computation tree, then we determine the label of the node that follows α cyclically in

post-order. Let β be the result of swapping the (s + t + 1)st and (s + t + 2)nd symbols in α, and we assume

γ is empty or begins with 1. There are three cases to consider:

• If α = 1s0t is the root, then it is the last node visited in post-order. The first string in the post-order

traversal is obtained from α by the down movement.

• If α is the rightmost child of its parent, then the next string in post-order is obtained by the up

movement. Notice that α is the rightmost child of its parent if one of the following three conditions

hold: γ = 1 or as+t+2 = 1 or β /∈ L.

• If α is not the rightmost child of its parent, then the next string in post-order is obtained by the

right movement followed by the down movement. Notice that α is not the rightmost child of its

parent if the above cases do not apply.

Given these cases and Figures 3.1-3.3, it is easy to derive a formula for the string next(α) that follows α

in cool-lex order. If α = a1 · · · an is a string and i ≤ j, then swap(i, j) denotes the string obtained by

transposing (swapping) ai and aj . First we describe next(α) in terms of transpositions. If α = 1s0tγ ∈ L

and γ is either empty or begins with 1, then

next(α) =



















swap(i+1, s+1) if γ = ǫ

swap(s+1, s+t+1) if γ = 1, as+t+2 = 1, or β /∈ L

swap(s+t+1, s+t+2) swap(i+1, s+1) otherwise

(3.2)

where β = swap(s + t + 1, s + t + 2) (applied to α), and i is the minimum value such that 1i01s−i0t−1γ ∈ L.

Notice that 0 ≤ i ≤ s since the upper-bound follows from α ∈ L. The last line in (3.2) includes two disjoint



10 F. RUSKEY AND J. SAWADA AND A. WILLIAMS

swaps that are both applied to α, and the second has no effect when i = s. The above formula is also

circular, since the first case describes how to change the last string in cool-lex order into the first string.

We can also express the formula for next(α) using shifts and the same values of β and i in (3.2). If

α = a1 · · · an and i < j, then let shift(j, i) be the result of replacing the substring ai · · ·aj in α with

ajai · · · aj−1. In other words, shift(j, i) denotes the operation of left-shifting the jth symbol into position i.

If α = 1s0tγ ∈ L and γ is either empty or begins with 1, then

next(α) =



















shift(s + t, i) if γ = ǫ

shift(s+t+1, 1) if γ = 1 or as+t+2 = 1 or β /∈ L

shift(s+t+2, i) otherwise.

(3.3)

Again, the above formula works circularly, since the first case describes how to change the last string in

cool-lex order into the first string. Also notice that the right movement followed by the down movement can

be described by a single shift. This section has proven the following theorem.

Theorem 3.1. Cool-lex order provides a cyclic Gray code for any bubble language L ⊆ Bd(n). Fur-

thermore, successive strings are obtained by one or two transpositions as determined by (3.2), or by a single

left-shift as determined by (3.3).

3.1. Layering. We have given cool-lex Gray codes for any bubble language whose strings have a fixed-

length and fixed-density. Since the Gray codes are cyclic, it is straightforward to obtain Gray codes for

bubble languages whose strings have fixed-length and varying density. One way to do this is to concatenate

the cool-lex Gray codes by increasing density. We can also obtain a cyclic Gray code by layering the even

densities in increasing order followed by the odd densities in decreasing order. In both cases we obtain a

Gray code so long as there is at least one string (the terminal string) in the language for each density.

More generally, if we partition L into its non-empty subsets whose strings have fixed-length and fixed-

density, then each subset will contain a terminal string. Furthermore, its first and last strings in cool-lex

order will differ by a constant amount. Therefore, we can obtain a (cyclic) Gray code for an arbitrary bubble

language L so long as there exists a (cyclic) Gray code amongst its terminal strings. This leads to the

following theorem.

Theorem 3.2. If bubble language L has a (cyclic) Gray code for its terminal strings, then L has a

(cyclic) Gray code.

Although Theorem 3.2 guarantees the existence of a Gray code, it may not produce a Gray code that

minimizes the difference between successive strings. In particular, the Hamming distance between successive

strings can be reduced by reflecting every second fixed-density Gray code.

4. Algorithms. In this section we provide simple recursive algorithms for generating bubble languages

over Bd(n) in Algorithms 1. Co-lex generates the strings in co-lex order according to (2.2), and Cool-lex

generates the strings in cool-lex order according to (3.1).

In these algorithms the current string is stored in an array of length n. The array is indexed from 1, and

should be initialized to contain 1d0n−d. The array is modified by swap(i, j), which swaps the values stored

at indices i and j. The initial call is to Co-lex(d, n − d) or Cool-lex(d, n − d), and Visit() is called once

for each string in L. At the start of each recursive call the array contains 1s0tγ where γ is either empty or

begins with 1. The key to the algorithm is the routine Oracle(s, t) that returns the minimum value of j such

that 1s−10t−j10jγ ∈ L. Each iteration of the for loop updates the current string from 1s0tγ to 1s−10t−i10iγ



BINARY BUBBLE LANGUAGES AND COOL-LEX GRAY CODES 11

Function Co-lex(s, t)
Visit()
if s > 0 and t > 0

j := Oracle(s, t)
for i := t − 1 to j

swap(s, s + t − i)
Co-lex(s − 1, t − i)
swap(s, s + t − i)

Function Cool-lex(s, t)
if s > 0 and t > 0

j := Oracle(s, t)
for i := t − 1 to j

swap(s, s + t − i)
Cool-lex(s − 1, t − i)
swap(s, s + t − i)

Visit()

Algorithms 1: Co-lex and Cool-lex generate a bubble language over Bd(n) in co-lex order and cool-lex
order, respectively.

using a single swap. Following a recursive call, the current string is restored to 1s0tγ by undoing this swap.

The only difference between the two routines is the location of the Visit().

Co-lex and Cool-lex reduce the complexity of generating each bubble language over Bd(n) to the

complexity of implementing each Oracle(s, t). Since every recursive call of Co-lex(s, t) visits a string in the

bubble language, we obtain the following theorem.

Theorem 4.1. If the total amount of computation required by all calls to Oracle(s, t) for a given bubble

language L ⊆ Bd(n) is proportional to the number of strings in L, then Co-lex(d, n − d) generates L in

constant amortized time.

In [22] and [23] we present efficient oracles for each of the bubble languages listed in Section 2, and this

allows each language to be generated in constant amortized time. The first of these two articles also explains

how Cool-lex can be augmented to output the run-length representation of each string, as well as the direct

Gray code changes (as transpositions or shifts) between successive strings.

5. Examples of Bubble Languages. This section shows that each of the combinatorial objects men-

tioned in Section 2.1 can be naturally represented by a bubble language. For related concepts, such as strings

with forbidden 01k or 10k, we will focus on the one that is a first-01 bubble language.

Combinations. An (n, d)-combination (or d-subset of an n-set) can be thought of as any string of length

n and density d. Clearly combinations satisfy both of the bubble properties. Combinations were the first

object to be studied in the context of cool-lex order [18] [19].

Forbidden substrings: Strings avoiding the forbidden substring 01k for any fixed value of k form a first-01

bubble language. This is because swapping the first 01 to 10 cannot introduce the forbidden substring. On

the other hand, these languages do not have the property that any 01 can be replaced by 10. For example,

0101 avoids 011, but replacing its second 01 by 10 gives the string 0110, which does contain 011. Similarly,

strings with forbidden substrings of the form 10k form a first-10 bubble language.

Inversions: An inversion with respect to 1∗0∗ in a string a1 · · ·an is any ai = 0 and aj = 1 such that

i < j. For example the string a1 · · · a6 = 100101 has 5 inversions: (a2, a4), (a2, a6), (a3, a4), (a3, a6), (a5, a6).

Replacing any 01 by 10 reduces the number of inversions by one, so strings with at most k inversions form

a first-01 bubble language. Similarly, strings with at most k inversions with respect to 0∗1∗ form a first-10

bubble language.

Transpositions: Another way to look at a string with k inversions is that it requires k adjacent-transpositions

to sort into the form 1∗0∗. If we remove the “adjacent” criteria, then we can consider a bound k on the

number of transpositions required to sort a string into the form 1∗0∗. For example, while the string 100101

requires 5 adjacent-transpositions (it has 5 inversions), it requires only 2 transpositions to sort it: namely

swapping the 0s in positions 2 and 3 with the 1s in position 4 and 6. Since swapping any 01 with 10 does



12 F. RUSKEY AND J. SAWADA AND A. WILLIAMS

not increase the number of transpositions required to sort it, strings with at most k transpositions to sort it

into the form 1∗0∗ are a first-01 bubble language. Similarly, strings with at most k transpositions to sort it

into the form 0∗1∗ are a first-10 bubble language.

Strings ≥ ω: Consider a string α that is greater than or equal to a fixed ω in the usual lexicographical

sense. Clearly, swapping any 01 to 10 in a string α will only make it lexicographically larger. Thus, the

language of strings that are greater than or equal to ω form a first-01 bubble language. Similarly, strings

that are less than or equal to ω form a first-10 bubble language.

Reversible strings: Consider a string α that is greater than (or equal to) its reversal. If we swap the first

01 to 10 then clearly α becomes larger while its reversal gets smaller in the usual lexicographical sense. Thus,

strings that are greater than (or equal to) their reversal form a first-01 bubble language. Similarly, strings

that are less than (or equal to) their reversal form a first-10 bubble language. Such equivalence classes of

strings have also been called neckties [21].

Complemented reversible strings: In addition to reversal, we can also consider equivalence under com-

plements (replacing 0s by 1s and vice versa). Observe that the terminal string 1d0n−d is only greater than

or equal to its complemented reversal if d ≥ ⌈n/2⌉. If this condition is satisfied, then the first 01 will either

occur completely in the first half of the string or it will be split over the middle. Thus, if a string α that is

greater than or equal to its complemented reversal then swapping the first 01 to 10 will clearly maintain this

property. Therefore, strings that are greater than or equal to their complemented reversal form a first-01

bubble language. Similarly, strings that are less than or equal to their complemented reversal form a first-10

bubble language. Furthermore, these inequalities can be replaced by strict inequalities so long as d > n/2.

Necklaces and Lyndon words: Necklaces are equivalence classes of strings under rotation. If we choose

the lexicographically largest (or smallest) element as the representative then we will show that they form a

bubble language. Using the lexicographically smallest element as representative, the aperiodic necklaces are

known as Lyndon words.

Consider a necklace α = a1 · · ·an using the lexicographically largest representative. If α 6= 1d0n−d, then

suppose that the first 01 appears in positions j and j + 1. Note that a1 · · · ai = 1s0t for some s, t > 0. If

we swap the first 01 to 10 then the resulting string β is larger than α. We analyze what happens to the

rotations of α in four cases, where ri denotes the string ai · · · ana1 · ai−1:

⊲ r2, · · · , rj−1: The prefix of these rotations before the swapped bits will clearly be less than the prefix of

the same length in α. Thus, these rotations will still be smaller than α < β after the swap has occurred.

⊲ rj : If s > 1, then this case is trivial since β will start 11 while rj with the swap will start 10. If s = 1,

then since α ≥ rj , we must have aj+2 · · · a2j = 0t. Thus, β will have prefix 10t−11 while the rotation ri

with the swap will have prefix 10t+1.

⊲ rj+1: This rotation will start with 0 after the swap and thus is clearly less than α < β.

⊲ rj+2 · · · rn: For these rotations the swap will occur later in the string than α. Thus, since α is greater

than or equal to each rotation, β will be greater than each such rotation after the swap has occurred.

In each case β is strictly larger than each of its rotations, and so β is an aperiodic necklace. Thus,

(aperiodic) necklaces using the lexicographically largest representation form a first-01 bubble language.

Similarly, (aperiodic) necklaces using the lexicographically smallest representation form a first-10 bubble

language.

Dyck words: A k-ary Dyck word is a binary string with d 1s and d(k − 1) 0s such that every prefix has

≤ k − 1 0s for every 1. k-ary Dyck words are known to be equivalent to k-ary trees with d internal nodes.

When k = 2, Dyck words are counted by the Catalan numbers and are equivalent to balanced parentheses



BINARY BUBBLE LANGUAGES AND COOL-LEX GRAY CODES 13

strings (see Stanley [25] for 177 combinatorial objects counted by the Catalan number). Dyck words are a

first-01 bubble language because swapping any 01 by 10 cannot decrease the number of 1s in a prefix.

Ordered forests: Ordered forests containing k trees are in correspondence with balanced parentheses

strings with k balanced prefixes. A balanced prefix in a string α is any non-empty prefix of α that contains

the same number of 1s as 0s. Notice that swapping a 01 by 10 can only increase the number of balanced

prefixes in α when α has a prefix containing j copies of 1 and j + 1 copies of 0. Since no such prefix exists

in a balanced parentheses string, then balanced parentheses strings with at most k balanced prefixes are a

first-01 bubble language.

Linear extensions of a B-poset: Consider α = a1 · · · an with d ones where the ith one appears within

the first ℓi positions, for each 1 ≤ i ≤ d. Such strings are in correspondence with the linear-extensions of

a B-posets (see Pruesse and Ruskey [15]). Special cases include k-ary Dyck words, which are obtained by

using n = kd and ℓi = k(i − 1) + 1 for 1 ≤ i ≤ d. Swapping any 01 with 10 cannot decrease the density of

any prefix, so the linear extensions of a B-poset form a first-01 bubble language.

Connected unit interval graphs: A unit interval graph with n vertices can be represented by a balanced

parentheses string α of length 2n. The vertex vi corresponds to the interval between the ith one and the ith

zero in α. If i < j, then vi and vj are adjacent if their intervals overlap, i.e., if the jth one appears before

the ith zero. In a connected unit interval graph, its balanced parentheses string has exactly one balanced

prefix. The four distinct connected unit interval graphs with four vertices appear below along with their

string representations.

11101000 11010100 11100100 11110000

Observe that two balanced parentheses strings give isomorphic unit interval graphs if they are comple-

mented reversals of one another. For example, the strings 11011000 and 11100100 give the same connected

unit interval graph. Conversely, it has been shown that connected unit interval graphs can be represented

uniquely by balanced parentheses strings with exactly one balanced prefix that are greater than or equal to

their complemented reversals (see Saitoh et al [20]). Since balanced parentheses with one balanced prefix

and binary strings greater than or equal to their complemented reverse with d = n/2 are both first-01 bubble

languages, then the closure of first-01 bubble languages under intersections from Lemma 2.1 implies that

connected unit interval graphs are also a first-01 bubble language.

0-1 knapsack: Given a knapsack with capacity C and a set of n items with non-decreaseing weights

w1w2 · · ·wn, a feasible packing corresponds to a subset of the items whose total weight does not exceed C.

Such a packing can be represented by a binary string α = a1 · · ·an where a 1 in position i represents that

the packing contains item i. Given a feasible packing α, clearly swapping any 01 with 10 will give rise to

a new packing that does not increase in weight. Thus, feasible solutions to a 0-1 knapsack problem form a

first-01 bubble language. Feasible solutions to 0-1 knapsack problems include many interesting special cases,

as illustrated by Figure 1.1.

REFERENCES

[1] S. Bacchelli, E. Barcucci, E. Grazzini, and E. Pergola. Exhaustive generation of combinatorial objects by ECO. Acta

Informatica, 40(8):585–602, July 2004.

[2] E. R. Canfield and S. G. Williamson. A loop-free algorithm for generating the linear extensions of a poset. Order,

12(1):57–75, 1995.

[3] F. Chung, P. Diaconis, and R.L. Graham. Universal cycles for combinatorial structures. Discrete Mathematics, 110:43–59,

1992.



14 F. RUSKEY AND J. SAWADA AND A. WILLIAMS

[4] G. Ehrlich. Loopless algorithms for generating permutations, combinations and other combinatorial configurations. Journal

of the ACM, 20(3):500–513, 1973.

[5] F. Gray. Pulse code communication. U.S. Patent 2,632,058, 1947.

[6] D. E. Knuth. The Art of Computer Programming, volume 4 fasicle 2: Generating All Tuples and Permutations. Addison-

Wesley, errata (updated 10/02/2008) edition, 2005. ISBN 0-201-85393-0.

[7] D. E. Knuth. The Art of Computer Programming, volume 4 fasicle 3: Generating All Combinations and Partitions.

Addison-Wesley, errata (updated 10/02/2008) edition, 2005. ISBN 0-201-85394-9.

[8] D. E. Knuth. The Art of Computer Programming, volume 4 fasicle 4: Generating All Trees, History of Combinatorial

Generation. Addison-Wesley, errata (updated 10/02/2008) edition, 2006. ISBN 0-321-33570-8.

[9] J. F. Korsh and P. S. LaFollette. Loopless generation of linear extensions of a poset. Order, 18(2):115–126, 2002.

[10] J. F. Korsh and S. Lipschutz. Generating multiset permutations in constant time. Journal of Algorithms, 25:321–335,

1997.

[11] B. LaBounty-Lay, A. Bechel, and A. Godbole. Universal cycles of discrete functions. Preprint (arXiv:0805.1672), 2008.

[12] Y. Li and J. Sawada. Gray codes for reflectable languages. Information Processing Letters, 109(5):296–300, 2009.

[13] E. Moreno. De Bruijn sequences and de Bruijn graphs for a general language. Inf. Process. Lett., 96(6):214–219, 2005.

[14] G. Pruesse and F. Ruskey. Gray codes from antimatroids. Order, 10:239–252, 1993.

[15] G. Pruesse and F. Ruskey. Generating linear extensions fast. SIAM Journal on Computing, 23(2):373–386, April 1994.

[16] F. Ruskey. Generating linear extensions of posets by transpositions. Journal of Combinatorial Theory (B), 54:77–101,

1992.

[17] F. Ruskey, J. Sawada, and A. Williams. Fixed-density de Bruijn sequences. (submitted), 2010.

[18] F. Ruskey and A. Williams. Generating combinations by prefix shifts. In COCOON ’05: Computing and Combinatorics,

11th Annual International Conference, volume 3595 of Lecture Notes in Computer Science, pages 570–576, Kunming,

China, 2005. Springer-Verlag.

[19] F. Ruskey and A. Williams. The coolest way to generate combinations. Discrete Mathematics, 309(17):5305–5320,

September 2009.

[20] T. Saitoh, K. Yamanaka, M. Kiyomi, and R. Uehara. Random generation and enumeration of proper interval graphs. In

WALCOM ’09: Third International Workshop on Algorithms and Computation, volume 5431 of Lecture Notes in

Computer Science, pages 177–189. Springer Berlin / Heidelberg, 2009.

[21] C. Savage. A survey of combinatorial Gray codes. SIAM Review, 39(4):605–629, 1997.

[22] J. Sawada and A. Williams. Efficient oracles for generating binary bubble languages. (submitted), 2010.

[23] J. Sawada and A. Williams. A Gray code for fixed-density necklace and Lyndon words in constant amortized time.

(submitted), 2010.

[24] R. Sedgewick. Permutations generation methods. ACM Comput. Surv., 9(2):137–164, 1977.

[25] R. Stanley. Enumerative Combinatorics. Cambridge University Press, 1997.

[26] T. Takaoka. An O(1) time algorithm for generating multiset permutations. In ISAAC ’99: Algorithms and Computation,

10th International Symposium, volume 1741 of Lecture Notes in Computer Science, pages 237–246, Chennai, India,

1999. Springer.

[27] T. Ueda. Gray codes for necklaces. Discrete Mathematics, 219(1-3):235–248, 2000.

[28] V. Vajnovszki. A loopless algorithm for generating the permutations of a multiset. Theoretical Computer Science,

2(307):415–431, 2003.

[29] V. Vajnovszki. Gray code order for lyndon words. Discrete Mathematics and Theoretical Computer Science, 9(2):145–152,

2007.

[30] T. Walsh. Generating Gray codes in o (1) worst-case time per word. Lecture Notes in Computer Science, 2731:73–88,

2003.

[31] T.M.Y. Wang and C. Savage. A Gray code for necklaces of fixed density. SIAM Journal on Discrete Mathematics,

9(4):654–673, 1996.

[32] A. Williams. Loopless generation of multiset permutations using a constant number of variables by prefix shifts. In SODA

’09: The Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, New York, New York, USA, 2009.

[33] A. Williams. Shift Gray codes. PhD thesis in Computer Science, University of Victoria, 2009.

[34] L. Xiang, K. Cheng, and K. Ushijima. Efficient generation of Gray codes for reflectable languages. In ICCSA 2010:

Computational Science and Its Applications, volume 6019 of Lecture Notes in Computer Science, pages 418–426.

Springer Berlin / Heidelberg, 2010.


