
FIXED-DENSITY DE BRUIJN SEQUENCES∗

FRANK RUSKEY† , JOE SAWADA‡ , AND AARON WILLIAMS§

Abstract. De Bruijn sequences are circular strings of length 2n whose substrings are the binary strings of length n. Our

focus is on de Bruijn sequences for binary strings that have the same density (number of 1s). We construct circular strings of

length
(

n−1

d

)

+
(

n−1

d−1

)

whose substrings of length n−1 are the binary strings with density d or d−1. We call these fixed-density

de Bruijn sequences since they have length
(

n

d

)

and each substring uniquely extends to a binary string of length n with density

d by appending its ‘missing’ redundant bit. Our construction is reminiscent of the lexicographically smallest de Bruijn sequence

except the underlying algorithm is applied to cool-lex order instead of lexicographic order. Additionally, our construction can be

implemented so that successive blocks of n bits are generated in constant amortized time (CAT) while using O(n log n)-space.

Key words. universal cycles, de Bruijn sequences, FKM algorithm, necklaces, Lyndon words, cool-lex order, middle-levels,

shift Gray code

1. Introduction. All strings in this paper are binary. Let B(n) denote the set of strings with length

n. A de Bruijn sequence for B(n) (or simply a de Bruijn sequence) is a circular string of length 2n that

contains each string in B(n) exactly once as a substring. De Bruijn sequences are also known as de Bruijn

cycles. A de Bruijn sequence for B(3) appears in Figure 1.1, where the substrings are read clockwise from

12 o’clock and allow wrap-around.

000, 001, 010, 101, 011, 111, 110, 100
00

0

101
1

1
substrings B(3):

Fig. 1.1. A de Bruijn sequence for B(3).

One can prove that de Bruijn sequences exist for B(n) by using an Eulerian cycle in its associated de

Bruijn graph. However, this proof does not directly lead to an efficient method of constructing an individual

de Bruijn sequence due to the exponential size of the associated graph (2n−1 nodes and 2n directed arcs).

Algorithmically, a fundamental question is determining the complexity of generating a specific de Bruijn

sequence. Perhaps the most famous construction is for the lexicographically smallest de Bruijn sequence,

which Knuth calls the “grand-daddy” [12].

De Bruijn sequences have many applications including dynamic connections in overlay networks (Fraig-

niaud and Gauron [6]), genomics (Alekseyev and Pezner [1]), and software calculation of the ruler function

in computer words (Knuth [13], Leiserson, Prokop, and Randall [14]). De Bruijn sequences also appear in

many elementary books on discrete mathematics. Generalizations and variations have been investigated,

most famously under the name universal cycles (see Chung, Graham and Diaconis [3]). Interested readers

can also refer to the Generalizations of de Bruijn Cycles and Gray Codes proceedings [11].

Our paper gives a new variation of de Bruijn sequences that restricts the density (number of 1s) of each

string. Let Bd(n) denote the set of length n strings with fixed-density d and let Bd
c(n) denote the set of

length n strings with density-range c, c + 1, . . . , d. In general, if L is a subset of B(n), then a de Bruijn

sequence for L is a circular string of length |L| containing each string in L exactly once as a substring.

∗Research supported in part by an NSERC discovery grant.
†Department of Computer Science, University of Victoria, PO Box 3010 STN CSC, Victoria BC, V8W 3N4, Canada

ruskey@cs.uvic.ca
‡School of Computer Science, University of Guelph, 217 Reynolds, Guelph ON, N1G 2W1, Canada jsawada@uoguelph.ca
§School of Mathematics and Statistics, Carleton University 1125 Colonel By Drive, Ottawa ON, K1S 5B6, Canada

haron@uvic.ca

1

Strictly speaking, de Bruijn sequences for Bd(n) only exist in trivial cases when d ∈ {0, 1, n − 1, n}. For

example, the circular strings of length
(

4
2

)

= 6 containing 0011 and 1100 are
00

111

1 ,
00

111

0 , and
00

110

0 but none are

de Bruijn sequences for B2(4). However, we can take advantage of a simple fact: The last bit of each string

in Bd(n) is redundant. That is, each α ∈ Bd(n) is completely determined by its first n−1 bits. For this

reason, we say that a de Bruijn sequence for Bd
d−1(n−1) with 1 < d < n is a fixed-density de Bruijn sequence

for Bd(n). The circular string in Figure 1.2 is a fixed-density de Bruijn sequence for B3(5). Its substrings of

length four include each string in B3
2(4) exactly once; appending the ‘missing’ bit extends each substring to

a unique string in B3(5). In general, the shorthand sequence of a fixed-density de Bruijn sequence for Bd(n)

is its circular sequence of substrings of length d− 1 and the longhand sequence is obtained by appending the

missing bit to each string in the shorthand sequence so that each resulting string has density d.

00111, 01110, 11100, 11010, 10101, 01011, 10110, 01101, 11001, 10011

0011, 0111, 1110, 1101, 1010, 0101, 1011, 0110, 1100, 10011 0 0 0 1 1 0 1 1 000
1

1

101
0

1

1 shorthand B3
2(4):

longhand B3(5):

Fig. 1.2. A fixed-density de Bruijn sequence for B3(5).

Our main result is a construction of fixed-density de Bruijn sequences for any Bd(n). A subsequent anal-

ysis in [21] shows that our “cool-daddy” de Bruijn sequences can be created efficiently, with successive blocks

of n bits being generated in amortized O(1)-time while using only O(n log n)-space. This is an improvement

over algorithms that construct universal cycles one symbol at a time (see [19] for an example). The space

measurement is also important since certain algorithms for generating universal cycles use exponential space.

This paper is organized as follows: Section 2 discusses de Bruin graphs, Section 3 describes how to

construct a single de Bruijn sequence, Section 4 describes a modified version of this construction, Section

5 covers “cool-lex” order, Section 6 provides the “cool-daddy” construction, and Section 7 concludes with

open problems.

2. de Bruijn Graphs. The de Bruijn graph for B(n) is a directed graph whose node set is B(n−1). For

each node α = a1 · · · an−1 and x ∈ {0, 1} there is an arc labeled x that is directed from α to β = a2 · · ·an−1x.

Each arc represents a unique string αx ∈ B(n). The de Bruijn graph for B(4) is illustrated in Figure 2.1.

001

100

000 010 101

011

110

111

1

0

1

001

0

0
0

00

1 1

1

1

0

1

1 0

Fig. 2.1. The de Bruijn graph for B(4).

More generally, the de Bruijn graph for L ⊆ B(n) is a directed graph G(L) whose nodes are the length

n−1 prefixes and suffixes of the strings in L. There is an arc labeled x ∈ {0, 1} from α = a1 · · ·an−1 to

β = a2 · · · an−1x if αx ∈ L. Again, each arc represents a unique string αx ∈ L. We are interested in de

Bruijn graphs for L = Bd
d−1(n). Figure 2.2 (b) illustrates the important observation that the node set of

G(Bd
d−1(n)) is Bd

d−2(n − 1).

A directed graph is Eulerian if it has a directed cycle that includes each arc exactly once. It is well-

known that a directed graph is Eulerian if and only if it is balanced (every node has the same number of

incoming and outgoing arcs) and strongly connected (there is a directed path from any node to any other

node). Furthermore, Eulerian cycles in G(L) are in one-to-one correspondence with de Bruijn sequences for

2

1

0

1

0

1

0

1

0

001

100

010 101

011

110

001 001

100

010 101

011

110

111

001

(a) (b)

1 0 1 0

1

1 0

1

Fig. 2.2. Two de Bruijn graphs (a) G(B2(4)), and (b) G(B3

2
(4)).

L. For example, Figure 2.2 (a) shows that G(B2(4)) is not strongly connected, and this provides an alternate

way to observe that there are no de Bruijn sequences for B2(4). The connection between de Bruijn sequences

and de Bruijn graphs can be found in de Bruijn’s paper for B(n) [4]; also see his note on the history of these

observations [5]. Table 2.1 illustrates the connection between an Eulerian cycle in Figure 2.2 (b) and the

fixed-density de Bruijn sequence in Figure 1.2.

Eulerian cycle Substrings

nodes arcs shorthand longhand

011 0 0110 01101
110 0 1100 11001
100 1 1001 10011
001 1 0011 00111
011 1 0111 01110
111 0 1110 11100
110 1 1101 11010
101 0 1010 10101
010 1 0101 01011
101 1 1011 10110

B3

1(3) B(1) B3

2(4) B3(5)

(i) (ii) (iii) (iv)
Table 2.1

(i) The nodes along an Eulerian cycle in the de Bruijn graph G(B3

2
(4)) from Figure 2.2 (b), (ii) arc labels on this Eulerian

cycle, and the fixed-density de Bruijn sequence for B3(5) in Figure 1.2, (iii) its shorthand sequence, and (iv) its longhand
sequence.

Table 2.1 illustrates that G(B3
2(4)) is Eulerian. The remainder of this section shows that G(Bd

d−1(n)) is

Eulerian. Since G(Bd
d−1(n)) is directed, we shorten directed path to path.

Lemma 2.1. G(Bd
d−1(n)) is balanced for 1 < d < n.

Proof. The node set of G(Bd
d−1(n)) is Bd

d−2(n− 1). Each α ∈ Bd−1(n− 1) has in- and out-degree 2, and

each α ∈ Bd−2(n − 1) ∪ Bd(n − 1) has in- and out-degree 1.

(a) (b)

length 13 length 85

Fig. 2.3. Shortest path from 00000000111111111 to 11110000011111000 in (a) G(B(18)) and (b) G(B9

8
(18)). Nodes are

read top-to-bottom with black and white squares respectively for 0 and 1.

The fact that many nodes in G(Bd
d−1(n)) have out-degree 1 contributes to the difficulty of proving that

it is strongly-connected. As a specific example, a maximum length shortest path in G(B9
8(18)) is illustrated

3

in Figure 2.3 (b) and has length 85. In contrast, Figure 2.3 (a) illustrates that trivial paths of length at most

n−1 exist between each pair of nodes in the original de Bruijn graph G(B(n)). To prove that G(Bd
d−1(n))

is strongly connected we repeatedly apply the following lemma.

Lemma 2.2. Let α = a1 · · · an and β = b1 · · · bn be different nodes in G(Bd
d−1(n)) where 1 < d < n. If i

is the smallest integer such that ai 6= bi, then there exists a path from α to some node with prefix b1 · · · bi

Proof. We assume ai = 0 since the ai = 1 case is similar. Note that α has three possible densities since

the node set of G(Bd
d−1(n)) is Bd

d−2(n − 1). For each density we provide a valid path (labeled by the arcs)

that ends at a node with prefix b1 · · · bi.

If α has density d−2, then this path suffices: 〈1, a1, . . . , ai−1, 1, ai+1, . . . , an−1〉. If α has density d−1, then

this path suffices: 〈0, a1, . . . , ai−1, 1, ai+1, . . . , an−1〉. If α has density d, then there exists i < j ≤ n such that

aj = 1. (Otherwise, α’s prefix a1 · · ·ai−10 has density d, implying β’s prefix a1 · · · ai−11 has invalid density d+

1.) First we find a path from α to γ = a1 · · · aj−10aj+1 · · · an−1 as follows: 〈0, a1, . . . , aj−1, 0, aj+1, . . . , an−1〉.

Since γ has density d−1 and has the same prefix of length i as α, we can complete our path by applying the

path from the d−1 case.

Through repeated application of this lemma we obtain the following corollary.

Corollary 2.3. G(Bd
d−1(n)) is strongly connected for 1 < d < n.

We obtain the following theorem from Lemma 2.1 and Corollary 2.3.

Theorem 2.4. G(Bd
d−1(n)) is Eulerian for 1 < d < n.

This theorem implies the existence of fixed-density de Bruijn sequences. In Section 6 we give an explicit

construction.

3. The FKM Algorithm. While de Bruijn graphs can be used to prove that de Bruijn sequences exist,

we are instead interested in efficiently constructing individual de Bruijn sequences. Martin [15] examined

this issue in 1934, and proposed a simple backtracking approach that builds a de Bruijn sequence for B(n)

one bit at a time. In fact, by slightly modifying his presentation, the de Bruijn sequence he creates is the

lexicographically smallest for each value of n. Unfortunately, Martin’s approach is again algorithmically

infeasible since it requires exponential space. Fredericksen, Kessler and Maiorana [8, 7] discovered a direct

method — the “FKM algorithm” — for constructing the lexicographically smallest de Bruijn sequence for

B(n).

Given the strings α = a1 · · · an and β = b1 · · · bm that are distinct, α is less than β in lexicographic

order if there exists an i such that a1 · · · ai = b1 · · · bi and either i = n or ai+1 < bi+1. The sequence of a

set of strings L listed in lexicographic order is denoted lex(L). A necklace is a string in its lexicographically

smallest rotation. That is, α = a1a2 · · · an is a necklace if ajaj+1 · · · ana1a2 · · · aj−1 ≥ α for all j. The set of

all necklaces over B(n) and Bd(n) are denoted N(n) and Nd(n) respectively. The aperiodic prefix of string

α is its shortest prefix whose repeated concatenation yields α. That is, the aperiodic prefix of α = a1a2 · · · an

is the shortest γ = a1a2 · · · ak such that γn/k = α, where exponentiation denotes repeated concatenation.

The aperiodic prefix of α is denoted by ρ(α). If ρ(α)n/k = α, then the number of distinct rotations of α is

k; we say that α is aperiodic if k = n and is periodic otherwise. A Lyndon word is an aperiodic necklace.

The set of all Lyndon words over B(n) and Bd(n) are denoted L (n) and Ld(n), respectively. The FKM

algorithm [7] produces a circular string fkm(n) that is the concatenation of the Lyndon words whose length

4

divides n in lexicographic order. That is,

fkm(n) = ℓ1 · ℓ2 · · · ℓm where lex





⋃

j|n

L (n/j)



 = ℓ1, ℓ2, . . . , ℓm. (3.1)

Figure 3.1 illustrates fkm(6), where · visually separates each Lyndon word. The surprising connection

between lexicographic order, the FKM algorithm, and de Bruijn sequences is given in Theorem 3.1.

Theorem 3.1 (“Grand-daddy” [7]). fkm(n) is a de Bruijn sequence for B(n).

0×000001
00001

1
0
0
0
1
0
1

0
0
0
111

001001011001101

00
11

1
1

0
1

0
1
0
1
1
1

01
1

01
1111 1

×

×
×

×

×

×

×

×
×

×

×

× ×0
000001
000011
000101
000111

001
001011
001101
001111

01
010111

011
011111

1

Lyndon

0
000001
000011
000101
000111

001
001011
001101
001111

01
010111

011
011111

1

000000
000001
000011
000101
000111
001001
001011
001101
001111
010101
010111
011011
011111
111111

(a) (b) (c) (d)

L (6) N(6)fkm(6)
de Bruijn sequence necklaces aperiodic

prefixes

lex
ico

g
ra

p
h
ic

o
rd

er

Fig. 3.1. Concatenating the Lyndon words of length 1, 2, 3, 6 in lexicographic order in (a) gives the “grand-daddy” de
Bruijn sequence fkm(6) in (b). This construction can also be obtained by concatenating the aperiodic prefix in (d) of the
necklaces of length 6 in (c).

The de Bruijn sequence in Theorem 3.1 is also the lexicographically smallest de Bruijn sequence for each

B(n). A careful analysis by Ruskey, Savage, and Wang [16] proved that each successive bit in fkm(n) can

be generated in amortized O(1)-time while using O(n)-space. In fact, their algorithm visits successive blocks

of n bits in this time and space complexity. Unfortunately, fixed-density de Bruijn sequences are not created

by restricting the FKM algorithm to the appropriate fixed-density Lyndon words. To make this observation

precise, let

fkmd(n) = ℓ1 · ℓ2 · · · ℓm where lex





⋃

j| gcd(d,n)

Ld/j(n/j)



 = ℓ1, ℓ2, . . . , ℓm. (3.2)

Figure 3.2 illustrates that fkm4(8) is not a fixed-density de Bruijn sequence. In particular, fkm4(8) has

invalid substrings such as 0100100 /∈ B4
3(7), and repeated substrings such as 1110001.

Although fkmd(n) is not a fixed-density de Bruijn sequence, it does have the correct length of
(

n
d

)

. To

understand why this is true, observe that if α ∈ Bd(n) has k distinct rotations, then the rotations of α

will contribute k bits to fkmd(n). Since fkmd(n) has the correct length, we will consider ‘rearranging’ its

constituent Lyndon words in Section 6.

4. Necklace-Prefix Algorithm. In this section we reformulate the FKM algorithm and then provide

a simple generalization. Instead of describing fkm(n) as the concatenation of Lyndon words whose length

divides n, it can be described as the concatenation of the aperiodic prefixes of the necklaces of length n.

That is,

fkm(n) = ρ(η1) · ρ(η2) · · · ρ(ηm) where lex(N(n)) = η1, η2, . . . , ηm. (4.1)

5

Lyndon

00001111
×0001

0
1
1
1

×0
0
0
1
1
0
1
1
×00011101

×00100111×0010
10

11
×
0
0
1
0
1
1
0
1

×
0
0
1
1
×
00

11
01

01×01×

00001111

00010111

00011011

00011101

00100111

00101011

00101101

0011

00110101

01

00001111

00010111

00011011

00011101

00100111

00101011

00101101

00110011

00110101

01010101

00001111

00010111

00011011

00011101

00100111

00101011

00101101

0011

00110101

01

(a) (b) (c) (d)

L4(8) N4(8)fkm4(8)
necklaces aperiodic

prefixes

lex
ico

g
ra

p
h
ic

o
rd

er

Fig. 3.2. Concatenating the Lyndon words of length 2, 4, 8 and density 1, 2, 4 respectively in lexicographic order in (a)
does not give a fixed-density de Bruijn sequence fkm4(8) in (b). The substring 1110001 is repeated, and the substring 010010
is invalid. This construction can also be obtained by concatenating the aperiodic prefix in (d) of the necklaces of length 8 and
density 4 in (c).

To see why the concatenations in (3.1) and (4.1) are identical, simply observe that ρ(ηi) = ℓi. The fixed-

density variant of fkm(n) can be similarly described as follows

fkmd(n) = ρ(η1) · ρ(η2) · · · ρ(ηm) where lex(Nd(n)) = η1, η2, . . . , ηm. (4.2)

These two restatements of the FKM algorithm are illustrated in Figure 3.1 (c)-(d) and 3.2 (c)-(d). The

advantage of (4.2) over (3.2) is that the lexicographic order of fixed-density necklaces can be easily replaced

by any other order of fixed-density necklaces. For the remainder of this article, a necklace-prefix algorithm

refers to the concatenation of the aperiodic prefixes of Nd(n) arranged in some order. The end of Section 3

explains why the necklace-prefix algorithm produces circular strings of the correct length.

There are two previously known Gray codes for fixed-density necklaces by Wang and Savage [23] and

Ueda [22]. However, in both of these cases the necklace-prefix algorithm does not produce a fixed-density

de Bruijn sequence due to invalid strings that are explained by the following lemma.

Lemma 4.1. Suppose L is an ordering of Nd(n) that contains consecutive aperiodic necklaces α =

a1 · · · an and β = b1 · · · bn. If there exists j such that

j
∑

i=1

ai −
j−1
∑

i=1

bi /∈ {0, 1},

then applying the necklace-prefix algorithm to L will not result in a fixed-density de Bruijn sequence for

Bd(n) due to invalid substrings.

Proof. Observe that γ = aj+1 · · · anb1 · · · bj−1 is an invalid substring since

Σγ = d − Σ(a1 · · ·aj) + Σ(b1 · · · bj−1) /∈ {d, d − 1}.

The invalid substring 0100100 in Figure 3.2 is explained by Lemma 4.1 using α = 00011101, β =

00100111, and j = 6. The lemma also suggests that the necklace-prefix algorithm should be applied to Gray

codes that do not significantly change the sum of each prefix. Such an ordering is discussed in the next

6

section.

5. Cool-lex Order. This section discusses the cool-lex Gray code whose reverse order will be used

to construct fixed-density de Bruijn sequences in the next section. Cool-lex order is a shift Gray code for

fixed-density binary strings, meaning successive strings differ by a shift [18]. If α = a1a2 · · ·an, then a

shift from the jth position to the ith position with i < j causes the substring aiai+1 · · · aj to be replaced

by ajaiai+1 · · ·aj−1. In other words, the symbol aj is removed and then reinserted somewhere to the left

in position i; the intermediate symbols accommodate this shift by moving one position to the right. This

operation is denoted by shiftα(j, i), which we shorten to shift(j, i) when the initial string is clear. There is a

very simple rule for cyclically creating the cool-lex order of Bd(n) one string at a time: If α ∈ Bd(n) and k is

the length of its longest prefix of the form 0∗1∗, then the next string in cool-lex order is shift(min(k+2, n), 1).

(In our discussion, all bits are complemented with respect to the original presentation of cool-lex order in

[18].) By convention, cool-lex order of Bd(n) ends with 0n−d1d. Table 5.1 (a)-(b) illustrates the cool-lex

order of B4(8) and the shifts according to this rule.

cool (B4(8)) Gray code cool (N4(8)) Gray code case condition reverse
10000111 shift(8, 1) 00100111 shift(4, 1) (5.1b) as+t+2 = 0 00001111
01000111 shift(4, 1) 00010111 shift(6, 3) (5.1c) 00011101
00100111 shift(5, 1) 00101011 shift(5, 4) (5.1c) 00110101
00010111 shift(6, 1) 00110011 shift(5, 1) (5.1b) as+t+2 = 0 01010101
10001011 shift(3, 1) 00011011 shift(7, 3) (5.1c) 00101101

. 00101101 shift(5, 2) (5.1c) 00011011
01111000 shift(7, 1) 01010101 shift(3, 1) (5.1b) β /∈ L 00110011
00111100 shift(8, 1) 00110101 shift(5, 1) (5.1b) β /∈ L 00101011
00011110 shift(8, 1) 00011101 shift(7, 1) (5.1b) β /∈ L 00010111
00001111 shift(8, 1) 00001111 shift(8, 2) (5.1a) 00100111

(a) (b) (c) (d) (e) (f) (g)
Table 5.1

(a) Cool-lex orders for B4(8) and (b) the shifts that generate this order. The cool-lex order of N4(8) appears in (c), along
with (d)-(f) the corresponding shifts according to (5.1), and (g) its reverse order.

Given L ⊆ Bd(n) let cool (L) represent the order of strings in L according to the cool-lex order of Bd(n).

Recently, it was shown that cool (Nd(n)) is also a shift Gray code [17]. Furthermore, the following rule

cyclically creates the order one string at a time1 [17]. Table 5.1 (c)-(f) illustrates the cool-lex order of N4(8)

along with the shifts and cases according to this rule.

Cool-lex Gray code for Necklaces

Let α = 0s1tγ ∈ Nd(n) with s, t > 0 and γ is empty or begins with 0. The necklace

following α in cool-lex order is denoted next(α) and is obtained from α by the following

shift

next(α) =











shift(s+t, i) if γ = ǫ (5.1a)

shift(s+t+1, 1) if as+t+2 = 0 or β /∈ Nd(n) (5.1b)

shift(s+t+2, i) otherwise (5.1c)

where β = shiftα(s+t+2, s+t+1), and i is the minimum value such that 0i10s−i1t−1γ ∈

Nd(n).

1Condition 5.1b is slightly simplified here since 0n is the only necklace ending in 0.

7

In [21] it is proven that cool (Nd(n)) can be generated in constant amortized time. Reverse cool-lex order

is identical to cool-lex order except the relative order of the strings is reversed (see Table 5.1 (c) and (g)).

The advantage of reverse cool-lex order is that it satisfies Lemma 4.1. We complete this section with two

results.

Lemma 5.1. [17] If α is a necklace, then swapping its first 10 (if it exists) by 01 yields another necklace.

Lemma 5.2. If α is periodic, then next(α) is aperiodic.

Proof. There are two cases. If as+t+2 = 0, then next(α) = shift(s+t+1, 1) by (5.1b). If as+t+2 = 0, then

β = shift(s+t+2, s+t+1) /∈ Nd(n) and so next(α) = shift(s+t+1, 1) by (5.1b). Therefore, 0s+1 is a prefix of

next(α) so it is aperiodic since this is its only 0s+1 substring.

6. Cool-Daddy de Bruijn sequences. Let Cd(n) denote the result of applying the necklace-prefix

algorithm to the reverse cool-lex order of the necklaces of length n and density d. That is,

Cd(n) = ρ(η1) · ρ(η2) · · · ρ(ηm) where cool (Nd(n)) = ηm, ηm−1, . . . , η1. (6.1)

Figure 6.1 illustrates that C4(8) is a fixed-density de Bruijn sequence for B4(8), and this section proves

this result in general. To simplify our presentation, we define an additional circular string Dd(n) as the

concatenation of the necklaces of length n and density d without first reducing each necklace to its aperiodic

prefix. That is,

Dd(n) = η1 · η2 · · · ηm where cool (Nd(n)) = ηm, ηm−1, . . . , η1. (6.2)

Theorem 6.1 proves that Dd(n) contains each string in Bd
d−1(n) at least once, while Theorem 6.2 proves that

Cd(n) contains each string in Bd
d−1(n) exactly once. Let prev(α) denote the necklace before α in cool-lex

order. That is, next(prev(α)) = α.

00001111

00011101

00110101

01010101

00101101

00011011

00110011

00101011

00010111

00100111

00001111

00011101

00110101

01

00101101

00011011

0011

00101011

00010111

00100111

00001111
× 0001110

1
×
0
0
1
1
0
1
0
1

×
01

×00101101
×00011011×

00

11
×
00

1
0
1
0
1
1

×
0
0
0
1
01

11

×

00
10

0111 ×

(a) (b) (c)

N4(8) C4(8)
fixed-density de Bruijn sequencenecklaces aperiodic

prefixes

co
o
l-lex

o
rd

er

Fig. 6.1. Concatenating the aperiodic prefix in (b) of the necklaces of length 8 and density 4 in reverse cool-lex order in

(a) creates the “cool-daddy” fixed-density de Bruijn sequence C4(8) in (c). The substrings of the cycle are the
(

8

4

)

= 70 strings

in B4

3
(7).

Theorem 6.1. The string Dd(n) contains each string in Bd
d−1(n − 1) as a substring when 1 < d < n.

Proof. Let pq ∈ Bd
d−1(n− 1) be such that qxp ∈ Nd(n) where x ∈ {0, 1}. Our goal is to demonstrate a

necklace α ∈ Nd(n) such that pq is a substring of next(α) ·α ∈ U(n, d). Specifically, we will provide α with

prefix q such that next(α) has suffix p. As a special case, if p or q is empty then clearly we can let α = qxp.

8

If q has prefix 0s1t0 where s, t > 0, then α = qxp (next(α) is obtained from (5.1b) or (5.1c)). Otherwise,

since qxp is a necklace, we can assume that q = 0s1t where s > 0 and t ≥ 0. For this remaining case we

consider the two possible values for x separately and assume that qp has maximal prefix 0i1j where i, j > 0.

Assume x = 1. If p = 1k, then α = qxp (next(α) is obtained from (5.1a)). Otherwise, consider 2 cases

depending on t.

⊲ t ≥ 1: Transpose the first 10 to 01 in q1p to obtain α, which is a necklace by Lemma 5.1 (next(α) is

obtained from (5.1c)). Note that the first 10 must occur after q, and hence α has prefix q.

⊲ t = 0: If qp = 0i1j then α = qp1 (next(α) is obtained from (5.1a)); otherwise obtain α by inserting

x = 1 into position i + j + 2 (after the first 10) of qp (next(α) is obtained from (5.1c)).

Assume x = 0. Again we consider 2 cases depending on t.

⊲ t ≥ 1: Obtain α by inserting x = 0 into qp as far right as possible up to position i + j + 1 so that the

resulting string is a necklace (next(α) is obtained from (5.1b)). Note that the 0 will be inserted after q

since q0p is a necklace.

⊲ t = 0: If it is possible to insert x = 0 past the first 1 in qp to obtain a necklace, then apply α as

described when t ≥ 1. Otherwise, construct α so that next(α) = q0p. Observe that α has prefix q and

next(α) is obtained by (5.1b).

Theorem 6.2. The string Cd(n) is a fixed-density de Bruijn sequence for Bd(n) when 1 < d < n.

Proof. Since Cd(n) has the correct length of
(

n
d

)

, we need only show that every string in Bd
d−1(n) appears

as a substring in Cd(n). From Theorem 6.1, this means that we need only show that every substring in Dd(n)

of length n−1 is also a substring in Cd(n). For this reason, let us consider an arbitrary periodic necklace

Nd(n) of the form γk where γ is the aperiodic prefix. Since consecutive necklaces cannot both be periodic

by Lemma 5.2, we must show that each length n−1 substring of next(γk) · γk · prev(γk) is also a substring of

next(γk) · γ · prev(γk). This can be verified by applying the iterative cool-lex rules and considering two cases

for γ where s, t > 0 and ω is non-empty:

⊲ γ = 0s1t
next(γk) · γ · prev(γk) = · · · 0s−11tγk−2 · γ · 0s−11t · · ·

⊲ γ = 0s1t0ω next(γk) · γ · prev(γk) = · · · γk−1 · γ · prev(γk).

From this illustration, it should be clear in both cases that each length n−1 substring in next(γk) · γk ·

prev(γk) will also be a substring of next(γk) · γ · prev(γk).

7. Summary and Open Problems. This paper provides an explicit fixed-density de Bruijn sequence.

It is constructed by concatenating the aperiodic prefixes of fixed-density necklaces in reverse cool-lex order.

An algorithm in [21] shows that this fixed-density de Bruijn sequence can be generated efficiently, with

successive blocks of n bits being generated in amortized O(1)-time while using only O(n log n)-space. In

addition to these results, we also investigated the de Bruijn graph G(Bd
d−1(n)).

We conclude with additional observations and natural open problems:

1. Suppressing the last redundant symbol of each string was also used in the construction of shorthand

universal cycles for permutations (see the papers by Holroyd, Ruskey, and Williams [19] [10]). Which

other fixed-content languages have shorthand universal cycles?

2. Do density-range de Bruijn sequences exist for any Bd
c(n)? The answer is yes for c = d − 1 by

Theorem 6.2, and this can be used as a base case to prove that the de Bruijn graph for Bd
c(n) is

strongly-connected.

3. Can density-range de Bruijn sequences be generated efficiently? As previously mentioned, fixed-

density de Bruijn sequences can be efficiently generated [21].

9

4. The shorthand sequence of Bd
d−1(n − 1) appears in a single-track order when obtained from a

fixed-density de Bruijn sequence for Bd(n) (see Hiltgen et al [9] for single-track Gray codes). This

observation may be of interest to those who study the middle-levels Bd
d−1(2d − 1); a well-known

open problem is to determine if there is a Hamming distance 1 Gray code for the middle-levels (see

Savage and Winkler [20]). Which other sets of binary strings have single-track orders?

5. The longhand sequence of Bd(n) appears in a special cyclic order when obtained from a fixed-density

de Bruijn sequence for Bd(n): Successive strings differ by σn or σn−1 (or both). For example, see

Table 2.1 (iv). It was proven that σ2 and σn cannot be used to create a Gray code for Bd(n) by

Cheng [2]. The sufficiency of σn−1 and σn, and the insufficiency of σ2 and σn, are two special cases

of a general question asked in [18]: Which sets of σi are necessary and sufficient for generating a

(cyclic) Gray code for Bd(n)?

6. Given the above question, what is the maximum and minimum number of σn that can result from

a fixed-density de Bruijn sequence? In particular, how many are used in the cool-daddy de Bruijn

sequences? For shorthand universal cycles of permutations, natural constructions exist for both the

maximum and minimum number of possible σn.

7. As mentioned in Section 3, the grand-daddy de Bruijn sequence for B(n) is the first de Bruijn

sequence for B(n) in lexicographic order. The cool-daddy de Bruijn sequences for Bd(n) are neither

the largest nor smallest in lexicographic order or cool-lex order. For example, 0011101011 from

Figure 1.2 is bracketed by the fixed-density de Bruijn sequences 0011010111 and 1110101100 in both

lexicographic and cool-lex order. What is the first fixed-density de Bruijn sequence for Bd(n) in

lexicographic order, and can it be constructed directly without backtracking?

8. The grand-daddy de Bruijn sequence for B(n) can be constructed one bit at a time by a simple

backtracking method. Is there a similar method that constructs the cool-daddy de Bruijn sequences

one bit at a time?

9. The necklace-prefix algorithm creates de Bruijn sequences when using lexicographic order, and cre-

ates fixed-density de Bruijn sequences when using reverse cool-lex order. Are these orders special in

this respect or are there many orders with these properties?

A final open problem is to determine the diameter (length of the longest shortest path) of the de Bruijn

graph for Bd
d−1(n), or more generally Bd

c(n). For small values of n and d we computed the diameter of

G(Bd
d−1(n)) in Table 7.1, as well as pairs of nodes that achieve the maximum diameter for each n. In Table

7.1, d ≥ ⌈n/2⌉ since G(Bd
d−1(n)) and G(Bn−d+1

n−d (n)) are isomorphic. A conjecture regarding the diameter

of G(Bd
d−1(n)) appears in Conjecture 7.1.

Conjecture 7.1. The de Bruijn graph G(Bd
d−1(n)) has maximal diameter when d = ⌊n/2⌋ for (n mod

4) ≡ 3 and d = ⌈n/2⌉ otherwise. Moreover, this maximal diameter is given by ⌊
(

n+1
2

)

/2⌋ and is obtained by

the vertices 0x1y and 1a0b1c0d where:

⊲ x = ⌊n−1
2 ⌋ y = ⌈n−1

2 ⌉

⊲ a = ⌊n
4 ⌋ b = ⌊n+3

4 ⌋ c = ⌊n+2
4 ⌋ d = ⌊n−3

4 ⌋.

8. Acknowledgements. The authors would like to thank Glenn Hurlbert and Garth Isaak for helpful

discussions regarding de Bruin graphs at canadam 2009.

REFERENCES

[1] Max A. Alekseyev and Pavel A. Pevzner. Colored de Bruijn graphs and the genome halving problem. IEEE/ACM

Transactions on Computational Biology and Bioinformatics (TCBB), 4(1):98–107, January 2007.

10

n d = ⌈n/2⌉, . . . , n−1 (α,β)

5 7 7 (0011, 1010)
6 10 9 (00111, 10011)
7 13 14 11 (000111, 100110)
8 18 17 13 (0001111, 1100110)
9 22 22 20 15 (00001111, 11000110)
10 27 25 23 17 (000011111, 110001110)
11 32 33 29 26 19 (0000011111, 1100011100)
12 39 37 34 29 21 (00000111111, 11100011100)
13 45 45 41 39 32 23 (000000111111, 111000011100)
14 52 49 46 43 35 25 (0000001111111, 1110000111100)
15 59 60 55 53 47 38 27 (00000001111111, 11100001111000)
16 68 65 61 58 51 41 29 (000000011111111, 111100001111000)
17 76 76 71 67 62 55 44 31 (0000000011111111, 1111000001111000)
18 85 81 79 76 66 59 47 33 (00000000111111111, 11110000011111000)

Table 7.1
Diameter of G(Bd

d−1
(n)) for n ≤ 18. The (α,β) pairs give strings at maximum distance for each n.

[2] Yongxi Cheng. Generating combinations by three basic operations. Journal of Computer Science and Technology,

22(6):909–913, 2007.

[3] F. Chung, P. Diaconis, and R.L. Graham. Universal cycles for combinatorial structures. Discrete Mathematics, 110:43–59,

1992.

[4] N.G. de Bruijn. A combinatorial problem. Koninkl. Nederl. Acad. Wetensch. Proc. Ser A, 49:758–764, 1946.

[5] N.G. de Bruijn. Acknowledgement of priority to c. flye sainte-marie on the counting of circular arrangements of 2n zeros

and ones that show each n-letter word exactly once. T.H. Report 75-WSK-06, Technological University Eindhoven,

1975. 13 pages.

[6] Pierre Fraigniaud and Philippe Gauron. D2B: A de Bruijn based content-addressable network. Theoretical Computer

Science, 355(1):65 – 79, 2006.

[7] H. Fredericksen and I. J. Kessler. An algorithm for generating necklaces of beads in two colors. Discrete Mathematics,

61:181–188, 1986.

[8] H. Fredericksen and J. Maiorana. Necklaces of beads in k colors and kary de Bruijn sequences. Discrete Mathematics,

23(3):207–210, 1978.

[9] A.P. Hiltgen, K.G. Paterson, and M. Brandestini. Single-track Gray codes. IEEE Transactions on Information Theory,

42(5):1555–1561, Sept. 1996.

[10] A. Holroyd, F. Ruskey, and A. Williams. Faster generation of shorthand universal cycles for permutations. In CO-

COON ’10: Computing and Combinatorics, 16th Annual International Conference, volume 6196 of Lecture Notes in

Computer Science, pages 298–307, Nha Trang, Vietnam, 2010. Springer-Verlag.

[11] G. Hurlbert, B. Jackson, and B. Stevens, editors. Generalizations of de Bruijn Cycles and Gray Codes, volume 309 of

Discete Mathematics. Elsevier, 2009.

[12] D. E. Knuth. The Art of Computer Programming, volume 4 fasicle 2: Generating All Tuples and Permutations. Addison-

Wesley, errata (updated 10/02/2008) edition, 2005. ISBN 0-201-85393-0.

[13] D. E. Knuth. The Art of Computer Programming, volume 4 fascicle 1 - Bitwise Tricks & Techniques, Binary Decison

Diagrams. Addison-Wesley, 2009. ISBN 0-321-58050-8.

[14] C.E. Leiserson, H. Prokop, and K.H. Randall. Using de Bruijn sequences to index a 1 in a computer word, 1998. [Online;

accessed June 2009].

[15] M. H. Martin. A problem in arrangements. Bull. Amer. Math. Soc., 40:859–864, 1934.

[16] F. Ruskey, C. Savage, and T.M.Y. Wang. Generating necklaces. J. Algorithms, 13:414–430, 1992.

[17] F. Ruskey, J. Sawada, and A. Williams. Binary bubble languages and cool-lex Gray codes. (submitted), 2010.

[18] F. Ruskey and A. Williams. The coolest way to generate combinations. Discrete Mathematics, 309(17):5305–5320,

September 2009.

[19] F. Ruskey and A. Williams. An explicit universal cycle for the (n − 1)-permutations of an n-set. ACM Transactions on

Algorithms, 6(3), June 2010.

[20] C. Savage and P. Winkler. Monotone Gray codes and the middle levels problem. J. Combin. Theory Ser. A, 70(2):230–248,

1995.

11

[21] J. Sawada and A. Williams. A Gray code for fixed-density necklace and Lyndon words in constant amortized time.

(submitted), 2010.

[22] T. Ueda. Gray codes for necklaces. Discrete Mathematics, 219(1-3):235–248, 2000.

[23] T.M.Y. Wang and C. Savage. A Gray code for necklaces of fixed density. SIAM Journal on Discrete Mathematics,

9(4):654–673, 1996.

12

