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Abstract. We develop the first universal cycle construction for strings with fixed-
content (also known as multiset permutations) using shorthand representation.
The construction runs a necklace concatenation algorithm on cool-lex order for
fixed-content strings, and is implemented to generate the universal cycle in amor-
tized O(1)-time per symbol. This generalizes two previous results: a universal
cycle for shorthand permutations by Ruskey, Holroyd, and Williams [Algorith-
mica 64 (2012)] and a universal cycle for shorthand fixed-weight binary strings
by Ruskey, Sawada, and Williams [SIAM J. on Disc. Math. 26 (2012)]. A conse-
quence of our construction is the first shift Gray code for fixed-content necklaces.
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1 Introduction

A universal cycle for a set S of length n strings, is a circular string of length |S| where
every string in S appears exactly once as a substring. When S is the set of all k-ary
strings of length n, universal cycles for S are known as de Bruijn sequences, and there
is a rich history of various constructions (see [6, 7] for recent surveys and the online
project debruijnsequence.org).

Universal cycles for many interesting sets are known to exist [2, 11, 3, 12, 20]; for in-
stance weak orders [10, 21] and weight-range strings [19, 17, 18]. However for other
common sets such as the set of permutations or the set of fixed-weight (the number of
1s is fixed) binary strings, it is easy to see that universal cycles do not exist. Fortunately,
for each of these two cases, a shorthand notation can be adopted as both permutations
and fixed-weight strings can be represented by their length n−1 prefixes, since the fi-
nal symbol is redundant. For these shorthand representations, efficient universal cycle
constructions are known (for permutations [15, 9], for fixed-weight strings [14]).

Example 1 Consider the set S1 = {12, 13, 21, 23, 31, 32} of shorthand permu-
tations of order n = 3. Observe that 231321 is a universal cycle for S1.
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Example 2 Consider the set S2 = {0001, 0010, 0100, 1000, 0011, 0110, 0101,
1001, 1010, 1100} of shorthand fixed-weight strings for n = 5 weight 2. Observe
that 1010011000 is a universal cycle for S2.

Strings with fixed-content, or mutiset permutations, generalize both permutations and
fixed-weight binary strings. For permutations or order n, the content is {1, 2, . . . , n}
and for strings of length n with fixed weight d, the content is the multiset containing d
1s and n − d 0s. In this paper we consider the more general question of constructing
universal cycles for fixed-content strings, using their shorthand representation. A more
general example is given later in the paper.

Main Result. The first known construction of universal cycles for strings with
fixed-content. The construction is based on a known concatenation construction
applied to the cool-lex order of necklaces to generate the universal cycles in
O(1)-amortized time per symbol.

Along the way, we develop an algorithm to list necklaces with fixed-content in a shift
Gray code order in O(n)-amortized time per necklace.

The rest of the paper is presented as follows. Section 2 discusses preliminary concepts,
including fixed-content necklaces and cool-lex order. Section 3 provides a new recursive
algorithm for generating fixed-content necklaces in cool-lex order. Section 4 presents
our universal cycle construction for strings with fixed-content.

Our universal cycle construction for fixed weight strings is implemented in C and is
available in the Appendix.1

2 Preliminaries

In this section, we introduce the basic concepts and notation used in the construction of
our universal cycle.

Let S be a multiset over the alphabet {1, 2, . . . , k}, denoting the fixed-content of our
strings with n = |S|, and let S(S) denote the set of all strings with fixed-content S. Let
α = a1a2 · · · an be a string. Let αt denote the string composed of t copies of α. The
period of α is the smallest value j such that α = (a1 · · · aj)t for some integer t; we say
a1 · · · aj is the aperiodic prefix of α. If α has period n (it is the same as its aperiodic
prefix), we say it is aperiodic; otherwise we say it is periodic.

2.1 Necklaces with Fixed-Content

A necklace is defined to be the lexicographically smallest string in an equivalence class
of strings under rotation. Let N(S) denotes the set of all necklaces with fixed-content

1 Its output can also be viewed at debruijnsequence.org.



S. The number of fixed-content necklaces can be deduced using Pólya theory as dis-
cussed in [8]. In the following formula, it is assumed that the content S is composed of
ni ≥ 1 occurrences of each symbol i, |S| = n, and k ≥ 1:

N(S) =
1

n

∑
j|gcd(n1,n2,...,nk)

φ(j)
(n/j)!

(n1/j)! · · · (nk/j)!
(1)

where Euler’s totient function φ(j) denotes the number of positive integers less than or
equal to j that are relatively prime to j.

There exists a O(1)-amortized time algorithm to list N(S) [16].

2.2 Cool-lex order

Cool-lex order for fixed-content strings was introduced in [22]. The order is a Gray
code, meaning that successive strings differ by a simple operation. More specifically, it
is a prefix-shift Gray code, meaning that successive strings differ by a single prefix-shift.
A prefix-shift removes a single symbol and reinserts it as the first symbol; in a linked
list representation, this corresponds to a removing a node and reinserting it as the head.
The order is also cyclic meaning that a prefix-shift also transforms the last string in the
order into the first. As an example, the set S({1, 1, 2, 2, 3, 3}) is listed in cool-lex order
on the left side of Figure 1.

One of the most notable features of cool-lex order is that it has a simple successor rule.
In other words, the prefix-shift that creates the next fixed-content string in the order is
relatively easy to specify. To describe the rule, let the non-decreasing prefix of a string
be its longest prefix with no increases. In other words, if a1a2 · · · an is the string, then
its non-decreasing prefix is a1a2 . . . ap with ai ≤ ai+1 for 1 ≤ i < p and either p = n
or ap > ap+1. Now we can describe the cool-lex successor rule.

Cool-lex Successor Rule
If the non-decreasing prefix of a1a2 · · · an has length p < n, then the next string in cool-
lex order is obtained by a prefix-shift of length p + 1 if p = n − 1 or ap > ap+2, and
otherwise by a prefix-shift of length p+ 2.

This rule specifies every transition in the cyclic order except one: If the string itself is
non-decreasing, then the next string is obtained by a prefix-shift of length n.

Another benefit of cool-lex order is that its relative order provides shift Gray codes for
other sets of strings. This phenomenon was discussed for fixed-weight sets in [13], and
for fixed-content sets in [23]. In particular, this occurs for necklaces, as illustrated in
Figure 1 for S = {1, 1, 2, 2, 3, 3}. By adapting the techniques from [13, 23], we obtain
the successor rule given below for necklaces with fixed-content. Our shift notation is
discussed after the rule is presented.



311223 132312 132231 113223
131223 313212 213231 121323
113223 331212 321231 123123
211323 133212 231231 112323
121323 213312 123231 113232
312123 321312 312321 131322
132123 231312 132321 113322
213123 323112 313221 121332
321123 332112 331221 132132
231123 233112 133221 123132
123123 123312 213321 112332
112323 112332 321321 121233
311232 211233 231321 122133
131232 121233 323121 123213
113232 212133 332121 122313
311322 221133 233121 112233
131322 122133 123321
313122 312213 212331
331122 132213 221331
133122 213213 322131
113322 321213 232131
211332 231213 223131
121332 123213 322311
312132 212313 232311
132132 221313 323211
213132 322113 332211
321132 232113 233211
231132 223113 223311
123132 122313 122331
312312 312231 112233

Fig. 1. The columns to the left of the vertical line illustrate cool-lex order for strings with content
S = {1, 1, 2, 2, 3, 3}. Observe that each string is obtained from the previous by a prefix-shift,
and the order is cyclic in this regard. The column to the right of the vertical line illustrates the
necklaces with content S as they appear in cool-lex order. Observe that each necklace is obtained
from the previous one by a shift, and the order is cyclic in this regard.



Cool-lex Successor Rule for Fixed-Content Necklaces
Let α = a1a2 · · · an = λγ ∈ N(S), where |α| = |S| = n, λ is α’s non-decreasing
prefix, and m = |λ|. The necklace following α in cool-lex order is denoted next(α) and is
obtained from α by the shift in the following cumulative cases

next(α) =


lshiftα(m) if m = n (2a)

lshiftα(m+1) if m = n− 1 or am > am+2 or β /∈N(S) (2b)

lshiftα(m+2) otherwise (2c)

where β is obtained from α by swapping the two symbols after γ (if they exist).

Now we define the lshift operation used in (2). If α = a1a2 · · · an is a necklace, then
lshiftα(i) bubbles ai as far to the left as possible while always maintaining that the
result is still a necklace. In particular, lshiftα(i) = α if the first swap results in a non-
necklace. For example, consider the necklace α = a1a2a3a4a5a6 = 122313. We can
determine the result of lshiftα(4) by bubbling the symbol a4 = 3 to the left, starting
from α, as follows:

a1a2a3a4a5a6 = 122313 is a necklace;
a1a2a4a3a5a6 = 123213 is a necklace;
a1a4a2a3a5a6 = 132213 is not a necklace.

The result is the last necklace in this list. Hence, lshiftα(4) = a1a2a4a3a5a6 = 123213.
To motivate the next section, it is important to note that this calculation involved testing
if multiple strings were necklaces. This means that without further optimization, the
necklace successor rule runs in O(n2) time.

2.3 Necklace-Prefix Algorithm

Perhaps the most well-known de Bruijn sequence is the so-called granddaddy de Bruijn
sequence; it is the lexicographically smallest k-ary de Bruijn sequence of order n. It
can be generated very elegantly using an approach that is often referred to as the FKM
construction or FKM algorithm, due to the authors who discovered it [4, 5]. As dis-
cussed in [14], the authors prefer to describe the construction using a slightly different
approach called the necklace-prefix algorithm. The latter approach constructs the grand-
daddy de Bruijn sequence in a nearly identical manner, but it is often more well-suited
for creating other sequences.

The necklace-prefix algorithm takes an order of strings, filters out the non-necklaces, re-
duces the remaining necklaces to their aperiodic prefix, and concatenates these prefixes.
Amazingly, the granddaddy de Bruijn sequence is created by applying the necklace-
prefix algorithm to the k-ary strings of length n in lexicographic order. This is illustrated
in Figure 2 for n = 2 and k = 4. The approach is generalized to other sets in [20].



necklaces aperiodic granddaddy de Bruijn sequence
prefixes

lexicographic
order

00 0

0 · 01 ·02
·03·1·12·1

3
·2
· 2

3 ·
3 ·

01 01
02 02
03 03
11 1
12 12
13 13
22 2
23 23
33 3
(a) (b) (c)

Fig. 2. The necklace-prefix algorithm applied to the 4-ary strings of length 2 constructs the grand-
daddy de Bruijn sequence for n = 2 and k = 4. The algorithm starts with the lexicographic order
of 4-ary strings of length 2 (which are not shown), then reduces the order to the necklaces in col-
umn (a), and their aperiodic prefixes in column (b), and concatenates these prefixes to get the
granddaddy de Bruijn sequence 0010203112132233 in (c).

Unfortunately, the magic runs out when we try this approach for fixed-content strings,
even for their shorthand representatives. To illustrate the issue, note that the lexico-
graphic order of necklaces with content S = {1, 1, 2, 2, 3, 3} places the following two
necklaces consecutively,

. . . 113322, 121233, . . . ,

and so, the necklace-prefix algorithm will genereate · · · 113322121233 · · · . The bolded
substring of length n−1 = 5 is not shorthand for a string with the content S because
it contains too many copies of 2. When considering the transition between the two
necklaces, the cause of the issue becomes clear: A copy of 2 moves several positions
to the left between the two necklaces. This issue leads us to instead use a reversed
version of cool-lex order, since this will ensure that individual symbols move at most
one position to the left between successive necklaces.

3 Recursive Algorithm

In [22], a recursive description is given to list all strings with fixed-content S in cool-lex
order. In that description, the focus is on strings in reverse lexicographic order, whereas,
we will focus on lexicographic order. In this section, we restate this recurrence using
the original terminology and then apply it to generate necklaces with fixed-content S.

The tail of S, denoted tail(S), is the unique non-decreasing string composed of all the
elements of S. A scut of S is any non-decreasing string α composed of some of the
elements of S such that α is not a suffix of tail(S), but every proper suffix of α is a
suffix of tail(S). Let αi(S) denote the i-th scut of S when they are listed in decreasing
order of the first symbol, then by decreasing length. Let Ri denote the multi-set S with
the content of αi(S) removed.



Example 3 Consider S = {1, 1, 2, 2, 3, 3}. Then tail(S) = 112233 and the
scuts of S in decreasing order of the first symbol, then decreasing length, are:

23, 2, 1233, 133, 13, 1.

Note α4(S) = 133 and R4 = {1, 1, 2, 2, 3, 3} \ {1, 3, 3} = {1, 2, 2}.

If S has j scuts, then the following recurrence C(S, γ) (simplified from Definition 2.4
in [22]) produces a listing for all strings of the form βγ where β has content S as they
appear in cool-lex order:

C(S, γ) = C(R1, α1γ),C(R2, α2γ), . . . ,C(Rj , αjγ), tail(S)γ.

Note that C(S, ε) will produce a listing of all strings with fixed-content S. Recall Fig-
ure 1 illustrating the cool-lex order for S({1, 1, 2, 2, 3, 3}). This is the same listing
generated by C({1, 1, 2, 2, 3, 3}, ε). In particular observe that the strings are ordered by
suffixes corresponding to the scuts: 23, 2, 1233, 133, 13, 1.

We now focus on how to modify this recurrence to list the necklaces with fixed-content
S as they appear in cool-lex order.

Lemma 1. If a1a2 · · · an is a necklace that contains a smallest index t such that at >
at+1, then a1 · · · at−1at+1atat+2 · · · an is a necklace.

Proof. Let β = b1b2 · · · bn = a1 · · · at−1at+1atat+2 · · · an. Let βj denote the rotation
of β starting at bj and let αj denote the rotation of α = a1a2 · · · an starting at aj .
If β ≤ βj for each 2 ≤ j ≤ n, then β is a necklace. Since α is a necklace, each
ai ≥ a1 and thus each bi ≥ b1. Since b1 · · · bt−1 is non-decreasing it is straightforward
to observe that βj > β for 2 ≤ j ≤ t+ 1. Now consider the prefix of length t for βj
where t+ 2 ≤ j ≤ n. This prefix is the same as the length t prefix of αj . If this prefix
if less than or equal to b1 · · · bt, then it must be strictly less than a1 · · · at since at > bt.
But this contradicts the fact that α is a necklace. Thus this prefix must be strictly greater
than b1 · · · bt. Thus βj ≥ β for each 2 ≤ j ≤ n and hence β is a necklace.

Lemma 2. C(S, γ) contains a necklace if and only if tail(S)γ is a necklace.

Proof. (⇐) tail(S)γ is in C(S, γ) by definition. Thus if tail(S)γ is a necklace then
C(S, γ) contains a necklace. (⇒) If C(S, γ) contains necklace then it must be of the
form λγ where λ has content S. If λ = tail(S), then we are done. Otherwise, repeated
application of Lemma 1 implies that tail(S)γ is a necklace.

Based on Lemma 1, the recurrence C(S, γ) can be updated to list only the necklaces as
follows (where 〈 〉 denotes an empty list).

N (S, γ) =

{
〈 〉 if tail(S)γ is not a necklace;
N (R1, α1γ), . . . ,N (Rj , αjγ), tail(S)γ otherwise,



Algorithm 1 Recursive algorithm to list all necklaces with content S as they appear
in cool-lex order. The string a1a2 · · · an is intialized to tail(S), and the initial call is
COOL(n).
1: procedure COOL( t)
2: i← t
3: while ai 6= a1 do
4: while ai = ai−1 do i← i−1
5: for j from i to t do
6: SWAP(j−1, j)
7: if a1a2 · · · an is a necklace then COOL(j−1)
8: for j from t down to i do SWAP(j−1, j)
9: i← i−1

10: VISIT( )

The function COOL(t) in Algorithm 1 implements the above recurrence. Given con-
tent S, by initializing the global string a1a2 · · · an to tail(S), the initial call COOL(n)
generates all necklaces with fixed-content S. The parameter t passed in the function
COOL(t) indicates how the string a1a2 · · · an is partitioned into the two pieces based
on N (S′, γ): a1a2 · · · at = tail(S′) and at+1 · · · an = γ. Each call COOL(t) cor-
responding to N (S′, γ) iterates through the scuts of S′ in the proper order. This is
done by scanning tail(S′) = a1 · · · at from right to left until we reach an index i
where ai 6= ai−1 (Line 4). To produce all scuts starting with ai−1, and their corre-
sponding recursive calls if a necklace can be produced, we iteratively shift this symbol
through positions i, i + 1, . . . , t obtaining a new scut for each swap (Lines 5-7). Once
all scuts starting with ai−1 have been processed we restore a1 · · · at to tail(S′) (Line
8). We repeat this approach by continuing to traverse tail(S) from right to left until
we reach a symbol that is the same as a1 (Line 3). The function VISIT() outputs the
string a1a2 · · · an, and the function SWAP(i, j) swaps the symbols at index i and j in
a1a2 · · · an.

When analyzing this algorithm, if every string tested in Line 7 was a necklace, then
the work done by each necklace test could be assigned to the following recursive call.
Since each recursive call generates at least one necklace, and since the necklace testing
can be done in O(n)-time [1], the overall algorithm would run in O(n)-amortized time
algorithm. However, within each recursive call, there could be a number of negative
necklace tests. For instance, consider the string α = 112233112233 and the call to
COOL(6). This results in necklace tests for the following 6 strings, none of which are
necklaces since the rotation starting with the suffix 112233 is smaller than string in
question:

112323112233, 112332112233, 121233112233,

122133112233, 122313112233, 122331112233.

Fortunately there exists a simple optimization: once a string tested on Line 7 is not a
necklace, then by applying Lemma 1 (and further observing the definition of a necklace)



none of the following strings tested will be either. This optimization can be applied to
COOL(t) by replacing Line 7 with the following fragment:

if a1a2 · · · an is a necklace then COOL(j−1)
else

for s from j down to i do SWAP(s−1, s)
VISIT( )
return

By applying this optimization there is at most one negative necklace test per recursive
call.

Theorem 1. Let S denote a multi-set from the elements 1, 2, . . . , k If a1a2 · · · an is
initialized to tail(S), then a call to the optimized COOL(n) lists all necklaces with
fixed-content S in cool-lex order in O(n)-amortized time per string.

4 Constructing a Shorthand Universal Cycle for Fixed-Content

In this section, we provide the first explicit construction of a shorthand universal cycle
for fixed-content strings. If the content of the strings is the multiset of symbols S, then
the shorthand universal cycle is obtained by the applying the necklace-prefix algorithm
to cool-lex order for S. More precisely, we use reverse cool-lex order, meaning that
the first string is the unique non-decreasing string, and successive strings differ by our
notion of a right-shift, which means that a single symbol is removed and reinserted
further to the right, while the intermediate symbols move one position to the left. Also
recall that the relative order of the symbols has been inverted in our presentation, with
respect to the original presentation of fixed-content cool-lex [22], so that we can use the
traditional notion of a necklace being a string in its lexicographically least rotation.

Let U(S) denote the string resulting from the necklace-prefix algorithm applied to S(S)
when listed in reverse cool-lex order. That is, U(S) is the concatenation of the aperiodic
prefixes of necklaces with content S in reverse cool-lex order. An example of U(S)
is provided in Figure 3 for S = {1, 1, 2, 2, 3, 3}. Let S−1(S) denote the shorthand
representations of the strings in S(S).

We start by proving a preliminary result. Let U+(S) be the result of concatenating the
necklaces with content S in reverse cool-lex order. In other words, U+(S) is the same
as U(S), however, the periodic necklaces are not reduced to their aperiodic prefix.

Theorem 2. The circular string U+(S) contains every string in S−1(S) at least once
as a substring.

Proof. Consider a string in S(S) whose last symbol is x ∈ {1, 2, . . . , k}. At least one
rotation of this string is a necklace. In other words, the string can be written as pqx,
such that qxp ∈ N(S). We need to find the string’s shorthand reprsentation, pq, as a
substring in the universal cycle U+(S). In all of our cases, we will use the fact that qxp
is a necklace.



necklaces aperiodic universal cycle
N(S) prefixes U(S)

cool-lex
order

112233 112233 1 1 2 2 3 3 · 1 2 2 3 1 3 · 1 2 3 2
1

3
·

1
2

2
1

3
3
·

1
2

1
2

3
3
·112332·123132·132·121332·1

13322·
1313

2
2
·1

1
3

2
3

2
· 1

1
2

3
2

3
· 1

2 3
· 1

2 1 3 2 3 · 1 1 3 2 2 3 ·
122313 122313
123213 123213
122133 122133
121233 121233
112332 112332
123132 123132
132132 132
121332 121332
113322 113322
131322 131322
113232 113232
112323 112323
123123 123
121323 121323
113223 113223

(a) (b) (c)

Fig. 3. A universal cycle for S−1(S), where S = {1, 1, 2, 2, 3, 3}. The cycle uses the shorthand
representation, and is constructed using the necklace-prefix algorithm on reverse cool-lex order.
The fixed-content necklaces over S are given in reverse cool-lex order in column (a), they are
reduced to their aperiodic prefix in column (b), and their concatenation gives the universal cycle
in column (c).



We first consider two special cases.

– If p is empty, then desired substring pq = q is contained in the necklace qxp =
qx, and hence U+(S).

– If q is empty, then desired substring pq = p is contained in the necklace qxp =
xp, and hence U+(S).

In the remaining cases, we will need to search across two necklaces to find the desired
substring pq. In other words, we need to find a necklace α ∈ N(S), such that pq is
a substring of next(α) · α, and thereby a substring of U+(S). Specifically, we will find
α ∈ N(S) with prefix q, such that next(α) has suffix p. The following point handles
the easiest remaining case.

– If q is not non-decreasing (i.e. its non-decreasing prefix is a strict prefix), then the
necklace α = qxp again suffixes. To see why this is true, observe that α has prefix
q, and we claim that next(α) has suffix p. This is because next(α) is obtained from
α by shifting either a symbol in q, or x, to the left by 2. Hence, the suffix p carries
over from α to next(α).

In the remaining cases, p and q are both non-empty, and q is non-decreasing by itself.
We proceed with two representative cases, based on the non-decreasing prefixes of qxp
and qp. In both cases, we create α by starting from the necklace qxp, and shifting x
far enough to the right, so that it becomes the symbol that will be shifted to the left in
next(α).

– If the non-decreasing prefix in qxp is q. In this case, we start with α = qxp, and
repeatedly update the necklace until we have the desired properties. Let m be the
length of the non-decreasing prefix, with regard to the successor rule in (2), and
note that x is in the (m + 1)st position in α. if m = n − 1, or am > am+2, or β
is not a necklace, then we stop and use the current value of α. Otherwise, bubble x
one position to the right to create a new value of α. Notice that α is a necklace due,
to the fact that β is a necklace. Furthermore, x is again one symbol to the right of
the non-decreasing prefix of α due to the fact that we had am ≤ am+2 with respect
to the previous value of α. Therefore, we can repeat the above steps until we find a
suitable α. Observe that next(α) will shift x to the left by (2b).

– If the non-decreasing prefix in qxp is qx, and the non-decreasing prefix in qp is
q. In this case, the last symbol of q is larger than the first symbol in p. Let α be
the result of bubbling x one position to the right in qxp. Thus, the non-decreasing
prefix of α is precisely q. Let m = |q|, with regard to the successor rule in (2), and
note that x is in the (m+1)st position in α. Furthermore, am ≤ am+2 based on the
assumptions of this case, and β = qxp is the necklace we started from. Therefore,
α suffices since next(α) will shift x to the left by (2c).

Now we prove our main result.

Theorem 3. The string U(S) is universal cycle for fixed-content strings using their
shorthand representation. In other words, every string in S−1(S) appears in U(S)
exactly once as a substring.



Proof. Observe that U(S) has the correct length. That is, |U(S)| = |S−1(S)|. This
is due to the fact that every necklace contributes equally to both quantities. More pre-
cisely, a necklace whose period is p will contribute p symbols to U(S), and its p unique
rotations to S−1(S). Due to this equality, we only need to prove that each string in
S−1(S) appears in U(S) at least once as a substring. Because of Theorem 2, we can
accomplish this by showing that U(S) has the same set of substrings of length n− 1 as
U+(S). In other words, we can prove the result by showing that no substrings are lost
when we reduce each necklace to its aperiodic prefix in the concatenation.

Consider an arbitrary periodic necklace whose aperiodic prefix is γ. Since the necklace
is periodice, we can write it as γr for some r > 1. First we prove that next(γr) is
aperiodic. To see why this is true, observe that next(γr) will contain a prefix that is
lexicographically smaller than γ. Thus, next(γr) is not periodic. Similarly, prev(γr) is
not periodic.

Now we compare the local area around γr in U+(S), and the local area around its
reduction tp γ in U(S).

· · · next(γr) · γr · prev(γr) · · ·︸ ︷︷ ︸
U+(S)

· · · next(γr) · γ · prev(γr) · · ·︸ ︷︷ ︸
U(S)

We claim that the two different concatenations have the same set of substrings of length
n−1. To help establish this fact, let the length of the aperiodic prefix of the necklace γr

be t = |γ| = n/r. Now we make two observations. First, next(γr) and γr share a suffix
of length at least n− t− 2. This is due to the cool-lex successor rule in (2) and the fact
that the length of the non-decreasing prefix in γr is at most t. Second, γr and prev(γr)
must share a prefix of length at least 1, since they are both necklaces. Therefore, the
concatenation in U+(S) contains at least (n−t−2)+t+1 = n−1 consecutive symbols
from γr, which means that it contains γr in shorthand. Furthermore, the substrings of
length n− 1 in U+(S) that are before and after this shorthand copy of γr are identical
to those found in U(S).

4.1 Efficiency

To construct the reverse of the universal cycle U(S), we can directly apply Algorithm 1
to list N(S) in cool-lex order with a simple modification. Instead of outputting the
current necklace α = a1a2 · · · an, the function VISIT( )

. determines the length p of the aperiodic prefix of α and then

. outputs apap−1 · · · a1.

Since the aperiodic prefix of α can be determined in O(n) (see [1]), the modified algo-
rithm still runs in O(n)-amortized time per symbol. Since the total length of U(S) is
proportional to n|N(S)| (see Section 5 in [16] which implies |U(S)| ≥ n|N(S)|/2)
we obtain the following theorem.

Theorem 4. The universal cycle U(S) for fixed-content strings using their shorthand
representation can be generated in O(1)-amortized time per symbol using O(n) space.
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Appendix - Universal cycles for fixed-content strings
using shorthand representation in O(1) time per symbol

#include <stdio.h>
int N, K, a[100];
//------------------------------------------------------------------
// If a[1..n] is a necklace return its period p; otherwise return 0
//------------------------------------------------------------------
int Necklace() {

int i,n,p;

for (i=1; i<=N; i++) a[N+i] = a[i];
a[2*N+1] = -1;
n = 2;
p = 1;
while ( a[n-p] <= a[n]) {

if (a[n-p] < a[n]) p = n;
n++;

}
if (n<=2*N) return 0;
return p;

}
//------------------------------
void Visit() {

int i;
for (i=Necklace(); i>=1; i--) printf("%d ", a[i]);

}
//------------------------------
void Swap(int i, int j) {

int temp;
temp = a[i]; a[i] = a[j]; a[j] = temp;

}
//---------------------------------
void Gen(int t) {

int i,j,s;

i = t;
while (a[i] != a[1]) {

while (a[i] == a[i-1]) i--;
for (j=i; j<=t; j++) {

Swap(j-1,j);
if (Necklace()) Gen(j-1);
else {

for (s=j; s>=i; s--) Swap(s-1,s);
Visit();
return;

}
}
for (j=t; j>=i; j--) Swap(j-1,j);
i--;

}
Visit();

}
//---------------------------------
int main() {

int i,j,tmp;

printf("Enter K: "); scanf("%d", &K);
N = 0;
for (i=1; i<=K; i++) {

printf("N_%d: ", i); scanf("%d", &tmp);
for (j=1; j<=tmp; j++) a[N+j] = i;
N += tmp;

}
Gen(N);

}


