
Algorithmica manuscript No.
(will be inserted by the editor)

Hamiltonicity of k-Sided Pancake Networks with Fixed-Spin:
Efficient Generation, Ranking, and Optimality

Ben Cameron · Joe Sawada · Wei Therese ·
Aaron Williams

Received: October 18, 2021/ Accepted: date

Abstract We present a Hamilton cycle in the k-sided pancake network and four com-
binatorial algorithms to traverse the cycle. The network’s vertices are coloured per-
mutations π = p1p2 · · · pn, where each pi has an associated colour in {0, 1, . . . , k−1}.
There is a directed edge (π1, π2) if π2 can be obtained from π1 by a “flip” of length
`, which reverses the first ` elements and increments their colour modulo k. Our par-
ticular cycle is created using a greedy min-flip strategy, and the average flip length of
the edges we use is bounded by a constant. By reinterpreting the order recursively,
we can generate successive coloured permutations in O(1)-amortized time, or each
successive flip by a loop-free algorithm. We also show how to compute the successor
of any coloured permutation in O(n) time. Our greedy min-flip construction gener-
alizes known Hamilton cycles for the pancake network (where k = 1) and the burnt
pancake network (where k = 2). Interestingly, a greedy max-flip strategy works on
the pancake and burnt pancake networks, but it does not work on the k-sided network
when k > 2. In addition to our generation results, we provide ranking and unranking
algorithms for our Hamiltion cycle that run in O(n2) time, and show that the cy-
cle is globally optimal in terms of minimizing the total number of pancakes that are
flipped. Finally, we characterize the Hamiltonicity of k-sided pancake networks with
any fixed “spin” s.

B. Cameron
School of Computer Science, University of Guelph, Ontario, CANADA
E-mail: ben.cameron@uoguelph.ca

J. Sawada
School of Computer Science, University of Guelph, CANADA
E-mail: jsawada@uoguelph.ca

W. Therese
Dept. of Computer Science, Memorial University of Newfoundland, CANADA
E-mail: weitherese1@gmail.com

A. Williams*
Dept. of Computer Science, Williams College, Massachusetts, USA
E-mail: aaron.williams@williams.edu

2 Cameron et al.

1 Introduction

Many readers will be familiar with the story of Harry Dweighter, the harried waiter
who sorts stacks of pancakes for his customers. He does this by repeatedly grabbing
some number of pancakes from the top of the stack and flipping them over. For exam-
ple, if the chef in the kitchen creates the stack , then Harry can sort it by flipping
over all four pancakes , and then the top two .

This story came from the imagination of Jacob E. Goodman [14], who was in-
spired by sorting folded towels [38]. His original interest was an upper bound on the
number of flips required to sort a stack of n pancakes. Despite its whimsical origins,
the problem attracted interest from many mathematicians and computer scientists,
including a young Bill Gates [18]. Eventually, it also found serious applications, in-
cluding genomics [17].

A variation of the original story involves burnt pancakes. In this case, each pan-
cake has two distinct sides: burnt and unburnt. When Harry flips the pancakes, the
pancakes involved in the flip also turn over, and Harry wants to sort the pancakes so
that the unburnt sides are facing up. For example, Harry could sort the stack by
flipping all four , then the top two , and the top one . Similar lines of research
developed around this problem (e.g. [8], [17]). The physical model breaks down be-
yond two sides, however, many of the same applications do generalize to “k-sided
pancakes”.

1.1 Pancake Networks

Interconnection networks connect single processors, or groups of processors, to-
gether. In this context, the underlying graph is known as the network, and classic
graph measurements (e.g. diameter, girth, connectivity) translate to different perfor-
mance metrics. Three networks related to pancake flipping are provided in Figure 1.

The pancake network G(n) is an undirected graph that was introduced in the
1980s [1] and various measurements were established (e.g. [21]). Its vertex set is
the set of permutations of {1, 2, . . . , n} in one-line notation, which is denoted P(n).
For example, P(2) = {12, 21}. There is an edge between permutations that differ
by a prefix-reversal of length `, which reverses the first ` symbols. For example,
(3421, 4321) is the ` = 2 edge between and . Goodman’s original problem is
finding the maximum shortest path length to the identity permutation. Since G(n) is
vertex-transitive, this value is simply its diameter.

The burnt pancake network G(n) is an undirected graph that was introduced in
the 1990s [8]. Its vertex set is the set of signed permutations of {1, 2, . . . , n}, which is
denoted P(n). For example, P(2) = {12, 12̄, 1̄2, 1̄2̄, 21, 21̄, 2̄1, 2̄1̄} where overlines
denote negative symbols. There is an edge between signed permutations that differ by
a sign-complementing prefix-reversal of length `, which reverses the order and sign
of the first ` symbols. For example, (2̄1̄34, 1234) is the ` = 2 edge between and

.
The k-sided pancake network Gk(n) is a directed graph that was first studied in

the 2000s [26]. Its vertex set is the set of k-coloured permutations of {1, 2, . . . , n} in

Hamiltonicity of k-Sided Pancake Networks: Efficient Generation, Ranking, and Optimality 3

one-line notation, which is denoted Pk(n). For example, P3(2) is illustrated below,
where colours the 0, 1, 2 are denoted using superscripts, or in black, red, blue.

P3(2) = {12,12,12,12,12,12,12,12,12,21,21,21,21,21,21,21,21,21}
(1)

= {1020, 1021, 1022, 1120, 1121, 1122, 1220, 1221, 1222, 2010, . . . , 2211, 2212}.
(2)

There is a directed edge from π1 ∈ Pk(n) to π2 ∈ Pk(n) if π1 can be transformed into
π2 by a colour-incrementing prefix-reversal of length `, which reverses the order and
increments the colour modulo k of the first ` symbols. For example, (2134,1234) =
(21123040, 10223040) is a directed ` = 2 edge. Since the vertices of the k-sided
pancake network Gk(n) are k-coloured permutations, we will also refer to Gk(n) as
the k-coloured pancake network and its vertices as k-coloured pancakes.

Notice that G(n) and G1(n) are isomorphic, while G(n) and G2(n) are isomor-
phic, so long as we view each undirected edge as two opposing directed edges. It
also bears mentioning that Gk(n) is a strongly connected directed Cayley graph, and
its underlying group is the wreath product of the cyclic group of order k and the
symmetric group of order n.

When the context is clear, or the distinction is not necessary, we use the term flip
for prefix-reversal (when k = 1), sign-complementing prefix-reversal (when k = 2),
and colour-incrementing prefix-reversal (when k > 2).

1.2 (Greedy) Hamilton Cycles

In this paper, we are not interested in shortest paths in pancake networks, but rather
Hamilton cycles. There are myriad ways that researchers attempt to build Hamilton
cycles in highly-symmetric graphs, and the greedy approach is perhaps the simplest
(see Williams [46]). This approach initializes a path at a specific vertex, then repeat-
edly extends the path by a single edge. More specifically, it uses the highest priority
edge (according to some criteria) that leads to a vertex that is not on the path. The
path stops growing when the current vertex is only adjacent to vertices on the path.
A Hamilton cycle has been found if every vertex is on the path, and there is an edge
from the final vertex to the first vertex. Despite its simplicity, the approach is known
to work on many well-known graphs [46].

We show that the greedy approach generates a Hamilton cycle in the coloured
pancake network Gk(n) when we prioritize the edges by shortest flip length. More
specifically, we start a path at 1020 · · ·n0 ∈ Pk(n), then repeatedly extend it to a new
vertex along the edge that corresponds to the shortest colour-incrementing prefix-
reversal. We refer to this as the greedy min-flip construction, denoted GreedyMink(n),
and it is illustrated in Figure 1. When k = 1, the cycle that we create is identical
to the one given by Zaks [48] (also see Section 1.4), and when k = 2, our cycle
in the burnt pancake network was previously produced by Suzuki, N. Sawada, and
Kaneko [27]; however, both of these papers describe their cycles recursively. The
greedy construction of the cycles in the pancake and burnt pancake networks was

4 Cameron et al.

1

6

5

4

3

2

17

16

15

14

13

18

10

11

12

7

8

9

22

23

24

19

20

21

1234

3214

2314

1324

3124

2134

4132

3142
1342

4312

3412
1432

4213

1243

2143

4123

1423

2413

4321

2341

3241

3421

2431

4231

(a) The pancake network G(4).

12

12 12

21

21 21

2121

21

12

12

12 12

12

12

21 21

21

(c) The 3-sided pancake network G3(2).

132 132

312 312

312 312

132 132

123

123

213

213

213

213

123

123

123

123

213

213

213

213

123

123

132132

312312

312312

132132

321

231

231

321321

231

231

321

321

321

231

231

231

321

321

231

e

e

(b) The burnt pancake network G(3). Straight edges are flips of length 1 or 2, and they wrap-around
through the exterior, and criss-cross at the corners. For example, the edge labeled e connects 3 2 1

(top-left) to 2 3 1 (bottom-right) and is not contained in the Hamilton cycle.

Fig. 1: Hamilton cycles in (a) the pancake network with n = 4 pancakes, (b) the burnt
pancake network with n = 3 burnt pancakes, and (c) the 3-sided pancake network
with n = 2 pancakes that have k = 3 sides (or colours). The highlighted cycles start
at 12 · · ·n = 1020 · · ·n0 and are constructed by the greedy min-flip strategy. The
colours 0, 1, 2 in (b) correspond to black, red, and blue.

Hamiltonicity of k-Sided Pancake Networks: Efficient Generation, Ranking, and Optimality 5

previously given by J. Sawada and Williams [47,34]. Interestingly, the latter result
also demonstrates that a greedy max-flip construction generates a Hamilton cycle in
G(n) and G(n); however, as we note later, this approach does not generalize to Gk(n)
for k > 2.

1.3 Combinatorial Generation

Ostensibly, the primary contribution of this paper is the Hamiltonicity of k-sided
pancake networks. However, the authors’ primary motivation was not in finding a
Hamilton cycle, but rather in investigating its contributions to combinatorial genera-
tion. Combinatorial generation is the research area devoted to the efficient and clever
generation of combinatorial objects. By efficient we mean that successive objects can
be generated in amortizedO(1) time or worst-caseO(1) time, regardless of their size.
The former is known as constant amortized time (CAT), while the latter is known as
loop-free. By clever we mean that non-lexicographic orders are often desirable. When
describing these alternate orders, the authors make liberal use of the term Gray code
— in reference to the eponymous binary reflected Gray code patented by Frank Gray
[19]) — and we refer to our Hamilton cycle as a colour-incrementing prefix-reversal
Gray code for coloured permutations. Informally, it is a flip Gray code.

There are numerous algorithms to exhaustively list permutations; comprehensive
discussions on this topic date back to Sedgewick’s survey in 1977 [36], with more
modern coverage in Volume 4 of Knuth’s The Art of Computer Programming [28].
However, to our knowledge, there are no published Gray codes for coloured permu-
tations. This is surprising as the combinatorial [4,7,11,29,30] and algebraic [2,3,37]
properties of coloured permutations have been of considerable interest. We find our
new Gray code of interest for two additional reasons.

1. Other greedy approaches for generating P(n) do not seem to generalize to Pk(n).
2. Flips are natural and efficient operations in certain contexts.

To expand on the first point, consider the Steinhaus-Johnson-Trotter (SJT) order
of permutations, which was independently developed several times the 1960s [39]
[25] [41]. In this order, successive permutations differ by an adjacent-transition (or
swap) meaning that adjacent values in the permutations change place. In other words,
the order for P(n) traces a Hamilton path in the permutohedron of order n. For ex-
ample, SJT order for n = 4 appears below

1234, 1243, 1423, 4123,4132, 1432, 1342, 1324, 3124, 3142, 3412, 4312, (3)
4321, 3421, 3241,3214, 2314, 2341, 2431, 4231,4213, 2413, 2143,2134.

The symbols that are swapped to create the next permutation are underlined, and the
larger value is in bold. The latter demarcation shows the order’s underlying greedy
priorities: Swap the largest value. For example, consider the fourth permutation in the
list, 4123. The largest value 4 cannot be swapped to the left (since it is in the leftmost
position) or the right (since 1423 is already in the order), so the next option is to
consider 3, and it can only be swapped to the left, which gives the fifth permutation
4132. If this description is perhaps too brief, then we refer the reader to [46].

6 Cameron et al.

Now consider greedy generalizations of SJT to signed permutations. The most
natural generalization would use sign-complementing adjacent-transpositions, which
swap and complement the sign of two adjacent values. Unfortunately, any approach
using these operations is doomed to fail. This is because the operation does not
change the parity of positive and negative values. The authors experimented with
other types of signed swaps — complementing the leftmost or rightmost value in the
swap, or the larger or small value in the swap — without success.

At this point, it is important to note that one can generate coloured permutations
by treating the colours and the permutations separately: For each permutation of P(n)
generated by SJT, one could generate each of the kn colour vectors to be overlaid
onto the permutation, or vice versa. In fact, this approach arises quite naturally from
a broad generalization of SJT known as Algorithm J [20] and its application to elim-
ination trees [6], whenever k is a power of two.

Surprisingly, our greedy min-flip strategy works for coloured permutations, but
the analogous max-flip strategy does not. For example, the max-flip strategy creates
the following path in G3(2) before getting stuck.

1020, 2111, 1222, 2010, 1121, 2212, 2012, 1021, 2211, 1220, 2110, 1122, E

The issue is that all the neighbours of the last coloured permutation are already on
the path. More specifically, a flip of length one transforms 1122 into 1222, and a flip
of length two transforms 1122 into 2012, both of which appear earlier. The failure
of the max-flip strategy on coloured permutations is surprising due to the fact that it
works for both permutations and signed-permutations [34]. For n, k ≤ 5 and k ≥ 2,
we observe that the max-flip greedy strategy produces a path of length 2

k (knn!).
To expand on our second point that flips are natural and efficient operations in

certain contexts, note that the time required to flip a prefix is proportional to its length.
In particular, if a permutation over {1, 2, . . . , n} is stored in an array or linked list of
length n, then it takes O(m) time to flip a prefix of length m1. Our min-flip strategy
ensures that the shortest possible flips are used. In fact, the average flip length used
in our Gray codes is bounded by e = 2.71828 · · · when k = 1, and the average is
even smaller for k > 1.

We also note that flips can be the most efficient operation in certain situations. For
example, consider a brute force approach to the undirected travelling salesman prob-
lem, wherein every Hamilton path of the n cities is represented by a permutation in
P(n). If we iterate over the permutations using a prefix-reversal Gray code, then suc-
cessive Hamilton paths differ in a single edge. For example, the edges in 12345678
and 43215678 are identical, except for (4, 5) being replaced by (1, 5). Thus, the cost
of each Hamilton cycle can be updated from permutation to permutation using one
addition and subtraction. More generally, flip Gray codes are the most efficient choice
when the cost (or value) of each permutation depends on its unordered pairs of ad-
jacent symbols. Similarly, our generalization will be the most efficient choice when
the cost (or value) of each coloured permutation depends on its unordered pairs of
adjacent symbols and the minimum distance between their colours.

1 Some unusual data structures can support flips of any lengths in constant time [45].

Hamiltonicity of k-Sided Pancake Networks: Efficient Generation, Ranking, and Optimality 7

1.4 Historical Notes

It is relatively well-known that the swap Gray code in (3) dates back to the bell-
ringing community in the 17th century. In particular, “single changes” and “plain
changes” were discussed in Duckworth’s Tintinnalogia (1668) [12] and Stedman’s
Campanalogia (1677), and the contributions of these monographs are now being
credited in a variety of academic papers (e.g., see White [44], Holroyd [23], Ver-
hoeff [43], and Hunt [24]). Tracking all of the citations to these titles can be difficult,
as they are in the public domain, and are reprinted with various attributions and dates
(e.g., [13] and [10]). Earlier references to the pattern for n = 4 have also been un-
covered, as noted by McGuire [31].

Plain change order is a classic example of Stigler’s law of eponymy [40]: scientific
discoveries are not named after thier original discoverers. Similarly, the min-flip order
that the authors have referred to as Zaks’s order in previous publications [5,16,34,
35,47], also has a longer, but lesser-known, history.

In 1967, Ord-Smith referred to the min-flip order as pseudo-lexicographic or-
der in Algorithm 308 [32]. He also provided a transposition-based implementation
called ECONOPERM, and pointed out that the average number of transpositions be-
tween successive permutations tends to 1.175n!. (Note that prefix-reversals of length
two and three can be accomplished by a single transposition.) A slightly modified
version was also provided in Ord-Smith’s comparison of permutation generation al-
gorithms in 1971 [33]. It’s worth noting that both presentations do not explicitly
mention prefix-reversals, nor do they contain formal proofs.

Zaks’s 1984 paper — A new algorithm for generation of permutations [48] —
is presented using reversals, although suffixes are modified rather than prefixes. Like
Ord-Smith’s papers, there is no mention of how the order can be constructed greedily,
but it does include a proof of correctness, and a ranking algorithm (see Section 1.5).

Unbeknownst to Ord-Smith and Zaks, and the authors of this paper, the origin of
the min-flip order reaches back to the 18th century. Carl Friedrich Hindenburg edited
a book entitled Sammlung Combinatorisch-Analytischer Abhandlungen (Collection
of Combinatorial-Analytical Treatises) in 1796 [22]. The second chapter focused on
work by Georg Simon Klügel called Klügels Bemerkungen (Klügels Remarks). Al-
though there are barriers to fully understanding older texts, the chapter includes clear
outlines for the

(
7
4

)
= 35 combinations with n = 7 and k = 4 (page 54), and the

p(7) = 15 integer partitions of n = 7 (page 59), both listed in lexicographic order.
More strikingly, it outlines the 6! = 720 permutations of n = 6 (page 53) in min-
flip order. It’s also worth noting that the writing appears to describe these orders in
general (i.e., n, k ≥ 1). Figure 2 shows scans of this public domain work from the
Hathi Trust digital library [42]. For the broader context of [22] and the Combina-
torial School in Germany, refer to Hindenburg’s Hype in Section 7.2.1.7 of Knuth’s
The Art of Computer Programming (TAOCP) [28], as well as Eppstein’s blog post on
Hindenburg’s student Heinrich August Rothe [15]. More broadly, Section 7.2.1.7 of
TAOCP provides a wonderfully expansive historical survey of combinatorial gener-
ation. Knuth also shows that the min-flip order can be understood as a special case
of Algorithm G, which is a general-purpose permutation generation algorithm, in
Section 7.2.1.2 of TAOCP.

8 Cameron et al.

Det

polynomiſche Lehrfaß
das

wichtig fte Theorem

22

H
e
y

He

point

det

8 a 1
1 jie nA na I n ris

nebit

einigen verwandten und andernund andern Sagen

Neu bearbeitet und dargeſtellt

R
e
c
a
t

,

2
8

Ja
n
2
4

E
A
W

von

Tetens , Klügel , Kramp , Pfaff und Hindenburg .

zum Druck befordert

und mit

Anmerkungen , auch einem kurzen Abriſſe der combinatoriſcher

Methode und ihrer Anwendung auf d
ie Analyſis

D erreben

Don

Carl Friedrich Hindenburg .

feipzig

bei gerbard Fleird er dem fungera

1796 .

(a) Title page.

über den Polynomiſchen Lehrſak . 53

b al
c def

с
ic
h

ei
n

etwas ausführlicheres Beyſpiel an den Verfeßun .

gen her , als in dem iften Heft des Archivs , S. 23 gegeben

iſt . Der Vorſaß iſt , di
e Verſegungen einer Anzahl von

verſchiedenen Größen ro zu ordnen , daß darin die Vers
ſetzungen jeder kleinern Anzahl ſichtbar werden . 3. B. es

find 6 Größen , a , b , c , d , e , f , gegeben , ſo wird di
e Fors

derung durch folgende Anordnung erfügt :

a b c d ef

Die hier in jedem Winkelhafen abgerona
derten Verrekungen ſind alle , welche von der

a : bd ef darinn enthaltenen Anzahl Großen möglich

a c bd ef find . Man wird an dem Beyſpiele di
e Re .b c ad el
f

ge
l

de
s

Verfahrens leicht entdecken . Wenncb adlef j . E. zu vier Größen , a , b , c , d , di
e fünfte

d a b clef e kommt , ro teße man dieſe zuerſt in di
e

lette

a d bclef Stelle zu jeder der Verfeßungen von vier ;

.. darauf rege man in di
e

leßte Stelle di
e vor e

vorhergehende Größe d , und nehme in den
bisherigen Berſekungen ſtatt jedes Buchſta

e abcdf ben den vorhergehenden , wobey e fü
r

a fommt ,

ae bc d'
f

weil man ſic
h

di
e

Größen in einem ſereiſe ge
e

fchrieben vorſtellen muß . Aus der zweyten

Claffe , di
e

ſich auf d endigt , wird auf dies
felbe Art die Claſſe , die ſich auf c endigt ,

hergeleitet u . f . 1. Eine kleine Abweichungd b

in der Folge de
r

Verfeßungen wird man bend b cf

de
r

Vergleichung mit de
r

in dem Archiv a . a .

u . ſ .wl : D. gefesten bemerken . d)

e

1

e &
a

ૼ Sunftkenner vor einem Tchönen Gemälde , einer ſchönen Sta :

ૼ tue fehen bleibt . Jede hdhere Involution fellt zugleich

ૼ Alle niedrigere da
r , und dieſe ſind nothwendige Pertinengs

ૼ ftückevon jener . Die Wichtigkeit dieſer unterſuchungen er
s

ૼ kenne ic
h

vollkommen . Ohne eine befriedigende Darſtellung

s , de
r

combinatoriſchen Operationen , vorzüglich aber de
r

Invos

ૼ lutionen , in di
e

Yehre von den Combinationen , worauf fich

ૼdoch ſo vieles gründet , außerf mangelhaft . Je werde in
(b) Page 53.

über den Polynomiſchen Lehrſak . 53

b al
c def

с
ic
h

ei
n

etwas ausführlicheres Beyſpiel an den Verfeßun .

gen her , als in dem iften Heft des Archivs , S. 23 gegeben

iſt . Der Vorſaß iſt , di
e Verſegungen einer Anzahl von

verſchiedenen Größen ro zu ordnen , daß darin die Vers
ſetzungen jeder kleinern Anzahl ſichtbar werden . 3. B. es

find 6 Größen , a , b , c , d , e , f , gegeben , ſo wird di
e Fors

derung durch folgende Anordnung erfügt :

a b c d ef

Die hier in jedem Winkelhafen abgerona
derten Verrekungen ſind alle , welche von der

a : bd ef darinn enthaltenen Anzahl Großen möglich

a c bd ef find . Man wird an dem Beyſpiele di
e Re .b c ad el
f

ge
l

de
s

Verfahrens leicht entdecken . Wenncb adlef j . E. zu vier Größen , a , b , c , d , di
e fünfte

d a b clef e kommt , ro teße man dieſe zuerſt in di
e

lette

a d bclef Stelle zu jeder der Verfeßungen von vier ;

.. darauf rege man in di
e

leßte Stelle di
e vor e

vorhergehende Größe d , und nehme in den
bisherigen Berſekungen ſtatt jedes Buchſta

e abcdf ben den vorhergehenden , wobey e fü
r

a fommt ,

ae bc d'
f

weil man ſic
h

di
e

Größen in einem ſereiſe ge
e

fchrieben vorſtellen muß . Aus der zweyten

Claffe , di
e

ſich auf d endigt , wird auf dies
felbe Art die Claſſe , die ſich auf c endigt ,

hergeleitet u . f . 1. Eine kleine Abweichungd b

in der Folge de
r

Verfeßungen wird man bend b cf

de
r

Vergleichung mit de
r

in dem Archiv a . a .

u . ſ .wl : D. gefesten bemerken . d)

e

1

e &
a

ૼ Sunftkenner vor einem Tchönen Gemälde , einer ſchönen Sta :

ૼ tue fehen bleibt . Jede hdhere Involution fellt zugleich

ૼ Alle niedrigere da
r , und dieſe ſind nothwendige Pertinengs

ૼ ftückevon jener . Die Wichtigkeit dieſer unterſuchungen er
s

ૼ kenne ic
h

vollkommen . Ohne eine befriedigende Darſtellung
s , de
r

combinatoriſchen Operationen , vorzüglich aber de
r

Invos

ૼ lutionen , in di
e

Yehre von den Combinationen , worauf fich

ૼdoch ſo vieles gründet , außerf mangelhaft . Je werde in

(c) Min-flip order.

Fig. 2: Hindenburg’s Sammlung Combinatorisch-Analytischer Abhandlungen (1796)
includes Klügel’s presentation of the min-flip order of permutations.

1.5 New Results

We present a flip Gray code for Pk(n) that corresponds to a Hamilton cycle in the k-
sided pancake network Gk(n). This is accompanied by four combinatorial algorithms
for traversing the Hamilton cycle, each having unique and interesting properties:

1. A greedy algorithm that is easy to describe, but requires an exponential amount
of memory.

2. A recursive algorithm, that reveals the structure of the listing and can be imple-
mented in O(1)-amortized time.

3. A simple successor rule approach that allows the cycle to start from any vertex
(coloured permutation) and takes on average O(1) time when amortized over the
entire listing.

4. A loop-free algorithm to generate the flip-sequence iteratively.

In addition to these generation algorithms, we provide the following results.

– Ranking and unranking: O(n2)-time algorithms for determining the position of
each coloured permutation in the order, and which coloured permutation appears
in each position in the order.

– Optimality: Our Hamilton paths and cycles minimize the total number of pan-
cakes flipped.

Hamiltonicity of k-Sided Pancake Networks: Efficient Generation, Ranking, and Optimality 9

– Generalized Hamiltonicity: We introduce k-sided pancake networks with dif-
ferent ‘spin’ values (i.e. the amount in which each flipped element’s colour is
changed) and characterize when these graphs have Hamilton cycles.

1.6 Outline

Before we present our algorithms in Section 3, we first present some notation in Sec-
tion 2. Our ranking and unranking results are given in Section 4, and our optimality
results appear in Section 5. The Hamiltonicity of the generalized k-sided s-spin pan-
cake networks is established in Section 6. We conclude with final remarks and open
problems in Section 7.

A preliminary version of this paper was presented at IWOCA 2021 [5]; this ex-
tended version adds Sections 4–6 and open problems in Section 7. Our greedy al-
gorithm generalizes the min-flip strategy for pancakes and burnt pancakes in [47,
34] (with non-greedy descriptions from [48] and [27]), while the successor rule and
optimality result generalize those for pancakes and burnt pancakes in [16,35].

2 Notation

Let π = p1p2 · · · pn be a coloured permutation where each pi = vcii has value vi ∈
{1, 2, . . . , n} and colour ci ∈ {0, 1, . . . , k − 1}. Recall that Pk(n) denotes the set of
k-coloured permutations of {1, 2, . . . , n}. Observe that P1(n) corresponds to regular
permutations and P2(n) corresponds to signed permutations. For the remainder of
this paper, it is assumed that all permutations are coloured.

As mentioned earlier, a flip of a permutation π, denoted flipi(π), applies a prefix-
reversal of length i on π that also increments the colour of the flipped elements by 1
(modulo k). As an example for k = 3:

flip4(70126150314121) = 51621071314121.

A pre-perm is any prefix of a permutation in Pk(n), i.e., p = p1p2 · · · pj is a
pre-perm if there exist pj+1, . . . pn such that p1p2 · · · pn is a permutation. Note that
if j = n, then the pre-perm is a permutation. Let p = p1p2 · · · pj be an arbitrary
pre-perm for given a k. For a given element pi = vcii , let p+si = v

(ci+s) (mod k)
i . For

0 ≤ i < k, let p+i denote p+i1 p+i2 · · · p
+i
j , i.e., p with the colour of each element

incremented by i modulo k. Note, p+0 = p. Furthermore, let

ρ(p) = p+(k−1) · p+(k−2) · · ·p+0 = r1r2 · · · rm

be a circular string of lengthm = kj where · denotes concatenation. Let ρ(p)i denote
the length j−1 subword ending with ri−1.

Example 1 Consider a pre-perm p = 102032 where j = 3 and k = 4. Then

ρ(p) = 132331 · 122230 · 112133 · 102032 where ρ(p)5 = 3112 and ρ(p)2 = 3213.

10 Cameron et al.

For any pre-perm p = p1p2 · · · pj , let ←−p denote the reverse of p, i.e., ←−p =
pjpj−1 · · · p2p1. Note that ←−p is not equivalent to applying a flip of length j to p
when k > 1 as the colours of each symbol do not change in←−p . For the remainder of
this paper we will use p to denote a pre-perm, and when it is clear we will use π to
denote a permutation.

3 Constructions of a Cyclic Flip Gray code for Pk(n)

In this section we present four different combinatorial algorithms for generating the
same cyclic flip Gray code for Pk(n). We begin by studying the listing of permu-
tations generated by a greedy min-flip algorithm. We define the flip-sequence of a
listing of permutations as the sequence of the flip lengths used to generate the listing
beginning with the first permutation. By studying the underlying recursive structure
of the greedy listing, we provide a recursive description and its corresponding flip-
sequence and prove it is equivalent to the flip-sequence generated by the greedy algo-
rithm. This proves that the greedy algorithm generates all permutations in Pk(n). We
then present a successor-rule that determines the successor of a given permutation in
the greedy min-flip listing in expected O(1) time. We conclude by showing how the
flip-sequence can be generated via a loop-free algorithm.

3.1 Greedy Algorithm

Recall that GreedyMink(n) denotes the greedy algorithm on Pk(n) that starts at per-
mutation 1020 · · ·n0 and prioritizes the neighbours of each permutation in the k-sided
pancake network by increasing flip length.

Example 2 The following listing (left of the vertical bar) denotes the output of GreedyMin3(3)
(read top to bottom, then left to right), where black, red and blue correspond to the colours 0,1
and 2 respectively. This listing is exhaustive and cyclic; the last permutation differs from the first
permutation by a flip of length n = 3. To the right of the vertical line is the flip length required to
get from the permutation in that position to its successor.

123 312 231 123 312 231 123 312 231 1 1 1 1 1 1 1 1 1
123 312 231 123 312 231 123 312 231 1 1 1 1 1 1 1 1 1
123 312 231 123 312 231 123 312 231 2 2 2 2 2 2 2 2 2
213 132 321 213 132 321 213 132 321 1 1 1 1 1 1 1 1 1
213 132 321 213 132 321 213 132 321 1 1 1 1 1 1 1 1 1
213 132 321 213 132 321 213 132 321 2 2 2 2 2 2 2 2 2
123 312 231 123 312 231 123 312 231 1 1 1 1 1 1 1 1 1
123 312 231 123 312 231 123 312 231 1 1 1 1 1 1 1 1 1
123 312 231 123 312 231 123 312 231 2 2 2 2 2 2 2 2 2
213 132 321 213 132 321 213 132 321 1 1 1 1 1 1 1 1 1
213 132 321 213 132 321 213 132 321 1 1 1 1 1 1 1 1 1
213 132 321 213 132 321 213 132 321 2 2 2 2 2 2 2 2 2
123 312 231 123 312 231 123 312 231 1 1 1 1 1 1 1 1 1
123 312 231 123 312 231 123 312 231 1 1 1 1 1 1 1 1 1
123 312 231 123 312 231 123 312 231 2 2 2 2 2 2 2 2 2
213 132 321 213 132 321 213 132 321 1 1 1 1 1 1 1 1 1
213 132 321 213 132 321 213 132 321 1 1 1 1 1 1 1 1 1
213 132 321 213 132 321 213 132 321 3 3 3 3 3 3 3 3 3

Hamiltonicity of k-Sided Pancake Networks: Efficient Generation, Ranking, and Optimality 11

Observe that each column of permutations ends with the same element. Furthermore, the last per-
mutation in each column is a subword of the cyclic word 321321321.

Unlike the max-flip approach, we will prove that GreedyMink(n) exhaustively
generates all permutations in Pk(n) for all n, k ≥ 1. We also show that the last
permutation in the listing differs by a flip of length n from the first permutation, so
the listing is a cyclic flip Gray code. To prove this result, we study the underlying
recursive structure of the resulting listings and examine the flip-sequences.

3.2 Recursive Construction

By applying the two observations made following the listing of GreedyMin3(3) in
Example 2, we arrive at the following recursive definition for a listing of pre-perms,
given a pre-perm p of a permutation in Pk(n):

Reck(p) = Reck(ρ(p)m) · rm, Reck(ρ(p)m−1) · rm−1, . . . , Reck(ρ(p)1) · r1, (4)

where Reck(px) = p+0
x , p+1

x , p+2
x , . . . , p

+(k−1)
x and ρ(p) = r1 · · · rm. Here, the op-

eration L · r denotes the listing L with r appended to every element in the listing. We
prove that Reck(1020 · · ·n0) generates the same (exhaustive) listing of permutations
as GreedyMink(n).

Lemma 1 Let p = p1p2p3 · · · pj be a pre-perm of a permutation in Pk(n) for some

j ≤ n. Then the first and last pre-perms in Reck(p) are p and
←−−−−−
p+(k−1), respectively.

Proof The proof proceeds by induction on j. When j = 1, we have p = ←−p = p1,

so Reck(p) = p,p+1, p+2, . . . , p+(k−1). Since p+(k−1) =
←−−−−−
p+(k−1) the claim

holds. Now for 1 ≤ j < n and any pre-perm p = p1p2 · · · pj of a permu-
tation in Pk(n), suppose that the first and last pre-perms in Reck(p) are p and
←−−−−−
p+(k−1) respectively. Let p = p1p2 · · · pjpj+1 be a pre-perm of a permutation
in Pk(n). By definition, the first pre-perm of Reck(p) is the first pre-perm of
Reck(ρ(p)m) · rm where m = (j + 1)k. By definition of ρ(p) and ρ(p)m, it is
clear that rm = pj+1 and ρ(p)m = p1p2 · · · pj−1pj . Applying the inductive hy-
pothesis, the first pre-perm of Reck(p1p2 · · · pj−1pj) is p1p2 · · · pj−1pj . Therefore,
the first pre-perm of Reck(p) is p1p2 · · · pj−1pj · pj+1 = p. Similarly, the last pre-
perm of Reck(p) is the last pre-perm of Reck(ρ(p)1) · r1. Now, r1 = p

+(k−1)
1

and ρ(p)1 = p2p3 · · · pjpj+1 and, by the inductive hypothesis, the last pre-perm
in Reck(ρ(p)1) is p

+(k−1)
j+1 p

+(k−1)
j · · · p+(k−1)

2 . Therefore, the last pre-perm of

Reck(p) is
←−−−−−
p+(k−1). 2

Let τ j denote j copies of a sequence τ concatenated together. Define the sequence
σk,n recursively as

σk,n =

{
1k−1 if n = 1

(σk,n−1, n)kn−1, σk,n−1 if n > 1.
(5)

12 Cameron et al.

We will show that σk,n is the flip-sequence for both Reck(p) and GreedyMink(n).
This flip-sequence is a straightforward generalization of the recurrences for non-
coloured permutations [48] and signed permutations [34]. Note that σ3,3 is shown
to the right of the vertical bar in Example 2.

Lemma 2 Let n ≥ 1 , k ≥ 1, 1 ≤ j ≤ n, and p = p1p2p3 · · · pj be a pre-perm of a
permutation in Pk(n). Then the flip-sequence for Reck(p) is σk,j .

Proof If j = 1, then Reck(p1) = p1, p
+1
1 , p+2

1 , . . . , p
+(k−1)
1 and the flip-sequence

is σk,1 = 1k−1. Otherwise assume n, j ≥ 2 and proceed by induction on j. For all
` such that 1 ≤ ` ≤ j < n, suppose that the sequence of flips used to generate
Reck(p) is given by σk,` for every pre-perm p of length `. Let p′ = p1p2 · · · pj+1

be a pre-perm of a permutation in Pk(n) and let ρ(p′) = r1 · · · rm where m =
k(j + 1). Consider Reck(p′). Applying the inductive hypothesis and the defini-
tion of σk,j+1, it suffices to show that the last pre-perm of Reck(ρ(p′)i) · ri and
the first pre-perm of Reck(ρ(p′)i−1) · ri−1 differ by a flip of length j + 1 for
i = 2, 3, . . . ,m. By definition, ρ(p′)i = ri−jri−(j−1) · · · ri−2ri−1 where the indices
are taken modulo m. Therefore, by Lemma 1, the last pre-perm in Reck(ρ(p′)i) is
(ri−1ri−2 · · · ri−(j−1)ri−j)+(k−1). Thus, applying a flip of length j + 1 to the last
pre-prem of Reck(ρ(p′)i) · ri yields

r+1
i ri−jri−(j−1) · · · ri−2ri−1. (6)

By Lemma 1, the first pre-perm of Reck(ρ(p′)i−1) is ri−(j+1)ri−j · · · ri−3ri−2. By
the definition of ρ(p′), it follows that ri−(j+1) = r+1

i . Thus, from (6), it follows that
the last pre-perm of Reck(ρ(p′)i)·ri and the first pre-perm of Reck(ρ(p′)i−1)·ri−1
differ by a flip of length j+1. By applying the inductive hypothesis, the flip-sequence
for Reck(p′) is (σk,j+1, j + 1)k(j+1)−1, σk,j which is exactly σk,j+1. 2

Theorem 1 For n ≥ 1, k ≥ 1, and π ∈ Pk(n), Reck(π) is a cyclic flip Gray code
for Pk(n), where the first and last permutations differ by a flip of length n.

Proof From Lemma 2, the flip-sequence for Reck(π) is given by σk,n. Inductively,
it is easy to see that the length of the flip-sequence σk,n is knn! − 1 and that each
permutation of Reck(π) is unique. Thus, each of the knn! permutations is listed
exactly once and, from Lemma 1, the first and last permutations of the listing differ
by a flip of length n, making Reck(π) a cyclic flip Gray code for permutations. 2

Lemma 3 For n ≥ 1 and k ≥ 1, the flip-sequence for GreedyMink(n) is σk,n.

Proof By contradiction. Suppose the sequence of flips used by GreedyMink(n) dif-
fers from σk,n and let j be the smallest value such that the j-th flip used to create
GreedyMink(n) differs from the j-th value of σk,n. Let these flip lengths be s and t,
respectively. Since GreedyMink(n) follows a greedy minimum-flip strategy and be-
cause σk,n produces a valid flip Gray code for permutations by Theorem 1 where no
permutation is repeated, it must be that s < t. Let π = p1p2p3 · · · pn denote the j-
th permutation in the listing GreedyMink(n), i.e., the permutation immediately prior
to the j-th flip. Since σk,n is the flip-sequence for Reck(1020 · · ·n0) by Lemma 2,

Hamiltonicity of k-Sided Pancake Networks: Efficient Generation, Ranking, and Optimality 13

from the recursive definition it follows inductively that all other permutations with
suffix ptpt+1 · · · pn appear before π in Reck(1020 · · ·n0), since no permutations are
repeated by Theorem 1. Since σk,n and the sequence of flips used by GreedyMink(n)
agree until the j-th value, all other permutations with suffix ptpt+1 · · · pn appear be-
fore π in GreedyMink(n). Therefore, flipping π by a flip of length s < t results in a
permutation already visited in GreedyMink(n) before index j contradicting the fact
that GreedyMink(n) produces a list of permutations without repetition. 2

By definition, GreedyMink(n) starts with the permutation 1020 · · ·n0 and by
Lemma 1, Reck(1020 · · ·n0) also starts with 1020 · · ·n0. Since they are each cre-
ated by the same flip-sequence by Lemma 2 and Lemma 3, we get the following
corollary.

Corollary 1 For n ≥ 1 and k ≥ 1, the listings GreedyMink(n) and Reck(1020 · · ·n0)
are equivalent.

3.3 Successor Rule

In this section, we will generalize the successor rules found for non-coloured per-
mutations and signed permutations in [35] for GreedyMink(n) for k > 2. We say
a permutation in Pk(n) is increasing if it corresponds to a length n subword of the
circular string ρ(1020 · · ·n0).

Example 3 Recall the definition of ρ in Section 2 and consider n = 6, k = 4. Since

ρ(1020 · · ·n0) = 132333435363 · 122232425262 · 112131415161 · 102030405060,

the following permutations are all increasing:

233343536312, 516110203040, 102030405060, 506013233343.

A permutation is decreasing if it is a reversal of an increasing permutation. A pre-
perm is increasing (decreasing) if it corresponds to a subsequence of an increasing
(decreasing) permutation (when the permutation is thought of as a sequence). For
example, 51612040 is an increasing pre-perm, but 51204060 and 12223140 are not.
Given a permutation π2, let succ(π2) denote the successor of π2 in Reck(π) when
the listing is considered to be cyclic.

Lemma 4 Let π2 = q1q2 · · · qn be a permutation in the (cyclic) listing Reck(π),
where π = p1p2 · · · pn is increasing. Let q1q2 · · · qj be the longest prefix of π2 that is
decreasing. Then succ(π2) = flipj(π2).

Proof By induction on n. When n = 1, the result follows trivially as only flips
of length 1 can be applied. Now, for n > 1, we focus on the permutations whose
successor is the result of a flip of length n and the result will follow inductively
by the recursive definition of Reck(π). By Lemma 2, the successor of π2 will be
flipn(π2) if and only if it is the last permutation in one of the recursive listings of the

14 Cameron et al.

form Reck(ρ(π)i) · ri. Recall that ri is the i-th element in ρ(π) when indexed from
r1 = p

+(k−1)
1 to rm = pn. As it is clear that at most one permutation is decreasing

in each recursive sublist, it suffices to show that the last permutation in each sublist
is decreasing to prove the successor rule holds for flips of length n. By Lemma 1,
the last permutation in Reck(ρ(π)i) · ri is←−s · ri where s = ρ(π)

+(k−1)
i . Since π is

increasing, it is clear that ρ(π)i is increasing and therefore that s is increasing. Hence,
←−s is decreasing by definition. Furthermore, by the definition of the circular word
ρ(π), the element immediately before r+(k−1)

i−1−(n−1) in ρ(π) is ri (note the subscript
i − 1 − (n − 1) is considered modulo nk here). Therefore, ←−s · ri is decreasing.
Therefore, the successor rule holds for flips of length n and thus for flips of all lengths
by induction. 2

Example 4 With respect to the listing Rec10(102030405060),

succ(382859491763) = flip4(3
82859491763) = 405029391763

and
succ(183726554362) = flip1(1

83726554362) = 193726554362.

By applying the previous lemma, computing succ(π2) for a permutation in the listing
Reck(π) can easily be done in O(n) time as described in the pseudocode given in
Algorithm 1.

Algorithm 1 Computing the successor of π in the listing Reck(1020 · · ·n0)

1: function SUCCESSOR(π)
2: incr ← 0
3: for j ← 1 to n− 1 do
4: if vj < vj+1 then incr ← incr + 1

5: if incr = 2 or (incr = 1 and vj+1 < v1) then return flipj(π)

6: if k > 1 and vj < vj+1 and ((cj+1 − cj + k) mod k 6= 1) then return flipj(π)

7: if k > 1 and vj > vj+1 and (cj 6= cj+1) then return flipj(π)

8: return flipn(π)

Theorem 2 SUCCESSOR(π) returns the length of the flip required to obtain the suc-
cessor of π in the listing Reck(1020 · · ·n0) in O(n) time.

Though the worst case performance of SUCCESSOR(π) is O(n) time, on average
it is much better. Let σk,n denote (σk,n, n), i.e., the sequence of flips used to generate
the listing Reck(π) with an extra flip of length n at the end to return to the start-
ing permutation. Our goal is to determine the average flip length of σk,n, denoted
AVG(k, n). Our analysis generalizes the results for AVG(1, n) [48] and AVG(2, n)
[34].

Hamiltonicity of k-Sided Pancake Networks: Efficient Generation, Ranking, and Optimality 15

Lemma 5 For n ≥ 1 and k ≥ 1,

AVG(k, n) =

n−1∑
j=0

1

kjj!
.

Moreover, AVG(k, n) < k
√
e.

Proof By definition of σk,n, it is not difficult to see that σk,n+1 is equivalent to the
concatenation of (n+ 1)k copies of σk,n with the last element in every copy of σk,n
incremented by 1. Therefore, we have

AVG(k, n+ 1) =

(
1 +

∑
f∈σk,n

f

)
(n+ 1)k

(n+ 1)!kn+1

=

∑
f∈σk,nf

n!kn
+

1

n!kn

= AVG(k, n) +
1

n!kn
.

Hence, with the trivial base case that AVG(k, 1) = 1, we have

AVG(k, n) =

n−1∑
j=0

1

kjj!
.

Therefore,

AVG(k, n) <

∞∑
j=0

1

kjj!
= k
√
e

by applying the well-known Maclaurin series expansion for ex. 2

Observe that the SUCCESSOR function runs in expected O(1) time when the permu-
tation is passed by reference because the average flip length is bounded above by
the constant k

√
e. Thus, by repeatedly applying the successor rule, we obtain a CAT

algorithm for generating Reck(1020 · · ·n0).

3.4 Loop-free Generation of the Flip-Sequence σk,n

Based on the recursive definition of the flip-sequence σk,n given in (5), Algorithm 2
will generate σk,n in a loop-free manner. The algorithm generalizes a similar algo-
rithm presented by Zaks for non-coloured permutations [48]. The next flip length x is
computed using an array of counters c1, c2, . . . , cn+1 initialized to 0, and an array of
flip lengths f1, f2, . . . , fn+1 with each fi initialized to i. For a formal proof of cor-
rectness, we invite the readers to see the simple inductive proof for the non-coloured

16 Cameron et al.

case in [48], and note the primary changes required to generalize to coloured per-
mutations are in handling of the minimum allowable flip lengths (when k = 1, the
smallest allowable flip length is 2) corresponding to lines 5-6 and adding a factor of
k to line 8.

Algorithm 2 Loop-free generation of the flip-sequence σk,n
1: procedure FLIPSEQ
2: c1, c2, . . . , cn+1 ← 0, 0, . . . , 0
3: f1, f2, . . . , fn+1 ← 1, 2, . . . , n+ 1
4: repeat
5: if k = 1 then x← f2; f2 ← 2
6: else x← f1; f1 ← 1

7: cx ← cx + 1
8: if cx = kx−1 then
9: cx ← 0

10: fx ← fx+1

11: fx+1 ← x+ 1

12: OUTPUT(x)
13: until x > n

An example illustrating the changing values of the auxiliary values is given in Ap-
pendix A.

Theorem 3 The algorithm FLIPSEQ is a loop-free algorithm to generate the flip-
sequence σk,n one element at a time.

Since the average flip length in σk,n is bounded by a constant, as determined in the
previous subsection, Algorithm 2 can be modified to generate Reck(π) by passing
the initial permutation π as a parameter, outputting π at the start of the repeat loop,
and updating π ← flipx(π) at the end of the loop instead of outputting the flip length.

Corollary 2 The algorithm FLIPSEQ can be modified to generate successive permu-
tations in the listing Reck(π) in O(1)-amortized time.

4 Efficient Ranking and Unranking

In this section, we provide efficientO(n2)-time algorithms for ranking and unranking
the listing Reck(1020 · · ·n0).

4.1 Ranking

Let Rank(π) denote the rank of permutation π = p1p2 · · · pn = vc11 v
c2
2 · · · vcnn in

the listing Reck(1020 · · ·n0). The rank of π can be computed by considering the
recursive structure of this listing given in (4), as made precise in the following lemma.

Hamiltonicity of k-Sided Pancake Networks: Efficient Generation, Ranking, and Optimality 17

Lemma 6 For all n, k ≥ 1,

Rank(π) =

{
ci + 1 if n = 1;
(n(cn+1)−vn) · kn−1(n−1)! + Rank(q1q2 · · · qn−1) otherwise,

where qi = udii (ui with colour di) and ui = (vi−vn) mod n and di = (ci−cn) mod
k if vi < vn and di = (ci−cn−1) mod k otherwise.

Proof If n = 1 the result clearly follows, so assume n > 1. Let p′ = ab where a =
(vcnn+1v

cn
n+2 · · ·ncn)+1 and b = 1cn2cn · · · vcnn−1. By Lemma 1 and the definitions

of Reck(1020 · · ·n0) and ρ(1020 · · ·n0), the first permutation in Reck(1020 · · ·n0)
that ends with pn is p′pn. From the definition of Reck(1020 · · ·n0), each of the nk
recursive sub-lists contain kn−1(n−1)! permutations and there are n(cn+1)−pn sub-
lists that appear before the sub-list containing all permutations ending with pn. There-
fore, Rank(π) is equal to (n(cn+1)−vn)·kn−1(n−1)! plus the rank of p1p2 · · · pn−1
in Reck(p′). Subtracting vn modulo n from each element in p′, cn+1 modulo k from
the colour of every element in p′∩a (i.e., for elements larger than vn), and cn modulo
k from the colour of every element in p′∩b (i.e., for elements smaller than vn) yields
1020 · · · (n−1)0. By Lemma 2, Reck(1020 · · · (n−1)0) and Reck(p′) are generated
by the same flip-sequence, so the rank of q1q2 · · · qn−1 in Reck(1020 · · · (n−1)0) is
equal to the rank of p1p2 · · · pn−1 in Reck(p′). This completes the proof. 2

Example 5 Consider the listing Rec3(123) where n = k = 3 and the permutation π = 132.
The recursive decomposition for computing Rank(132) in the ordering Rec3(123) is as follows:

Rank(132) = (3 · 3− 2) · 32 · 2! + Rank(21)

= 126 + (2 · 2− 1) · 31 · 1! + Rank(1)

= 126 + 9 + 3 = 138

The computation of Rank(p1p2 · · · pn) requires n recursive calls, where O(n) work
is required at each call.

Theorem 4 The algorithm Rank(π) returns the rank of the permutation π in the
listing Reck(1020 · · ·n0) in O(n2) time.

4.2 Unranking

To find the permutation π = p1p2 · · · pn ∈ Pk(n) at position rank in the list-
ing Reck(1020 · · ·n0), we essentially inverse the operations applied in the rank-
ing procedure: We recursively determine the last symbol given the current rank,
then appropriately relabel a permutation found (recursively) at a specific rank in
Reck(1020 · · · (n−1)0). The justification is very similar to that for ranking, so we
omit the details. Pseudocode for such an unranking algorithm is as follows.

18 Cameron et al.

1: function UNRANK(rank, t)
2: if t = 1 then return 1rank−1

3: x← b rank−1
kt−1(t−1)!

c
4: pt ← (t− (x mod t))bx/tc

5: q1q2 · · · qt−1 ← UNRANK(rank − xkt−1(t− 1)!, t−1)
6: for j ← 1 to t− 1 do
7: pj ← 1 + ((vj + vt − 1) mod t)
8: if vj < vt then cj ← (cj + ct) mod k
9: else cj ← (cj + ct + 1) mod k

10: return p1p2 · · · pt

Example 6 Consider the permutation π = p1p2p3 at rank = 138 in the listing Rec3(123).
Stepping through the function UNRANK(138,3), the variable x is assigned b137/(9·2!)c = 7. Thus
p3 will be the last element in the 8th sublist from the recursive description in (4) which is given by
v3 = 3− (7 mod 3) = 2 and c3 = b7/3c = 2. Thus p3 = 2. Subtracting the 7 · (9 · 2!) = 126
permutations found in the first 7 sub-lists from the rank = 138, we are interested in the 12th per-
mutation in the 8th sub-list ending with 2. This permutation is computed by recursively determining
the 12th permutation in Rec3(12), which is 21 and applying an appropriate relabelling to obtain
p1p2 = 13. Thus π = 132.

Theorem 5 The algorithm UNRANK(rank, n) returns the permutation at position
rank in the listing Reck(1020 · · ·n0) in O(n2) time.

5 Optimality: Minimum Cardinality

In this section, we prove that our Hamilton paths and cycles in Gk(n) are optimal in
the following sense: They flip the fewest total number of pancakes possible. In other
words, the local greedy min-flip strategy creates orders that minimize a natural global
quantity. Moreover, we will provide the exact total number of flipped pancakes for
our Hamiltion paths and cycles. These results generalize previous results for pancakes
and burnt pancakes in [35].

Let the cardinality of a path or cycle in the k-sided pancake network Gk(n) be
the total number of pancakes that are flipped along it. In other words, the cardinality
is the sum of the flip lengths used in the path or cycle. For example, the greedy-min
Hamilton cycle in G3(2) has cardinality (1 + 1 + 2) · 6 = 24 (see Figure 1). We start
by proving that our Hamilton cycle has minimum possible cardinality.

Theorem 6 The Hamilton cycle given by GreedyMink(n) has cardinality

knn! ·
n−1∑
j=0

1

kjj!
, (7)

and this is the minimum total number of flips of any Hamilton cycle in the k-sided
pancake network Gk(n).

Hamiltonicity of k-Sided Pancake Networks: Efficient Generation, Ranking, and Optimality 19

Proof To prove that (7) is correct, recall that the number of vertices in the k-sided
pancake network Gk(n) is the number of permutations: |Pk(n)| = knn!. Therefore,
(7) is simply the number of vertices multiplied by the average flip length per edge in
the Hamilton cycle (see Lemma 5).

Now we prove that (7) is the minimum possible number of total flipped pancakes.
For the sake of contradiction, suppose that another Hamilton cycle of Gk(n) has a
smaller cardinality, and that its flip sequence is σ′. Since σk,n and σ′ have the same
length, and σ′ has a smaller sum, it must be that σ′ uses more “smaller” flips. More
formally, there exists a value m in the range 1 ≤ m < n, such that σ′ contains more
entries of value at most m than σk,n does. To see why this is not possible, note that
σk,n consists of t = kn−mn!

m! copies of σk,m that are separated by individual values
that are larger than m. That is, (5) implies that

σk,n = σk,m, v1, σk,m, v2, . . . , σk,m, vt (8)

where each vi is a single value satisfying vi > m. Also note that every value in σk,m
is at most m, and the length of each σk,m is |σk,m| = kmm!− 1.

Now consider the structure of σk,n in (8). Notice that it is maximal in the fol-
lowing sense: It contains the maximum number of values that are at most m without
including any subsequence2 of length greater than |σk,m|. In other words, it packs in
as many values that are at most m as possible without exceeding the run-length of
each σk,m. Since σ′ has more entries of value at most m than σk,n does, it must
be that σ′ contains a longer such subsequence. That is, σ′ has a subsequence of
|σk,m| + 1 = kmm! flips of length at most m. But such a subsequence must cre-
ate a repeated permutation in Pk(n). This is because the flips only change the first
m symbols of each permutation, and a sequence of kmm! flips will create kmm! + 1
permutations, which exceeds |Pk(m)| = kmm!. This contradicts that σ′ is a flip se-
quence for a Hamilton cycle of Gk(n), since a strict subsequence of it must revisit a
vertex. ut

We complete this section by noting that our Hamilton path also has minimum
cardinality.

Corollary 3 The Hamilton path given by GreedyMink(n) has cardinalityknn! ·
n−1∑
j=0

1

kjj!

− n, (9)

and this is the minimum total number of flips of any Hamilton path in the k-sided
pancake network Gk(n).

Proof This follow from Theorem 6 and the fact that the last entry in σk,n is n. ut

2 Here a subsequence refers to consecutive (i.e., neighbouring) values in the sequence.

20 Cameron et al.

6 Hamiltonicity of k-Sided s-Spin Pancake Networks

In this section, we consider generalizations of k-sided pancake networks with a fixed
“spin” value, and then characterize when they are Hamiltonian. As we will see, the
key to the characterization is the Hamiltonicity of regular k-sided pancake networks.

6.1 s-Spin Prefix-Reversals

So far, this paper has focused on flips that are colour-incrementing prefix-reversals. In
other words, the colour (or side) of every flipped element is increased by one modulo
k. More generally, one could consider flips that increase the colour of every flipped
element by some fixed value s modulo k. To better fit Goodman’s initial formulation
[14], we refer to the fixed increment as the spin of the flip, and we define the operation
as an s-spin prefix-reversal. To avoid needlessly overexuberant waiters, we limit the
spin to the range 0 ≤ i < k. For example, Fig. 3 illustrates four different types of
flips on a stack of square3 pancakes.

2
3
4

1
s
ℓ

(a) Initial stack
10203243 = 1234.

4

2
3

1

(b) Spin s = 0:
32201043 = 3214.

1
2

4

3

(c) Spin s = 1:
33211143 = 3214.

4

3
2
1

(d) Spin s = 2:
30221243 = 3214.

4

3
2
1

(e) Spin s = 3:
31231343 = 3214.

Fig. 3: (a) A stack of four 4-sided pancakes (“toutons”) on a plate, and (b)–(e) the
result of a flip of length ` = 3 and each spin value s = 0, 1, 2, 3. The top of each
pancake is its colour, with 0, 1, 2, 3 for black, red, blue, green.

6.2 k-Sided s-Spin Pancake Networks

The k-sided s-spin pancake network Gk,s(n) is a directed graph with vertex set
Pk(n), and a directed edge from π1 ∈ Pk(n) to π2 ∈ Pk(n) if π1 can be trans-
formed into π2 by an s-spin prefix-reversal. The original k-sided pancake networks
are obtained with spin s = 1. That is, Gk(n) = Gk,1(n). Figs. 4b and 5a illustrate
networks with spin s = 2.

Observe that G4,2(2) in Fig. 4b is disconnected, while G3,2(2) in Fig. 5a is rem-
iniscent of G3(2) from Fig. 1c. Theorem 7 will explain these observations more gen-
erally. Before stating the theorem, recall that the period of x ∈ Zk (i.e. an element

3 A touton (or tiffin) is a piece of fried or baked bread dough that is a traditional dish from Newfoundland
and Labrador. It resembles a square pancake, and is often served with butter, jam, molasses, or maple syrup.
These serve as close approximations of real-world square pancakes.

Hamiltonicity of k-Sided Pancake Networks: Efficient Generation, Ranking, and Optimality 21

12 12 2121

121221 21

(a) In G2(2) each edge increments the colour of
the flipped elements modulo 2.

12 12 2121

121221 21

12 12 2121

121221 21

12 12 2121

121221 21

12 12 2121

1221 1221

(b) In G4,2(2) each edge adds 2 to the colour of
the flipped elements modulo 4.

Fig. 4: (a) The 2-sided pancake network G2(2), and (b) the 4-sided 2-spin pancake
network G4,2(2). The latter consists of c =

(
k
t

)n
=
(
4
2

)2
= 4 components that are

each isomorphic to the former. The colours are 0, 1, 2, 3 for black, red, blue, green.

in the cyclic group of order k) is the smallest integer i such that i · x ≡ 0 mod k.
In other words, it is the number of times x must be added to itself before the sum is
equal to 0 mod k.

Theorem 7 The k-sided s-spin pancake network Gk,s(n) consists of c connected
components, each of which is isomorphic to the t-sided pancake network Gt(n),
where t is the period of s ∈ Zk, and c =

(
k
t

)n
.

Before proving the theorem, it is helpful to consider the special case where Gk,s(n)
is connected. The following corollary provides this simplification of Theorem 7, and
its result is illustrated by Fig. 5a.

Corollary 4 The k-sided s-spin pancake network Gk,s(n) is isomorphic to the k-
sided pancake network Gk(n) whenever s and k are coprime.

Proof When k and s are coprime, the period of s ∈ Zk is t = k. Therefore, by The-
orem 7, the number of components in Gk,s(n) is c =

(
k
t

n
)

= 1n = 1. Furthermore,
this component is isomorphic to Gt(n) = Gk(n) as claimed. ut

Now we prove Theorem 7.

Proof (Theorem 7) Consider the vertex π1 = 1020 · · ·n0 ∈ Pk(n) in Gk,s(n). Each
edge of Gk,s(n) either increases the colour of an element by s, or does not change the
colour of the element. Therefore, if there is a directed path from π1 to π2 ∈ Pk(n),
then the colour of an element in π2 must satisfy i · s mod k for some i. The number
of possible element colours of the form i · s mod k is simply the period of s ∈ Zk,
which we denote by t. Therefore, an upperbound on the size of the strongly connected
component containing π1 is n! · tn. Note that this quantity is precisely the order of
Gt(n). Furthermore, it is easy to see that this (strongly) connected component is
isomorphic to Gt(n). To formally establish the isomorphism, let R ⊆ Pk(n) be the
set of vertices that are reachable from π1. A suitable mapping from the vertices in
Gk,t(n) is f : Pt(n)→ R is

f(pc11 p
c2
2 · · · pcnn) = ps·c11 ps·c22 · · · ps·cnn (10)

22 Cameron et al.

where the colours are taken modulo k.
To complete the proof, note that Gk,s(n) is vertex-transitive, so every connected

component must be isomorphic to Gt(n). By considering the relative orders of these
graphs, the number of components in Gt,s(n) is

n! · kn

n! · tn
=

(
k

t

)n
= c

as claimed. ut

As an example of Corollay 4, k = 3 and s = 2 are co-prime, so the 3-sided 2-
spin pancake network G3,2(2) is isomorphic to the 3-sided pancake network G3(2).
The graph G3(2) previously appeared in Fig. 1c, and we provide two embeddings of
G3,2(2) in Fig. 5. The first is obtained from Fig. 1c by applying the mapping given
by (10) to each vertex in-place. For example, the top vertex is f(1120) = 12·122·0 =
1220, or f(12) = 12. The second is obtained from Fig. 1c by reversing every edge.
The second approach is valid in this case due to the fact that 1-spin and 2-spin edges
are inverses of each other when the pancakes have k = 3 sides.

12

12 12

21

21 21

2121

21

12

12

12 12

12

12

21 21

21

(a) One embedding of G3,2(2).

12

12 12

21

21 21

2121

21

12

12

12 12

12

12

21 21

21

(b) A second embedding of G3,2(2).

Fig. 5: Two embeddings of G3,2(2): the k-sided s-spin pancake network on n pan-
cakes with k = 3, s = 2, and n = 2. The network is isomorphic to G3(2) from Fig.
1c by Corollary 4 (since k = 3 and i = 2 are co-prime). The embeddings are obtained
from Fig. 1c by (a) the mapping provided in the proof of Theorem 7, and (b) reversing
the edges. The greedy min-flip strategy GreedyMin3,2(2) creates a Hamilton cycle as
seen in (a).

6.3 Generalized Hamiltonicity Result

Theorem 7 and Corollary 4 lead to natural generalizations of our results. In particular,
the greedy min-flip construction, denoted GreedyMink,i(n), starts a path at vertex

Hamiltonicity of k-Sided Pancake Networks: Efficient Generation, Ranking, and Optimality 23

1020 · · ·n0 ∈ Pk(n) in Gk,s(n), and then repeatedly extends the path to a new vertex
along the edge that corresponds to the shortest s-spin prefix-reversal.

Corollary 5 The greedy min-flip strategy GreedyMink(n) creates a Hamilton cycle
in the k-sided s-spin pancake network Gk,s(n) when k and s are coprime.

Corollary 5 is illustrated in Fig. 5a.

7 Final Remarks

We presented four different combinatorial algorithms for traversing a specific Hamil-
ton cycle in the k-sided pancake network:

– a min-flip greedy algorithm which requires exponential space to store the net-
work,

– a recursive construction that traverses the network in O(1)-amortized time using
O(n)-space,

– a successor-rule that allows the cycle to be traversed starting from any initial
permutation (which the previous approaches do not allow for) in O(1)-amortized
time per permutation, and

– a loop-free algorithm is given for the associated flip-sequence.

The Hamilton cycle corresponds to a flip Gray code listing of coloured permutations.
Based on the recursive description, simple O(n2)-time ranking and unranking algo-
rithms have also been presented for a corresponding listing of coloured permutations.
A complete C implementation of our algorithms is available on The Combinatorial
Object Server [9] at http://combos.org/cperm.

We also proved that our Hamilton paths and cycles are optimal in the sense that
they flip the fewest total number of (coloured) pancakes possible. In the process, we
obtain an exact number for the total number of pancakes flipped by traversing these
paths/cycles, generalizing known results for pancakes and burnt pancakes. Finally,
we generalized the notion of a flip by considering a “spin value” and characterize
when the corresponding pancake networks are Hamiltonian.

An interesting line of future research is to consider prefix-reversals on combina-
tions and more generally, the permutations of a multiset.

Open Problem #1: Find a simple and efficient algorithm to list combinations
where successive elements differ by a prefix-reversal.
Open Problem #2: Find a simple and efficient algorithm to list the permuta-
tions of a multiset where successive elements differ by a prefix reversal.

The first problem essentially considers iterating through all stacks of n pancakes
where each pancake is one of two sizes, say 0 or 1. The second problem generalizes
the first problem by allowing more than two sizes of pancakes, or an alphabet or
arbitrary size.

Acknowledgements. We’d like to thank Torsten Mütze for helpful discussions on
the history of the min-flip algorithm for permutations, and its connection to Algo-
rithm J.

24 Cameron et al.

References

1. S. Akers and B. Krishnamurthy. A group-theoretic model for symmetric interconnection networks.
Computers, IEEE Transactions on, 38(4):555–566, 1989.

2. C. A. Athanasiadis. Binomial Eulerian polynomials for colored permutations. J. Combin. Theory Ser.
A, 173:105214, 2020.

3. E. Bagno, D. Garber, and T. Mansour. On the group of alternating colored permutations. Electron. J.
Combin., 21(2):Paper 2.29, 2014.

4. A. Borodin. Longest increasing subsequences of random colored permutations. Electron. J. Combin.,
6(13):12pp, 1999.

5. B. Cameron, J. Sawada, and A. Williams. A Hamilton cycle in the k-sided pancake network. In
P. Flocchini and L. Moura, editors, IWOCA ’21: 32nd International Workshop on Combinatorial
Algorithms, volume 12757 of Lecture Notes in Computer Science, pages 137—-151, Ottawa, ON,
Canada, 2021. Springer.

6. J. Cardinal, A. Merino, and T. Mütze. Combinatorial generation via permutation languages. IV.
Elimination trees, 2021.

7. W. Y. C. Chen, H. Y. Gao, and J. He. Labeled partitions with colored permutations. Discrete Math.,
309(21):6235–6244, 2009.

8. D. S. Cohen and M. Blum. On the problem of sorting burnt pancakes. Discrete Appl. Math.,
61(2):105–120, July 1995.

9. COS++. The Combinatorial Object Server. http://combos.org/cperm.
10. J. Doleman et al. Campanalogia Improved: Or, the Art of Ringing Made Easy,... C. Hitch and L.

Hawes; and J. Hodges, 1733.
11. A. Duane and J. Remmel. Minimal overlapping patterns in colored permutations. Electron. J. Com-

bin., 18(2):Paper 25, 38, 2011.
12. R. Duckworth and F. Stedman. Tintinnalogia: Or, The Art of Ringing. London, 1668.
13. R. Duckworth and F. Stedman. Tintinnalogia: Or, The Art of Ringing. Kingsmead Reprints, 1970.
14. H. Dweighter. Problem E2569. American Mathematical Monthly, 82:1010, 1975.
15. D. Eppstein. An almost-forgotten combinatorist: Heinrich August Rothe. https://11011110.

github.io/blog/2012/03/27/almost-forgotten-combinatorist-heinrich.
html, 2012.

16. H. Essed and W. Therese. The harassed waitress problem. In A. Ferro, F. Luccio, and P. Widmayer,
editors, Fun with Algorithms, volume 8496 of Lecture Notes in Computer Science, pages 325–339.
Springer International Publishing, 2014.

17. G. Fertin, A. Labarre, I. Rusu, E. Tannier, and S. Vialette. Combinatorics of Genome Rearrangements.
MIT Press, August 2009.

18. W. H. Gates and C. H. Papadimitriou. Bounds for sorting by prefix reversal. Discrete Math., 27(1):47–
57, 1979.

19. F. Gray. Pulse code communication. U.S. Patent 2,632,058, 1947.
20. E. Hartung, H. P. Hoang, T. Mütze, and A. Williams. Combinatorial generation via permutation

languages. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1214–1225. SIAM, 2020.

21. M. H. Heydari and I. H. Sudborough. On the diameter of the pancake network. J. Algorithms,
25(1):67–94, 1997.

22. C. F. Hindenburg. Sammlung combinatorisch-analytischer Abhandlungen, volume 1. ben Gerhard
Fleischer dem Jungern, 1796.

23. A. E. Holroyd. Perfect snake-in-the-box codes for rank modulation. IEEE Transactions on Informa-
tion Theory, 63(1):104–110, 2016.

24. K. Hunt. The art of changes: bell-ringing, anagrams, and the culture of combination in seventeenth-
century england. Journal of Medieval and Early Modern Studies, 48(2):387–412, 2018.

25. S. M. Johnson. Generation of permutations by adjacent transposition. Mathematics of computation,
17(83):282–285, 1963.

26. M. P. Justan, F. P. Muga, and I. H. Sudborough. On the generalization of the pancake network. In Pro-
ceedings International Symposium on Parallel Architectures, Algorithms and Networks. I-SPAN’02,
pages 173–178, 2002.

27. K. Kaneko. Hamiltonian cycles and Hamiltonian paths in faulty burnt pancake graphs. IEICE - Trans.
Inf. Syst., E90-D(4):716–721, Mar. 2007.

Hamiltonicity of k-Sided Pancake Networks: Efficient Generation, Ranking, and Optimality 25

28. D. E. Knuth. The Art of Computer Programming, volume 4: Combinatorial Algorithms, Part 1.
Addison-Wesley, 2010.

29. T. Mansour. Pattern avoidance in coloured permutations. Sém. Lothar. Combin., 46:Art. B46g, 12,
2001/02.

30. T. Mansour. Coloured permutations containing and avoiding certain patterns. Ann. Comb., 7(3):349–
355, 2003.

31. G. McGuire. Bells, motels and permutation groups. arXiv preprint arXiv:1203.1835, 2012.
32. R. Ord-Smith. Generation of permutations in pseudolexicographic order. Communications of the

ACM, 10(7):452, 1967.
33. R. Ord-Smith. Generation of permutation sequences: Part 2. The Computer Journal, 14(2):136–139,

1971.
34. J. Sawada and A. Williams. Greedy flipping of pancakes and burnt pancakes. Discrete Appl. Math.,

210:61–74, 2016.
35. J. Sawada and A. Williams. Successor rules for flipping pancakes and burnt pancakes. Theoret.

Comput. Sci., 609(part 1):60–75, 2016.
36. R. Sedgewick. Permutations generation methods. ACM Comput. Surv., 9(2):137–164, 1977.
37. H. Shin and J. Zeng. Symmetric unimodal expansions of excedances in colored permutations. Euro-

pean J. Combin., 52(part A):174–196, 2016.
38. S. Singh. Flipping pancakes with mathematics. The Guardian, 2013.
39. H. Steinhaus. One hundred problems in elementary mathematics. Basic Books, 1964.
40. S. M. Stigler. Stigler’s law of eponymy. Transactions of the New York academy of sciences, 39(1

Series II):147–157, 1980.
41. H. F. Trotter. Algorithm 115: perm. Communications of the ACM, 5(8):434–435, 1962.
42. H. Trust. Record 000208301. https://catalog.hathitrust.org/Record/000208301.
43. T. Verhoeff. The spurs of dh lehmer. Designs, Codes and Cryptography, 84(1):295–310, 2017.
44. A. T. White. Fabian stedman: The first group theorist? The American mathematical monthly,

103(9):771–778, 1996.
45. A. Williams. O(1)-time unsorting by prefix-reversals in a boustrophedon linked list. In 5th Inter-

national Conference on FUN with Algorithms, volume 6099 of Lecture Notes in Computer Science,
pages 368–379. Springer, 2010.

46. A. Williams. The greedy Gray code algorithm. In Algorithms and Data Structures Symposium, WADS
2013, volume LNCS 8037, pages 525–536, 2013.

47. A. Williams and J. Sawada. Greedy pancake flipping. In The VII Latin-American Algorithms, Graphs
and Optimization Symposium (LAGOS 2013), volume 45, pages 357–362, 2013.

48. S. Zaks. A new algorithm for generation of permutations. BIT, 24(2):196–204, 1984.

26 Cameron et al.

A An example illustrating the auxiliary variable for the loop-free generation

The following array (read top to bottom, then left to right) shows how the ci’s and fi’s evolve for each flip
generated by FLIPSEQ for σ3,3. Each entry corresponds to the flip in the same position in the array to the

right of the vertical bar in Example 2. Each entry is a 3 × 3 matrix of the form
(
c1 c2 c3
f1 f2 f3

)
. Note that

c4 = 0 except for in the last entry where c4 = 1 and f4 is always equal to 4, so we chose to omit these.

(
1 0 0
1 2 3

)(
1 0 1
1 2 3

)(
1 0 2
1 2 3

)(
1 0 3
1 2 3

)(
1 0 4
1 2 3

)(
1 0 5
1 2 3

)(
1 0 6
1 2 3

)(
1 0 7
1 2 3

)(
1 0 0
1 2 4

)
(
0 0 0
2 2 3

)(
0 0 1
2 2 3

)(
0 0 2
2 2 3

)(
0 0 3
2 2 3

)(
0 0 4
2 2 3

)(
0 0 5
2 2 3

)(
0 0 6
2 2 3

)(
0 0 7
2 2 3

)(
0 0 0
2 2 4

)
(
0 1 0
1 2 3

)(
0 1 1
1 2 3

)(
0 1 2
1 2 3

)(
0 1 3
1 2 3

)(
0 1 4
1 2 3

)(
0 1 5
1 2 3

)(
0 1 6
1 2 3

)(
0 1 7
1 2 3

)(
0 1 0
1 2 4

)
(
1 1 0
1 2 3

)(
1 1 1
1 2 3

)(
1 1 2
1 2 3

)(
1 1 3
1 2 3

)(
1 1 4
1 2 3

)(
1 1 5
1 2 3

)(
1 1 6
1 2 3

)(
1 1 7
1 2 3

)(
1 1 0
1 2 4

)
(
0 1 0
2 2 3

)(
0 1 1
2 2 3

)(
0 1 2
2 2 3

)(
0 1 3
2 2 3

)(
0 1 4
2 2 3

)(
0 1 5
2 2 3

)(
0 1 6
2 2 3

)(
0 1 7
2 2 3

)(
0 1 0
2 2 4

)
(
0 2 0
1 2 3

)(
0 2 1
1 2 3

)(
0 2 2
1 2 3

)(
0 2 3
1 2 3

)(
0 2 4
1 2 3

)(
0 2 5
1 2 3

)(
0 2 6
1 2 3

)(
0 2 7
1 2 3

)(
0 2 0
1 2 4

)
(
1 2 0
1 2 3

)(
1 2 1
1 2 3

)(
1 2 2
1 2 3

)(
1 2 3
1 2 3

)(
1 2 4
1 2 3

)(
1 2 5
1 2 3

)(
1 2 6
1 2 3

)(
1 2 7
1 2 3

)(
1 2 0
1 2 4

)
(
0 2 0
2 2 3

)(
0 2 1
2 2 3

)(
0 2 2
2 2 3

)(
0 2 3
2 2 3

)(
0 2 4
2 2 3

)(
0 2 5
2 2 3

)(
0 2 6
2 2 3

)(
0 2 7
2 2 3

)(
0 2 0
2 2 4

)
(
0 3 0
1 2 3

)(
0 3 1
1 2 3

)(
0 3 2
1 2 3

)(
0 3 3
1 2 3

)(
0 3 4
1 2 3

)(
0 3 5
1 2 3

)(
0 3 6
1 2 3

)(
0 3 7
1 2 3

)(
0 3 0
1 2 4

)
(
1 3 0
1 2 3

)(
1 3 1
1 2 3

)(
1 3 2
1 2 3

)(
1 3 3
1 2 3

)(
1 3 4
1 2 3

)(
1 3 5
1 2 3

)(
1 3 6
1 2 3

)(
1 3 7
1 2 3

)(
1 3 0
1 2 4

)
(
0 3 0
2 2 3

)(
0 3 1
2 2 3

)(
0 3 2
2 2 3

)(
0 3 3
2 2 3

)(
0 3 4
2 2 3

)(
0 3 5
2 2 3

)(
0 3 6
2 2 3

)(
0 3 7
2 2 3

)(
0 3 0
2 2 4

)
(
0 4 0
1 2 3

)(
0 4 1
1 2 3

)(
0 4 2
1 2 3

)(
0 4 3
1 2 3

)(
0 4 4
1 2 3

)(
0 4 5
1 2 3

)(
0 4 6
1 2 3

)(
0 4 7
1 2 3

)(
0 4 0
1 2 4

)
(
1 4 0
1 2 3

)(
1 4 1
1 2 3

)(
1 4 2
1 2 3

)(
1 4 3
1 2 3

)(
1 4 4
1 2 3

)(
1 4 5
1 2 3

)(
1 4 6
1 2 3

)(
1 4 7
1 2 3

)(
1 4 0
1 2 4

)
(
0 4 0
2 2 3

)(
0 4 1
2 2 3

)(
0 4 2
2 2 3

)(
0 4 3
2 2 3

)(
0 4 4
2 2 3

)(
0 4 5
2 2 3

)(
0 4 6
2 2 3

)(
0 4 7
2 2 3

)(
0 4 0
2 2 4

)
(
0 0 0
1 3 3

)(
0 0 1
1 3 3

)(
0 0 2
1 3 3

)(
0 0 3
1 3 3

)(
0 0 4
1 3 3

)(
0 0 5
1 3 3

)(
0 0 6
1 3 3

)(
0 0 7
1 3 3

)(
0 0 0
1 4 3

)
(
1 0 0
1 3 3

)(
1 0 1
1 3 3

)(
1 0 2
1 3 3

)(
1 0 3
1 3 3

)(
1 0 4
1 3 3

)(
1 0 5
1 3 3

)(
1 0 6
1 3 3

)(
1 0 7
1 3 3

)(
1 0 0
1 4 3

)
(
0 0 0
3 2 3

)(
0 0 1
3 2 3

)(
0 0 2
3 2 3

)(
0 0 3
3 2 3

)(
0 0 4
3 2 3

)(
0 0 5
3 2 3

)(
0 0 6
3 2 3

)(
0 0 7
3 2 3

)(
0 0 0
4 2 3

)
(
0 0 1
1 2 3

)(
0 0 2
1 2 3

)(
0 0 3
1 2 3

)(
0 0 4
1 2 3

)(
0 0 5
1 2 3

)(
0 0 6
1 2 3

)(
0 0 7
1 2 3

)(
0 0 0
1 2 4

)(
0 0 0
1 2 3

)

