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Abstract

A 1-prefix normal word is a binary word with the property that no factor has
more 1s than the prefix of the same length; a 0-prefix normal word is defined
analogously. These words arise in the context of indexed binary jumbled
pattern matching, where the aim is to decide whether a word has a factor
with a given number of 1s and 0s (a given Parikh vector). Each binary word
has an associated set of Parikh vectors of the factors of the word. Using
prefix normal words, we provide a characterization of the equivalence class
of binary words having the same set of Parikh vectors of their factors.

We prove that the language of prefix normal words is not context-free
and is strictly contained in the language of pre-necklaces, which are prefixes
of powers of Lyndon words. We give enumeration results on pnw(n), the
number of prefix normal words of length n, showing that, for sufficiently
large n,

2n−4
√
n lgn ≤ pnw(n) ≤ 2n−lgn+1.

For fixed density (number of 1s), we show that the ordinary generating
function of the number of prefix normal words of length n and density d is
a rational function. Finally, we give experimental results on pnw(n), discuss
further properties, and state open problems.
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binary jumbled pattern matching, pre-necklaces, Lyndon words,
enumeration.

1. Introduction

A binary word is called 1-prefix normal if no factor (substring) has more
1s than the prefix of the same length. For example, 11010 is 1-prefix normal,
but 10110 is not. Similarly, a binary word is called 0-prefix normal if no
factor has more 0s than the prefix of the same length. When not further
specified, by prefix normal we mean 1-prefix normal. In [10], we gave an
algorithm for generating all prefix normal words of fixed length n. As we
will see later, to each binary word, a 1-prefix normal word and a 0-prefix
normal word can be associated in a unique way, which we will call its prefix
normal forms.

The Parikh vector of a binary word u is the pair (x, y), where x is the
number of 1s in u, and y is the number of 0s in u. The set of Parikh vectors
of factors of a word w is called the Parikh set of w. For binary words,
the problem of deciding whether a particular pair (x, y) lies in the Parikh
set of a word w is known as Binary Jumbled Pattern Matching (BJPM).
There has been much interest recently in the indexed version of this problem
(IBJPM), where an index for the Parikh set is created in a preprocessing
step, which can then be used to answer queries fast. The Parikh set can be
represented in linear space due to the following interval property of binary
strings: If w has k-length substrings with x1 resp. x2 occurrences of 1, where
x1 < x2, then it also has a k-length substring with y occurrences of 1, for
every x1 ≤ y ≤ x2. Thus the Parikh set can be represented by storing,
for every 1 ≤ k ≤ |w|, the minimum and maximum number of 1s in a
substring of length k. Much recent research has focused on how to compute
these numbers efficiently [14, 29, 30, 16, 2, 23, 22]. The problem has also
been extended to graphs and trees [22, 15], to the streaming model [27],
and to approximate indexes [16]. There is also interest in the non-binary
variant [20, 17, 11, 14, 7, 8, 26], as well as in reconstruction from the Parikh
multi-set of a string [1]. Applications in computational biology include SNP
discovery, alignment, gene clusters, pattern discovery, and mass spectrometry
data interpretation [4, 3, 5, 19, 33].

The current best construction algorithm for the linear size index for IB-
JPM runs in O(n1.864) time [13], for a word of length n. As we will see later,
computing the prefix normal forms of a word w is equivalent to creating an
index for the Parikh set of w. Currently, we know no faster computation



2 BASICS 3

algorithms for the prefix normal forms than already exist for the linear-size
index. However, should better algorithms be discovered, these would imme-
diately carry over to the problem of IBJPM.

It is worthwhile noting that some relevant sequences have made it into
the On-Line Encyclopedia of Integer Sequences (OEIS [35]): A194850 is the
number of prefix normal words of length n, A238109 is a list of prefix normal
words (over the alphabet {1, 2}), and A238110 is the maximum size of a class
of binary words of length n having the same prefix normal form.

The paper is organized as follows: Section 2 contains basic definitions
and results about prefix normal words; in particular that there are unique
0-prefix normal and 1-prefix normal words associated with every word, and
thus the set of words can be partitioned according to this association. In
Section 3 we consider the set of prefix normal words, giving several properties
and characterizations and showing that their language is not context free.
One of these properties is then used in Section 4, which is concerned with
counting the number of prefix normal words of a given length. Finally, the
paper concludes with some open problems in Section 5.

2. Basics

A binary word (or string) w = w1 · · ·wn over Σ = {0, 1} is a finite
sequence of elements wi ∈ Σ, for i = 1, . . . , n. Its length n is denoted by
|w|. We denote by Σn the set of words over Σ of length n, by Σ∗ = ∪n≥0Σn

the set of finite words over Σ, and the empty word by ε. Let w ∈ Σ∗. If
w = uv for some u, v ∈ Σ∗, we say that u is a prefix of w and v is a suffix
of w. A factor or substring of w is a prefix of a suffix of w. We denote
the set of factors of w by Fact(w). Let w = w1 · · ·wn ∈ Σ∗, then the word
w̃ = wnwn−1 · · ·w1 is called the reversal of w. A word w s.t. w = w̃ is called
a palindrome. A binary language is any subset L of Σ∗.

We denote by |w|1 the number of 1s in the word w; similarly, |w|0 is the
number of 0s in w. The Parikh vector of a word w over Σ is defined as p(w) =
(|w|0, |w|1). The Parikh set of w is Π(w) = {p(v) | v ∈ Fact(w)}, the set of
Parikh vectors of the factors of w. For example p(011) = p(101) = (1, 2) and
Π(011) = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)} = Π(101) ∪ {(0, 2)}.

Given a binary word w, we denote by P1(w, i) the number of 1s in the
prefix of length i and by pos1(w, i) the position of the ith 1 in the word
w, i.e. P1(w, i) = |w1 · · ·wi|1 and pos1(w, i) = min{k : |w1 · · ·wk|1 = i}.
The functions P0 and pos0 are defined similarly. Note that in the context of
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k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

F1 0 1 2 3 3 4 4 4 5 6 6 7 7 7 8 8 9 10 10 10 11 11 12
F0 0 1 2 3 3 3 4 4 5 5 6 6 7 7 7 8 8 9 9 10 10 10 10

Table 1: The sequences F1 and F0 for the word w = 1010011011000111001011.

succint indexing, these functions are frequently called rank and select, cf. [32]:
We have, for x = 0, 1, Px(w, i) = rankx(w, i) and posx(w, i) = selectx(w, i).

2.1. Prefix normal words
Definition 1 (Maximum-ones and maximum-zeros functions). Let w ∈
Σ∗. We define, for each 0 ≤ k ≤ |w|:

F1(w, k) = max{|v|1 | v ∈ Fact(w) ∩ Σk},

the maximum number of 1s in a factor of w of length k. When no confusion
can arise, we also write F1(k) for F1(w, k). The function F0(w, k) is defined
analogously by taking 0 in place of 1.

For a word w, we denote by F1(w) the function k 7→ F1(w, k) (and
similarly with other functions taking arguments w and k).

Example 1. Take w = 1010011011000111001011. In Table 1, we give the
values of F1 and F0 for w.

Definition 2 (Prefix normal words). A word w ∈ {0, 1}∗ is called 1-
prefix normal if P1(w) = F1(w). It is called 0-prefix normal if P0(w) = F0(w).
In other words, w is 1-prefix normal (0-prefix normal) if and only if it does
not have any factors with more 1s (more 0s) than the prefix of the same
length. When not specified, then by prefix normal we mean 1-prefix normal.

Example 2. The word w = 1100110 is 1-prefix normal, but the word w1 =
11001101 is not 1-prefix normal because the factor 1101 has three 1s, while
the prefix of length 4 has only two. Also, w is not 0-prefix normal since every
0-prefix normal word, except those of the form 1∗, must start with a 0.

We will soon see that it is possible to find, for every word w, a 1-prefix
normal word which has the same maximum-ones function F1 as w; and
analogously for 0. These will be called the prefix normal forms of w. To this
end, we define the following equivalence; we will then see that equivalent
words have the same prefix normal form.
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Definition 3 (Prefix equivalence). Two words v, w ∈ Σ∗ are called 1-
prefix equivalent if F1(v) = F1(w). They are called 0-prefix equivalent if
F0(v) = F0(w).

Example 3. The words 11010, 10110, 01101, 01011 are all 1-prefix equiva-
lent, but not 0-prefix equivalent. When considering 0, we have that {01011,
11010, 10101} constitute one equivalence class, and {01101, 10110} another
one (note that in the first class, there is an additional word not present in
the 1-prefix equivalence class).

Next we will show that every equivalence class contains exactly one prefix
normal word (Theorem 2), which can thus be used as its representative. This
will allow us to associate two prefix normal words to every word w (Definition
4). First we need the following lemma.

Lemma 1. Let w ∈ Σ∗. Then, for all 0 ≤ i ≤ j ≤ |w|: F1(j) − F1(i) ≤
F1(j − i).

Proof. Observe that if v = yz, then |v|1 ≤ F1(|y|) + F1(|z|). Thus if
v is a length j word such that |v|1 = F1(j) and |y| = i, then F1(j) ≤
F1(i) + F1(j − i). 2

Theorem 2. For every w ∈ Σ∗ there is a unique 1-prefix normal word w′

such that F1(w′) = F1(w); similarly, there is a unique 0-prefix normal word
w′′ such that F0(w′′) = F0(w).

Proof. We only give the proof for w′. The construction of w′′ is analogous.
First note that if the 1-prefix normal words u and v are 1-prefix equiv-

alent, then necessarily u = v. This holds because the prefix function P1

determines the word, i.e. P1(u) = P1(v) implies u = v for any u, v. But since
u and v are 1-prefix normal words, their prefix and maximum-ones functions
coincide, and since they are 1-prefix equivalent, we have P1(u) = F1(u) =
F1(v) = P1(v). This proves uniqueness.

Next, we will construct w′, given w. It is easy to see that for 1 ≤ k ≤ |w|,
one has either F1(w, k) = F1(w, k − 1) or F1(w, k) = 1 + F1(w, k − 1). Now
define the word w′ by

w′k =

{
1 if F1(w, k) = 1 + F1(w, k − 1)

0 if F1(w, k) = F1(w, k − 1)

for every 1 ≤ k ≤ |w|.
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By construction, we have P1(w′, k) = F1(w, k) for every 1 ≤ k ≤ |w|. We
still need to show that P1(w′, k) = F1(w′, k) for all k. This will prove that
w′ is 1-prefix normal, as well as that it is 1-prefix equivalent to w.

By definition, P1(w′, k) ≤ F1(w′, k) for all k. Now let v ∈ Fact(w′),
|v| = k, and v = wi+1 · · ·wj . Then |v|1 = P1(w′, j)− P1(w′, i) = F1(w, j)−
F1(w, i) ≤ F1(w, j−i) = P1(w′, j−i) = P1(w′, k), where the inequality holds
by Lemma 1. We have thus proved that F1(w′, k) ≤ P1(w′, k), and hence w′

is 1-prefix normal. 2

2.2. Normal forms and Parikh sets
Definition 4 ((Prefix) normal forms). Let w ∈ Σ∗. Then we denote by
PNF1(w) the unique 1-prefix normal word which is 1-prefix equivalent to w,
and by PNF0(w) the unique 0-prefix normal word which is 0-prefix equivalent
to w. We refer to PNF1(w) and PNF0(w) as the prefix normal form w.r.t. 1
(resp. w.r.t. 0) or just normal form w.r.t. 1 (resp. w.r.t. 0) of w.

Example 4. Let w = 1010011011000111001011. The normal forms of w
are the words

PNF1(w) = 1110100110100101100101,

PNF0(w) = 0001101010101101010111.

Refer to Example 1 for the values of the two functions F1(w) and F0(w).

The operators PNF1 and PNF0 are idempotent operators; i.e., if u =
PNFx(w) then PNFx(u) = u, for x = 0, 1. This gives us an equivalent
definition of prefix normality: a word w is x-prefix normal if PNFx(w) = w.
Also, for any w ∈ Σ∗ and x ∈ Σ, it holds that PNFx(w) = PNFx(w̃). Note
further that if the equivalence class of w contains only one element, then w
is necessarily prefix normal and a palindrome. In Table 2 we list all eight
1-prefix equivalence classes for words of length 4.

The normal forms of a word allow us to determine the Parikh vectors of
the factors of the word, as we will show in Theorem 4. We first recall the
following lemma from [14] (which also appears to be folklore). We say that
a Parikh vector q occurs in a word w if w has a factor v with p(v) = q.

Lemma 3 (Interval Lemma [14]). Let w ∈ Σ∗. Fix 1 ≤ k ≤ |w|. If the
Parikh vectors (x1, k − x1) and (x2, k − x2) both occur in w, then so does
(y, k − y) for any x1 ≤ y ≤ x2.
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PNF1 class cardinality

1111 {1111} 1
1110 {1110, 0111} 2
1101 {1101, 1011} 2
1100 {1100, 0110, 0011} 3
1010 {1010, 0101} 2
1001 {1001} 1
1000 {1000, 0100, 0010, 0001} 4
0000 {0000} 1

Table 2: The sets of 1-prefix equivalent words of length 4.

The lemma can be proved with a simple sliding window argument, ex-
ploiting the fact that when a fixed size window is shifted by one, then the
number of 1s in the window changes by at most one.

Theorem 4. Let w,w′ be words over Σ. Then Π(w) = Π(w′) if and only if
PNF1(w) = PNF1(w′) and PNF0(w) = PNF0(w′).

Proof. Let f1(w, k) denote the minimum number of 1s in a factor of w of
length k. As a direct consequence of Lemma 3, we have that for a Parikh vec-
tor q = (x, y), q ∈ Π(w) if and only if f1(w, x+ y) ≤ x ≤ F1(w, x+ y). Thus
for two words w,w′, we have Π(w) = Π(w′) if and only if F1(w) = F1(w′)
and f1(w) = f1(w′). It is easy to see that for all k, f1(w, k) = k − F0(w, k),
thus the last statement is equivalent to F1(w) = F1(w′) and F0(w) = F0(w′).
This holds if and only if PNF1(w) = PNF1(w′) and PNF0(w) = PNF0(w′),
and the claim is proved. 2

Define I(w) = {(P0(w, k), P1(w, k)) | 0 ≤ k ≤ |w|}, the set of Parikh
vectors of all prefixes of w. The following lemma is immediate.

Lemma 5. For all w ∈ Σ∗,

Π(w) =

n⋃
i=1

I(wi · · ·wn).

There is an interesting geometrical way to view Lemma 5 which we de-
scribe now. Imagine each Parikh pair as the coordinates of a point in the
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Euclidean plane that has been rotated clockwise π/4 radians. Each word w
can be interpreted as a polygonal path in this plane going up and to the right
for each 1 (↗) or down and to the right for each 0 (↘), for each successive bit
of w. To obtain Π(w) imagine grabbing the polygonal path for w and pulling
it one step at a time through the origin, keeping track of the integer lattice
points that are hit after each pull (and ignoring the stuff to the left of the
origin). The normal forms PNF1(w) and PNF0(w) are obtained by forming
polygonal paths starting at the origin, and connecting the uppermost and
the lowermost points of the region, respectively.

w

PNF1(w)

PNF0(w)

1s

0s

1

1

2

2

3

3

Figure 1: The word w = 1010011011000111001011 (dark line), its normal forms
PNF1(w) = 1110100110100101100101 and PNF0(w) = 0001101010101101010111 (lighter
lines); the region between the two is the Parikh set of w; e.g. w has a substring containing
5 ones and 6 zeros (black dot). Note that the axes giving the number of 0s and 1s are
rotated by 45 degrees clockwise.

2.3. Indexing for binary jumbled pattern matching
Theorem 4 is relevant for the problem known as Indexed Binary Jumbled

Pattern Matching, which has attracted much interest recently. Recall that
a Parikh vector over {0, 1} is a multiplicity vector of a string, i.e. it has
non-negative integer entries.

Indexed Binary Jumbled Pattern Matching (IBJPM)
Given a string w of length n over {0, 1}, create an index which
allows fast answers to queries of the following form:
Input: a Parikh vector q,
Output: return yes if q occurs in Π(w), and no otherwise.

For 1 ≤ k ≤ n, let f1(w, k) be the minimum number of 1s in a factor
of length k, and F1(w, k), as before, the maximum number of 1s in a factor
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k 0 1 2 3 4 5 6 7
F1(w, k) 0 1 2 2 3 3 3 4
f1(w, k) 0 0 0 1 2 2 3 4

Table 3: The maximum and minimum number of 1s for the the word w = 1001101.

k 0 1 2 3 4 5 6 7
F1(w, k) 0 1 2 2 3 3 3 4
F0(w, k) 0 1 2 2 2 3 3 3

Table 4: The maximum number of 1s and 0s for the the word w = 1001101. The normal
forms of w are PNF1(w) = 1101001 and PNF0(w) = 0011011.

of length k. It follows from Lemma 3 that the answer for query q = (x, y)
is yes if and only if F1(w, x + y) ≥ x ≥ f1(w, x + y). Therefore, it suffices
to store, for every 1 ≤ k ≤ n, the two numbers F1(w, k) and f1(w, k), and
queries can be answered in constant time. The size of this data structure is
O(n).

All current solutions for IBJPM are based on this observation. The crux
is how to construct this linear size data structure. The construction time of
the index has steadily decreased since its first introduction: from O(n2) [14]
to O(n2/ log n) [6, 29], to O(n2/ log2 n) in the word RAM-model [30], to
n2/2Ω(logn/ log logn)1/2 [24]. The fastest solution at present is due to Chan
and Lewenstein and has running time O(n1.859) [13].

Normal forms are in effect an encoding of this linear size index. We have
already seen that the F -function can be viewed as a binary string, namely
PNF1(w). We have observed in the proof of Theorem 4 how the function
f1(w) is determined by F0(w) and thus also by PNF0(w), thus we have shown
the following lemma.

Lemma 6. The answer for an IBJPM query q = (x, y) is yes if and only if
P1(PNF1(w), x+ y) ≥ x ≥ P1(PNF0(w), x+ y).

Note that P1 can be computed in constant time with constant time rank-
queries on bit vectors, using only o(n) bits of extra space [31, 18].

Example 5. Let w = 1001101. Then the linear size data structure is given
in the Table 3, and the F1 and F0 functions in Table 4.

At present, no faster computation of the normal forms is known than the
algorithms cited above for the IBJPM problem. But the connection shown
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here implies that, should a fast normal form computation be found, it would
immediately translate into a new solution for IBJPM.

3. The language of prefix normal words

In this section, we take a closer look at prefix normal words. We give
several equivalent characterizations of prefix normality, explore some prop-
erties of prefix normal words, and then look at the language of prefix normal
words. We denote by LPN1 ⊂ Σ∗ the language of 1-prefix normal words,
and by LPN0 ⊂ Σ∗ the language of 0-prefix normal words. Note that these
are exactly complemented, i.e. replacing every 1 by a 0 and vice versa, in
each word of LPN1, yields LPN0. Therefore, every result about LPN1 has
an equivalent formulation for LPN0, as well. Recall that whenever not fur-
ther specified, we refer to 1-prefix normality. In Section 3.2 only, we will
talk about 0-prefix normal words, and we will show that LPN0 is strictly
contained in the language of pre-necklaces, when adopting the usual order
0 < 1 on the alphabet.

3.1. General observations about prefix normal words
We start with several characterizations of prefix normal words.

Proposition 7. Let w ∈ Σ∗. The following properties are equivalent:

1. w is a prefix normal word;
2. ∀i, j where 0 ≤ i ≤ j ≤ |w|, we have P1(j)− P1(i) ≤ P1(j − i);
3. ∀v ∈ Fact(w) such that |v|1 = i, we have |v| ≥ pos1(i);
4. ∀i, j such that i + j − 1 ≤ |w|1, we have pos1(i) + pos1(j) − 1 ≤

pos1(i+ j − 1).

Proof. (1) ⇒ (2). Follows from Lemma 1, since P1(w) = F1(w).
(2) ⇒ (3). Assume otherwise. Then there exists v ∈ Fact(w) s.t. |v| <

pos1(k), where k = |v|1. Let v = wi+1 · · ·wj , thus j − i = k. Then P1(j) −
P1(i) = k. But P1(j − i) = P1(|v|) ≤ k − 1 < k = P1(j) − P1(i), a
contradiction.

(3) ⇒ (4). Again assume that the claim does not hold. Then there
are i, j s.t. pos1(i + j − 1) < pos1(i) + pos1(j) − 1. Let k = pos1(j) and
l = pos1(i + j − 1) and define v = wk · · ·wl. Then v has i many 1s. But
|v| = pos1(i+j−1)−pos1(j)+1 < pos1(i)+pos1(j)−1−pos1(j)+1 = pos1(i),
in contradiction to (3).
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(4) ⇒ (1). Let v ∈ Fact(w), |v|1 = i. We have to show that P1(|v|) ≥ i.
This is equivalent to showing that pos1(i) ≤ |v|. Let v = wl+1 · · ·wr, thus
P1(r)− P1(l) = i. Let j = P1(l) + 1, thus the first 1 in v is the j’th 1 of w.
Note that we have l < pos1(j) and r ≥ pos1(i+ j − 1). By the assumption,
we have pos1(i) ≤ pos1(i+ j − 1)− pos1(j) + 1 ≤ r − l = |v|. 2

Next we formulate a characterization of the prefix normal property that
will be useful in the enumeration of fixed-length prefix normal words (Sec-
tion 4).

Lemma 8. Let w ∈ 1Σ∗. For some sequence of positive integers r1, r2, . . .,
rd−1 we can write w = 10r1−110r2−1 · · · 10rd−1. The word w is prefix normal
if and only if the following inequalities hold.

r1 ≤ rj j = 2, 3, . . . , d− 1
r1 + r2 ≤ rj + rj+1 j = 2, 3, . . . , d− 2

...
...

r1 + r2 + · · ·+ rd−2 ≤ rj + rj+1 + · · ·+ rd−1 j = 2

Proof. Note that for k = 1, 2, . . . d − 1, we have pos1(k) = 1 +
∑k−1

j=1 rj .
The statement of the lemma then follows by property (4) of Proposition 7.
2

We now give some simple facts about the language LPN1.

Proposition 9. Let LPN1 be the language of prefix normal words.

1. LPN1 is prefix-closed, that is, any prefix of a word in LPN1 is a word
in LPN1.

2. If w ∈ LPN1, then any word of the form 1kw or w0k, k ≥ 0, also
belongs to LPN1.

3. Let |w|1 < 3. Then w ∈ LPN1 iff either w = 0n for some n ≥ 0 or the
first letter of w is 1.

4. Let w ∈ Σ∗. Then there exist infinitely many v ∈ Σ∗ such that vw ∈
LPN1.

Proof. The claims 1., 2., 3. follow easily from the definition. For 4., note
that for any n ≥ |w|, the word 1nw belongs to LPN1. 2

We now deal with the question of how a prefix normal word can be
extended to the right into another prefix normal word.
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Lemma 10. Let w ∈ LPN1. Then w1 ∈ LPN1 if and only if for every
0 ≤ k < |w| the suffix of w of length k has less 1s than the prefix of w of
length k + 1.

Proof. Note that for all 1 ≤ k ≤ |w|, P1(w1, k) = P1(w, k). Now if w1 ∈
LPN1, then for the k-length suffix u of w: |u|1 < |u1|1 ≤ P1(w1, k + 1) =
P1(w, k + 1). Conversely, let u be a factor of w1. If u is a factor of w, then
|u|1 ≤ P1(w, |u|) = P1(w1, |u|). Else u = u′1, with u′ a suffix of w, and
|u|1 = |u′|1 + 1 < P1(w, |u′|+ 1) + 1 = P1(w1, |u|) + 1 = P1(w1, |u|) + 1, and
thus |u|1 ≤ P1(w1, |u|). Therefore, w1 ∈ LPN1. 2

We close this section by proving that LPN1 is not context-free.

Theorem 11. LPN1 is not context-free.

Proof. Recall that the intersection of a CFL with a regular language is
a CFL. We will show that L′ = LPN1 ∩ 1∗01∗01∗ is not a CFL by using
the pumping lemma. Let n be the constant of the pumping lemma and
let z = 1n01n01n ∈ L′. Let z = uvwxy be the usual factorization of the
pumping lemma, where we may assume that |vx| ≥ 1, |vwx| ≤ n, and for all
i ≥ 0 we have uviwxiy ∈ L′. Clearly vx can not contain 0s. If vx contains
some 1s from the first block of 1s in z, then taking i = 0 give a contradiction
since the third block of 1s is too long. If vx contains no 1s from the first
block of 1s then taking i = 2 makes the second or third block of 1s too long.

2

3.2. Connection with Lyndon words and pre-necklaces
In this section we explore the relationship between the language LPN0

of prefix normal words w.r.t. 0 and some known classes of words defined by
means of lexicographic properties. Note that in this section, when referring
to prefix normality, we mean with respect to 0. We assume the usual order
0 < 1 on the alphabet.

A Lyndon word is a word which is lexicographically strictly smaller than
any of its proper non-empty suffixes. Equivalently, w is a Lyndon word if it
is the strictly smallest, in the lexicographic order, among its conjugates, i.e.,
for any factorization w = uv, with u, v non-empty words, one has that the
word vu is lexicographically greater than w [28]. A word w is a power if it
can be obtained by concatenating two or more copies of another word, i.e.
if there exists a non-empty v and a k > 1 such that w = vk. A word that
is not a power is called primitive. Note that, by definition, a Lyndon word
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is primitive. Let us denote by Lyn the set of Lyndon words over Σ. One
has that Lyn 6⊆ LPN0 and LPN0 6⊆ Lyn. For example, the word w = 0101
belongs to LPN0 but is not a Lyndon word since it is not primitive. An
example of a Lyndon word which is not in normal form is w = 00110100111.

A necklace is a Lyndon word or a power of a Lyndon word. A pre-necklace
is a prefix of a necklace [34] (also called preprime word [25], or sesquipower or
fractional power of a Lyndon word [12]). Let us denote by PL the language
of pre-necklaces. The next proposition shows that every prefix normal word
different from a power of the letter 1 is a prefix of a Lyndon word.

Proposition 12. Let w ∈ LPN0 with |w|0 > 0. Then the word w1|w| is a
Lyndon word.

Proof. We have to prove that every rotation of w′ = w1|w| is strictly greater
than w′. If the rotation starts at a position within the second half of w′,
then this is clearly true, since then its first character is 1, while w′ starts
with a 0, w being a prefix normal word containing at least one 0. So let v
be a suffix of w′ of length at least |w|+ 1, and let u be the longest common
prefix of v and w′. If u = v, then v is a border (both a prefix and suffix) of
w′, of length more than half its length, and thus w′ has a period of length
i = |w′|− |v| < |w|, i.e., every character is the same as the one which follows
i positions later. Since the second half of w′ consists of 1s only, this implies
that so does the first half, contrary to our assumption. So v is not a prefix
of w′, and therefore u is followed by two different characters in v and in w′.
Let us write v = v′1|w|. If |u| ≥ |v′|, then u1 is a prefix of v, implying that
u0 is a prefix of w′, and thus w′ is smaller than v. If |u| < |v′|, assume that
u0 is a prefix of v and u1 of w′. Then w has a substring (u0) which has more
0s than the prefix of the same length (u1), a contradiction to w being prefix
normal. Therefore, again we have that w′ is smaller than v. 2

We can now state the following result:

Theorem 13. Every prefix normal word is a pre-necklace.

Proof. If w is of the form 1n, n ≥ 1, then w is a power of the Lyndon word
1, hence it is a pre-necklace. Otherwise, w contains at least one 0, thus by
by Proposition 12, it is the prefix of a Lyndon word. 2

The languages LPN0 and PL, however, do not coincide. A shortest word
in PL that does not belong to LPN0 is w = 00110100. Below we give the table
of the number of words in LPN0 of each length n ≤ 16, compared with that
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of pre-necklaces. Both sequences are listed in the On-Line Encyclopedia of
Integer Sequences [35] (sequences A062692 and A194850), where the reader
can find further terms.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

LPN0 ∩ Σn 2 3 5 8 14 23 41 70 125 218 395 697 1273 2279 4185 7568
PL ∩ Σn 2 3 5 8 14 23 41 71 127 226 412 747 1377 2538 4720 8800

Table 5: The number of words in LPN0 and in PL for each length up to 16.

4. Enumeration results about prefix normal words

Let pnw(n) denote the number of prefix normal words of length n. It
is an easy consequence both of Lemma 8 and of Proposition 9 that pnw(n)
grows exponentially. To see this, note that the conditions of Lemma 8 are
always satisfied if r1 ≤ r2 ≤ . . . ≤ rk, and thus the number of partitions of
n is a lower bound for pnw(n). On the other hand, Proposition 9 states that
for all w, 1|w|w is prefix normal, so pnw(2n) ≥ 2n.

In Table 5, we give pnw(n) for n up to 16, the sequence for n up to
50 can be found in the On-Line Encyclopedia of Integer Sequences [35],
sequence A194850. In Fig. 2 we show the growth ratio for small values of n.
Two interesting phenomena can be observed: the values seem to approach 2
slowly, i.e., the number of prefix normal words almost doubles as we increase
the length by 1. Second, the values show on oscillation pattern between even
and odd values.

Figure 2: The value of pnw(n)/pnw(n − 1) for prefix normal words w of length n, for
n ≤ 50 (loglinear scale).
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4.1. Asymptotic bounds on the number of prefix normal words
We give lower and upper bounds on the number pnw(n) of prefix normal

words of length n.

Theorem 14. For n sufficiently large

pnw(n) ≥ 2n−4
√
n logn. (1)

Proof. Let k = k(n) be a positive integer to be fixed later. First we only
consider words whose length, n, is a multiple of 2k, whose first 4k letters are
1s, and in each of the following blocks of length 2k, there are exactly k 1s
and k 0s. The number of such words is

(
2k
k

)(n−4k)/2k
and by construction,

they are all prefix normal.
We use the inequality

(
2k
k

)
≥ 22k/(2

√
k) and substitute k =

√
n log n in

the third step.(
2k

k

)(n−4k)/2k

≥
(

22k

2
√
k

)n/(2k)−2

=
2n

(2
√
k)n/(2k)

4k

24k

=
2n

24
√
n logn

(2
√
k)1−n/(2k)

≥ 2n

24
√
n logn

for sufficiently large n.

The last inequality follows from the fact that limn→∞(2
√
k)1−n/(2k) = 0 if

k =
√
n log n. 2

Next we show how to obtain an upper bound on pnw(n), considering the
length of the first 1-run.

Theorem 15. For n sufficiently large, we have pnw(n) ≤ 2n−lgn+1.

Proof. This will follow from enumeration results about pre-necklaces since
every 0-prefix normal word is a pre-necklace. Let PL(n) be the number of
pre-necklaces of length n. In [34] it is shown (top of page 424) that

PL(n) ≤
n∑

i=1

2i

i
+

n∑
i=1

√
2i.
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They also show that (Lemma 5 of [34])

lim
n→∞

n

2n

n∑
i=1

2i

i
= 2.

Thus, for large enough n, and fixed ε > 0,

PL(n) ≤ (1 + ε)
n∑

i=1

2i

i
≤ (1 + 2ε)2n/n ≤ 2n−lgn+1.

2

4.2. Exact formulas for words with fixed density.
For a binary word w, its density is defined as the number of 1s in w, i.e.

as |w|1. If we count the number of prefix normal words of length n with a
given fixed number of 1s, we get exact results in a few cases. Let us denote
by pnw(n, d) the cardinality of the set {w ∈ LPN1 ∩ Σn | |w|1 = d}.

Proposition 16. For d = 0, 1, . . . , 6, we have the generating functions fd(x) =∑∞
n=0 pnw(n, d)xn:

f0(x) =
1

1− x
f1(x) =

x

1− x

f2(x) =
x2

(1− x)2

f3(x) =
x3

(1− x2)(1− x)2

f4(x) =
x4

(1− x3)(1− x)3

f5(x) =
x5(1 + x+ x2)

(1− x4)(1− x2)2(1− x)2

f6(x) =
x6(1 + x+ x2 + x3)

(1− x5)(1− x3)(1− x2)(1− x)3

Proof. For d ≤ 3, one easily checks pnw(n, 0) = pnw(n, 1) = 1, pnw(n, 2) =
n− 1 and pnw(n, 3) = b(n+ 1)2/4c, giving the desired functions.
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For d = 4, we calculate the number of positive solutions r1, r2, r3, r4 to
the inequalities in Lemma 8. Let q1 = r1 − 1, q4 = r4 − 1, d2 = r2 − r1 and
d3 = r3 − r1. We are counting the nonnegative solutions of

3q1 + d2 + d3 + q4 + 4 = n,

which give generating function f4(x) by equating the coefficients of xn in the
expansion of the following product:

(1 + x3 + x6 + · · · )(1 + x+ x2 + · · · )3 · x4 (2)

=
x4

(1− x3)(1− x)3
. (3)

More complicated but manageable case analysis leads to the results for d = 5
and 6. 2

Similar formulas can be derived for pnw(n, n − d) for small values of d.
Unfortunately, no clear pattern is visible for fd(x) that we could use for
calculating pnw(n).

The inequalities in Lemma 8 define linear diophantine equations. The
general theory for enumerating solutions of such equations [36] guarantees
that there is a closed rational function form for the generating functions with
the observed denominators, in [37] there are algorithms for calculating these
functions (which, however are not efficient enough to get results for much
larger values of d). Above, we only discussed the first few simple cases. We
did not succeed in extending our list of concrete formulas for the rational
functions fd for d > 6 using automated computation.

4.3. Exact formulas for words with a fixed prefix.
We now fix a prefix w and give enumeration results on prefix normal

words with prefix w. Our first result indicates that we have to consider each
w separately.

Definition 5. If w is a binary word, let Lext(w) = {w′ : ww′ is prefix normal},
and Lext(w,m) = Lext(w) ∩Σm. Let ext(w,m, d) = |{w′ : ww′ is prefix nor-
mal of length |w|+m and density d}|, and ext(w,m) = |Lext(w,m)|.

Lemma 17. Let v, w ∈ 1{0, 1}∗ be both prefix normal. If v 6= w then
Lext(v) 6= Lext(w).
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Proof. We may assume |v| ≤ |w|.
First case. v is not a prefix of w. Let i denote the first position where they
differ. If vi = 1 and wi = 0, then for u = 0|w|v we have that vu is prefix
normal while wu is not. If vi = 0 and wi = 1, then let u = 0|w|w. We have
that vu is not prefix normal but wu is.
Second case. v is a prefix of w. If w has a 1 in any position after |v|, then
we can proceed as in the first case. The remaining case is when w = v0m for
some m > 0. If vv is prefix normal, then so must be vvv, but v0mvv cannot
be. Otherwise, let k ≥ 1 be the smallest integer (which is sure to exist) such
that v0kv is prefix normal. Then v0k−1v is not prefix normal while w0k−1v
is. This completes the proof. 2

We were unable to prove that the growth of these two extension languages
also differ.

Conjecture 18. Let v, w ∈ 1{0, 1}∗ be both prefix normal. If v 6= w then
the infinite sequences (ext(v,m))m≥1 and (ext(w,m))m≥1 are different.

The values ext(w,m, d) seem hard to analyze. We give exact formulas for
a few special cases of interest. Using Lemma 8, it is possible to give formulas
similar to those in Proposition 16 for ext(w,m, d) for fixed w and d. We only
mention one such result.

Lemma 19. For 1 ≤ d ≤ n we have ext(10, n+ d− 3, d) = pnw(n, d).

Proof. Consider the following map: let w be an arbitrary word of length
n and density d > 1, starting with 1. Except for the starting 1, insert a 0
right before each subsequent occurrence of 1. This gives a word w′ of length
n + d − 1, starting with 10 that does not contain the factor 11. Clearly,
the map is injective and all words of length n + d − 1 starting with 10 and
containing no factor 11 are obtained this way. In order to prove the lemma,
we only need to show that prefix normality is preserved by the map and its
inverse. For this, observe that there exists a prefix (resp. factor) of w of
length k containing r 1s if and only if there exists a prefix (resp. factor) of
w′ of length k + r − 1 containing r 1s. 2

The following lemma lists exact values for ext(w, |w|) for some infinite
families of words w. Here F (n) denotes the nth Fibonacci number, i.e.
F (1) = F (2) = 1 and F (n+ 2) = F (n+ 1) + F (n).

Lemma 20. For all values of n where the exponents are nonnegative, we
have the following formulas:
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ext(0n, n) = 1

ext(1n, n) = 2n

ext(1n−10, n) = 2n − 1

ext(1n−201, n) = 2n − 5

ext(1n−200, n) = 2n − (n+ 1)

ext((10)
n
2 , n) = F (n+ 2) if n is even

ext((10)
n−1
2 1, n) = F (n+ 1) if n is odd

ext(10n−21, n) = 3

ext(10n−1, n) = n+ 1

Proof. For w = 1n, w = 1n−10, w = 1n−201 and w = 1n−200, it is easy to
count those extensions that fail to give prefix normal words: None for w = 1n;
only one for w = 1n−10, namely 1n−101n; for w = 1n−201, those extensions
which contain a 1-run of length n − 1, namely 1n−2 followed by any two
characters, or 01n−1; and for w = 1n−200, those that contain at least n− 1
many 1s in the second half, i.e. with second half 1n, 1n−10, 1n−201, . . . , 01n−1.

Similarly, for w = 10n−21, w = 10n−1 and w = 0n, counting the ex-
tensions that yield prefix normal words gives the result in a straightforward
way.

Let n be even. For w = (10)
n
2 , note that ww′ is prefix normal if and

only if w′ avoids 11. The number of such words is known to equal F (n+ 2).
For n odd, the argument is similar, with the prefix of interest, w1, being of
length n+ 1, hence the previous Fibonacci number. 2

4.4. Some experimental results about enumeration of prefix normal words
We consider extensions of prefix normal words by a single symbol to the

right. It turns out that this question has implications for the enumeration
of prefix normal words.

Definition 6 (Extension-critical words). We call a prefix normal word
w extension-critical if w1 is not prefix normal. Let ecrit(n) denote the num-
ber of extension-critical words in LPN1 ∩ Σn.

The lemma below applies to any family of words B for which ε ∈ B and
such that x ∈ B implies x0 ∈ B.
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Lemma 21. For n ≥ 1 we have

pnw(n) = 2pnw(n−1)− ecrit(n−1) = pnw(n−1)

(
2− ecrit(n− 1)

pnw(n− 1)

)
. (4)

From this it follows that

pnw(n) = 2

n−1∏
i=1

(
2− ecrit(i)

pnw(i)

)
. (5)

Proof. The number of prefix normal words of length n ending in 0 is
pnw(n− 1), that of prefix normal words of length n ending in 1 is pnw(n−
1) − ecrit(n − 1), hence we have (4). The product form follows if we use
pnw(n) = pnw(1)

∏n−1
i=1

pnw(i+1)
pnw(i) . 2

Lemma 22. For n going to infinity, lim inf ecrit(n)/pnw(n) = 0.

Proof. Assume that there exist an integer N0 and a real number ε > 0
such that for n ≥ N0 we have ecrit(n)/pnw(n) > ε. Then by (5) we would
have pnw(n) = O((2− ε)n), contradicting Theorem 14. 2

We conjecture that in fact the ratio of extension-critical words converges
to 0. We study the behavior of ecrit(n)/pnw(n) for n ≤ 49. The left plot
in Fig. 3 shows the ratio of extension-critical words for n ≤ 49. These
data support the conjecture that the ratio tends to 0. Interestingly, the
values decrease monotonically for both odd and even values, but we have
ecrit(n + 1)/pnw(n + 1) > ecrit(n)/pnw(n) for even n. We were unable to
find an explanation for this.

The right plot in Fig. 3 shows the ratio of extension-critical words mul-
tiplied by n/ log n. Apart from a few initial data points, the values for even
n increase monotonically and the values for odd n decrease monotonically,
and the values for odd n stay above those for even n.

Conjecture 23. Based on empirical evidence, we conjecture the following:

ecrit(n) = pnw(n)Θ(log n/n), (6)

pnw(n) = 2n−Θ((logn)2). (7)

Note that the second estimate follows from the first one by (5).
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Figure 3: The ratio ecrit(n)
pnw(n)

(left), and the value ecrit(n)
pnw(n)

· n
lnn

(right).

5. Conclusion and open problems

We introduced two new normal forms of binary words, the prefix normal
forms with respect to 1 and 0, and showed how they arise naturally in the
investigation of Parikh sets of binary words and jumbled pattern matching.
We introduced prefix normal words (w.r.t. 1 or 0), words which equal their
own normal form, and discussed several properties of these words. We showed
results about the language of prefix normal words, among these that 0-
prefix normal are strictly contained in the language of pre-necklaces. We
also discussed extensively the growth behaviour of the number of fixed-length
prefix normal words.

Many open problems remain. It would be nice to have exact, or at least
more precise asymptotic formulas for the enumeration of prefix normal words.
Related to the enumeration, the strange oscillating behavior in Figures 2
and 3 between odd and even values calls for an explanation.

Another question is testing binary words for prefix normality. Currently,
no faster method is known (in worst-case running time), then calculating the
normal form.

It would be an interesting direction to explore the connection between
the normal forms w.r.t. 1 and 0, for example how many different values can
PNF0(w) take (and what can we say about them) if we fix PNF1(w).

Finally, prefix normality could also be defined over non-binary alphabets.
In this case however, we do not obtain an index directly applicable to jumbled
pattern matching. Combinatorial or formal language theoretic investigation
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and enumeration of prefix normal words for general alphabets is subject of
future work.
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