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Abstract

A weak order is a way n competitors can rank in an event, where ties are allowed. A weak order
can also be thought of as a relation on {1, 2, . . . , n} that is transitive and complete. We provide the first
efficient algorithms to construct universal cycles for weak orders by considering both rank and height
representations. Each algorithm constructs the universal cycles in O(n) time per symbol using O(n)
space.

1 Introduction

An ordering of how n competitors can rank in an event, where ties are allowed, is known as a weak order. As
an example, the times for the 100m men’s butterfly final in the 2016 Summer Olympics were:

Lane Name Country Time Rank
1 Sadovnikov RUS 51.84 8
2 Phelps USA 51.14 2
3 Li CHN 51.26 5
4 Schooling SGP 50.39 1
5 Le Clos RSA 51.14 2
6 Cseh HUN 51.14 2
7 Shields USA 51.73 7
8 Metella FRA 51.58 6

The result was a three way tie for the silver medal. No bronze was awarded. This outcome corresponds to
the weak ordering 82512276 that represents the rank of each competitor. Let Wr(n) denote the set of weak
orders in a competition with n competitors (teams) under this rank representation. For example, when n = 3,
the 13 different weak orders are

Wr(3) = {111, 113, 131, 311, 122, 212, 221, 123, 132, 213, 231, 312, 321}.

The number of weak orders of order n are also known as the the ordered Bell numbers or Fubini numbers and
their enumeration sequence is A000670 in the Online Encyclopedia of Integer Sequences [9]. The first six
terms in this sequence starting at n = 1 are 1, 3, 13, 75, 541, and 4683 respectively.

Given a set of strings S of length n, a universal cycle for S is a sequence of length |S| that when con-
sidered cyclicly contains each string in S as a substring. Note this definition implies that each string in S
will appear as a substring exactly once. As an example, a universal cycle for Wr(3) is 1113212213123. The
existence of universal cycles for Wr(n) was proved by Leitner and Godbole [8] using the terminology ranked
permutations. Using a height-based representation for weak orders defined later in this section, Diaconis and
Graham [2] discuss the existence of universal cycles using the terminology permutations with ties; subse-
quently, Horan and Hurlbert [5] prove their existence using standard graph techniques, extending their results
to related objects called s-overlap cycles. However, the more difficult problem of efficiently constructing
universal cycles for weak orders, which was posed by Diaconis and Ruskey in Problem 477 of [6], remained
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open. In recent work, Jacques and Wong [7] proposed greedy constructions, but they require exponential
space.

In this paper we present the first efficient universal cycle constructions for weak orders by considering both
rank and height representations, thus answering the open problem described above. Our algorithms apply the
k-ary universal cycle framework developed in [4], which generalizes a binary framework in [3], to construct
the universal cycles using O(n) time per symbol and O(n) space. Implementations of our algorithms in C are
available for download at http://debruijnsequence.org.

1.1 Representations for weak orders

A weak order can be thought of as a binary relation � on Σ = {1, 2, . . . , n} that is transitive and complete
(or connex). The latter property meaning that x � y or y � x (or both) for each x, y ∈ Σ. We write x ≡ y if
x � y and y � x, and we write x ≺ y if x � y but y � x. Using this notation, a weak order can be written as
a permutation where each element is separated by either ≡ or ≺. For example

4 ≺ 2 ≡ 5 ≡ 6 ≺ 3 ≺ 8 ≺ 7 ≺ 1

corresponds to the weak ordering from our earlier Summer Olympics example. We will use this ordering to
formally define our two representations for weak orders.

The height of element j is the number of ≺ symbols that precede j in the weak order. By replacing
each element j by its height, the weak order 4 ≺ 2 ≡ 5 ≡ 6 ≺ 3 ≺ 8 ≺ 7 ≺ 1 can be represented by
51201143. Let Wh(n) denote the set of all weak orders of order n using this height representation. This is
the representation used in [2, 5, 6]. As an example,

Wh(3) = {000, 001, 010, 100, 011, 101, 110, 012, 120, 201, 021, 210, 102}.

The rank of element j is one plus the number of elements that precede the rightmost ≺ symbol to the left
of j in the weak order. By replacing each element j by its rank, as done in [8], the weak order 4 ≺ 2 ≡ 5 ≡
6 ≺ 3 ≺ 8 ≺ 7 ≺ 1 can be represented by 82512276. This rank-based representation is equivalent to the
strings we described to define our set Wr(n).

Remark 1.1 The sets Wr(n) and Wh(n) are both closed under string rotation.

2 Universal cycle construction framework

In this section we recall elements from the framework developed in [4] that are applied to develop efficient
universal cycle constructions for weak orders. We begin by introducing the most general results that applied
in our universal cycle construction for Wh(n). Then we present a simplified special case that is applied in
the construction of a universal cycle for Wr(n).

Let Σ denote a finite alphabet {1, 2, . . . , k} and assume that n, k ≥ 2. A function f : Σn → Σ is said
to be a feedback function. A feedback function f is a UC-successor of S, a subset of Σn, if there exists a
universal cycle U for S such that each string ω ∈ S is followed by the symbol f(ω) in U . A partition of
S into subsets S1,S2, . . . ,Sm is a UC-partition with respect to f if f is a UC-successor for each Si where
i ∈ {1, 2, . . . ,m}.

Example 1 Consider the feedback function f defined by f(w1w2 · · ·wn) = w1. Observe that f is a UC-
successor for each equivalence class of strings under rotation. Thus,

S1 = {111},S2 = {113, 131, 311},S3 = {122, 221, 212},S4 = {123, 231, 312},S5 = {132, 321, 213}
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is a UC-partition of Wr(3) with respect to f .

Definition 2.1 Let S1,S2, . . . ,Sm be an ordered partition of S. For 2 ≤ i ≤ m, let xi, yi, zi ∈ Σ and
let βi ∈ Σn−1. A sequence of tuples (β2, x2, y2, z2), (β3, x3, y3, z3), . . . , (βm, xm, ym, zm) is a spanning
sequence of the partition if for each (βi, xi, yi, zi):

(i) yiβi ∈ Si,

(ii) if i = first(βi) then xiβi ∈ Sj for some j < i,

(iii) xiyizi is a substring of the cyclic string created by starting with xfirst(βi) then appending each yj from
tuples (βj , xj , yj , zj) where βj = βi in increasing order of index j,

where first(βi) is the smallest index of a tuple containing βi.

The two main results from [4] are Theorem 2.8 and Theorem 2.9. They apply the above definitions to give
a framework for constructing universal cycles. We combine them in the following theorem.

Theorem 2.2 [4] Let S1,S2, . . . ,Sm be a UC-partition of S with respect to f with spanning sequence

(β2, x2, y2, z2), (β3, x3, y3, z3), . . . , (βm, xm, ym, zm)

for some m ≥ 2. Then the following feedback functions g and g′ are UC-successors for S:

g(ω) =

 f(yiβi) if ω = xiβi for some i ∈ {2, 3, . . . ,m} and i = first(βi);
f(ziβi) if ω = yiβi for some i ∈ {2, 3, . . . ,m};
f(ω) otherwise,

g′(ω) =

 f(xiβi) if ω=yiβi for some i ∈ {2, 3, . . . ,m} and i = first(βi);
f(yiβi) if ω=ziβi for some i ∈ {2, 3, . . . ,m};
f(ω) otherwise.

Next we present a special case for the definition of a spanning sequence and the above theorem when each
βi is unique. This simplified result will be used to develop a universal cycle for Wr(n) in the next section.
The more general result will be used for Wh(n).

Definition 2.3 Let S1,S2, . . . ,Sm be an ordered partition of S. For 2 ≤ i ≤ m, let xi, yi ∈ Σ and let βi ∈
Σn−1. A sequence of tuples (β2, x2, y2), (β3, x3, y3), . . . , (βm, xm, ym) is a simplified spanning sequence of
the partition if each βi is unique and for each i the string yiβi ∈ Si implies the string xiβi ∈ Sj for some
j < i.

Theorem 2.4 [4] Let S1,S2, . . . ,Sm be a UC-partition of S with respect to f with simplified spanning
sequence (β2, x2, y2), (β3, x3, y3), . . . , (βm, xm, ym) for some m ≥ 2. Then the following feedback
function g(ω) is a UC-successor for S:

g(ω) =


f(xiβi) if ω = yiβi for some i ∈ {2, 3, . . . ,m};
f(yiβi) if ω = xiβi for some i ∈ {2, 3, . . . ,m};
f(ω) otherwise.
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In the above theorem, the modifications of f to get g correspond to repeatedly applying a standard cycle
joining technique. The way the cycles are joined are directed by the simplified spanning sequence. Such a
cycle joining (gluing) approach has been exploited in many de Bruijn sequence constructions (see [3, 4]).

3 A universal cycle construction for Wr(n)

In this section we apply Theorem 2.4 to develop a UC-successor for Wr(n). Let W′
r(n) be the subset of

all weak orders in Wr(n) that have no repeating symbol except for possibly the symbol 1. For example,
W′

r(3) = Wr(3)−{122, 212, 221}. Additionally, let numω(v) denote the number of occurrences of symbol
v in the string ω.

Let S1,S2, . . . ,Sm be a UC-partition of Wr(n) with respect to f(w1w2 · · ·wn) = w1. Let the lexi-
cographically smallest representatives for each part be given by α1, α2, . . . , αm respectively. Let Rr(n) =
{α1, α2, . . . , αm}. Consider the partition to be ordered first by the number of 1s in the representatives (small-
est to largest), and then by reverse lexicographic order of the representatives. Note, that S1 = {1n} for all
n. Define a sequence Sr = (β2, x2, y2), (β3, x3, y3), . . . , (βm, xm, ym) for this ordered partition where each
(βi, xi, yi) is defined as follows assuming αi = a1a2 · · · an:

(βi, xi, yi) =

{
(aj+1 · · · ana1 · · · aj−1, 1, aj) if αi ∈W′

r(n);
(ak+1 · · · ana1 · · · ak−1, ak + numαi(ak)− 1, ak) otherwise,

where j is the index of the unique symbol (numαi(1) + 1), and k is the largest index1 such that ak 6= 1 and
numαi(ak) > 1.

Example 2 Consider the UC-partition S1,S2, . . . ,S20 of Wr(4) with respect to f(w1w2 · · ·wn) = w1 ordered
first by the number of 1s in the representatives, then in reverse lexicographic order. The following illustrates this
ordered partition by its representatives α1, α2, . . . , α20 along with the sequence Sr defined above.

i αi (βi, xi, yi)
1 1111 -
2 1114 (111,1,4)
3 1314 (141,1,3)
4 1313 (131,4,3)
5 1143 (114,1,3)
6 1134 (411,1,3)
7 1133 (113,4,3)
8 1432 (143,1,2)
9 1423 (314,1,2)
10 1422 (142,3,2)

i αi (βi, xi, yi)
11 1342 (134,1,2)
12 1332 (213,4,3)
13 1324 (413,1,2)
14 1323 (132,4,3)
15 1243 (431,1,2)
16 1242 (124,3,2)
17 1234 (341,1,2)
18 1233 (123,4,3)
19 1224 (412,3,2)
20 1222 (122,4,2)

The sequence Sr induces the following tree where the nodes are the representatives αi of each Si. Observe that the
parent of the representative of each yiβi is the representative for xiβi. Also if αj is the parent of αi, then j < i.
For instance for α10 = 1422 we have β10 = 142 and its parent is α9 = 1423 which is a rotation of x10β10 = 3142.

1The smallest index (among other possible choices for k) also works, producing an alternate simplified spanning sequence

4



1314

1111

1114

1134

1234 1342 13241423 1313 1243 14321133

1143

12421224 13231233 1332

1222

1422

β10 = 142

Lemma 3.1 Sr is a simplified spanning sequence of the ordered partition S1,S2, . . . ,Sm.

Proof. Based on the definition of a simplified spanning sequence we must show three things about Sr: (1)
each βi is unique, (2) each yiβi ∈ Si, and (3) each xiβi ∈ Sj for some j < i. Consider (βi, xi, yi) for some
2 ≤ i ≤ m. Since yiβi is a rotation of αi it is in Si, thus satisfying (2). Observe that the definitions of
the indices j and k imply that yi > 1. Furthermore, by the definition of these indices, observe that xiβi is in
Wr(n), and its corresponding representative αj either has more 1s or is lexicographically larger than αi. Thus
xiβi is in some Sj where j < i, thus satisfying (3). Finally, to demonstrate (1), suppose there exists j 6= i such
that βj = βi. Since αi 6= αj , this means yj 6= yi. If yi is not found in βi then numαi(yi) = 1, αi must be in
W′

r(n), and yi = numαi(1) + 1. By the definition of a weak order, the only other possible value for yj such
that yjβj is in Wr(n) is yj = 1. However this contradicts our earlier claim that all yj > 1. Otherwise, assume
yi appears in βi which means numαi(yi) > 1. Because αi ∈Wr(n) there is no symbol yi + numαi(yi)− 1
in αi. Thus since yjβj is in Wr(n), either yj = yi (a contradiction) or yj = yi + numαi(yi) − 1. But from
the previous argument since yi + numαi(yi)− 1 would have to be unique in αj , which was just ruled out in
the first case. Thus each βi is unique, satisfying (1). 2

Using the simplified spanning sequence Sr, illustrated in Example 2, we can immediately apply Theo-
rem 2.4 to define a UC-successor gr for Wr(n). However, storing the simplified spanning sequence will re-
quire an exponential amount of memory, and hence the UC-successor will not be efficient. Thus we need to de-
termine when a weak order ω = w1w2 · · ·wn ∈Wr(n) belongs to the set U = {xiβi | i ∈ {2, 3, . . . ,m}} ∪
{yiβi | i ∈ {2, 3, . . . ,m}}. We consider the following four cases noting that X1 ∪Y1 ∪X2 ∪Y2 = U:

• X1 = {xiβi | αi ∈W′
r(n)},

• Y1 = {yiβi | αi ∈W′
r(n)},

• X2 = {xiβi | αi /∈W′
r(n)},

• Y2 = {yiβi | αi /∈W′
r(n)}.
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Algorithm 1 Pseudocode for the UC-successor gr(ω) where ω = w1w2 · · ·wn for the set Wr(n).
1: function gr(ω)

2: if ω ∈W′
r(n) and w1 = numω(1) + 1 then return 1 . ω ∈ Y1

3: if ω ∈W′
r(n) and w1 = 1 then return numω(1) . ω ∈ X1

4: . ω ∈ Y2

5: if ω /∈W′
r(n) and numω(w1) > 1 and w1 > 1 then

6: if numω(wi) = 1 or wi = 1 then
7: for all 2 ≤ i < REPSTART(ω) return w1 + numω(w1)− 1

8: . ω ∈ X2

9: if numω(w1) = 1 and w1 > 1 then
10: p← the largest symbol in ω less than w1

11: if p 6= 1 then
12: if wi 6= p and (numω(wi) = 1 or wi = 1) then
13: for all 2 ≤ i < REPSTART(pw2w3 · · ·wn) return p

14: return w1

We start by examining X1 and Y1. From our definition of Sr, a string ω will belong to Y1 if and only if it is
in W′

r(n) (since ω is a rotation of αi) and w1 = numω(1) + 1. For each such ω, by replacing w1 with a 1
yields a string ω′ in X1. Since ω′ will also belong to W′

r(n) it will belong to X1 if and only if it is in W′
r(n)

and w1 = 1. Testing for membership in X2 and Y2 is a bit more complicated. Let t denote the index of
ω such that wt · · ·wnw1 · · ·wt−1 is the representative of ω. Let the function REPSTART(ω) return the index
t such that wt · · ·wnw1 · · ·wt−1 is the representative of ω. For example REPSTART(82512276) = 4. Now
from our definition of Sr, ω will belong to Y2 if it is not in W′

r(n), w1 6= 1, and numω(w1) > 1, and
every symbol in w2w3 · · ·wt−1 is equal to 1 or appears exactly once in ω. For each such ω, replacing w1 with
w′1 = w1 + numω(w1) − 1 will yield a string ω′ in X2. Note that since ω is a weak order, numω′(w′1) = 1
and w′1 > 1. Furthermore, it is possible that ω′ is in W′

r(n) even though ω (which is a rotation of some αi)
is not. Given the former two constraints ω′ will be in X2 if and only if every symbol in w2w3 · · ·wt−1 is not
equal to w1 and is either equal to 1 or appears exactly once in ω.

Using the membership conditions for the sets X1,Y1,X2 and Y2 outlined above, Algorithm 1 provides
pseudocode for a UC-successor gr(ω) for Wr(n) by applying Theorem 2.4.

Theorem 3.2 The function gr : Σn → Σ presented in Algorithm 1 is a UC-successor for Wr(n).

3.1 Implementation and analysis

Pseudocode in Algorithm 2 applies the UC-successor gr(ω) given in Algorithm 1 to construct a universal
cycle for Wr(n) starting with the weak order 1n. The algorithm initializes ω to 1n and initializes the values
numω(v) for each symbol v from 1 to n. Each iteration of the repeat loop prints w1, calls the function gr(ω),
then updates ω and the num values. The loop terminates when ω returns to the initial string 1n which occurs
when numω(1) = 1. This requires a constant amount of work for each call to gr(ω). Note that we can start
from any initial weak order, but to test for that string in the termination condition would require O(n) time.
In the function gr(ω), given in Algorithm 1, testing whether or not a string belongs to W′

r(n) can easily be
done in O(n) time. Also, it is well known that the function REPSTART(w1w2 · · ·wn) can be computed in
O(n) time [1] and each iteration of the two loops in the function gr(ω) requires only a constant amount of
time. Thus, the function gr(ω) runs in O(n) time.

6



Algorithm 2 Applying the UC-successor gr(ω) to construct a universal cycle for Wr(n).
1: procedure UC( n)
2: ω = w1w2 · · ·wn ← 1n

3: for i from 2 to n do numω(i)← 0

4: numω(1)← n
5: repeat
6: PRINT(w1)
7: v ← g(ω)
8: numω(w1)← numω(w1)− 1
9: numω(v)← numω(v) + 1

10: ω ← w2w3 · · ·wnv
11: until numω(1) = n

Theorem 3.3 A universal cycle for Wr(n) can be constructed using the successor gr(ω) presented in
Algorithm 1 starting from any initial weak order ω in O(n) time per symbol using O(n) space.

The following are the universal cycles for Wr(n) generated by Algorithm 2 for n = 3 and n = 4:

. n = 3: 1113213122123;

. n = 4: 111143214312421243114132313241313142214231411331134213321341222122412331234.

4 A universal cycle construction for Wh(n)

In this section we consider the height representation for weak orders and Wh(n). For n = 3, the feedback
function f(w1w2 · · ·wn) = w1 partitions Wh(n) into 5 sets with the lexicographically largest element from
each set being 210, 201, 110, 100, and 000 respectively. In order to define a simplified spanning sequence, we
must define four unique βi. However there are only a total of three possible values for βi, namely {00, 01, 10}.
Thus in order to develop UC-successors for Wh(n) using this feedback function, we define an appropriate
spanning sequence and then apply Theorem 2.2.

Let T1,T2, . . . ,Tm be a UC-partition of Wh(n) with respect to f(w1w2 · · ·wn) = w1. Let the lex-
icographically largest representatives for each part be given by α1, α2, . . . , αm respectively. Let Rh(n) =
{α1, α2, . . . , αm}. Consider the partition to be ordered in lexicographic order with respect to their represen-
tatives αi. Thus, T1 = {0n} for all n. Assuming i > i, let αi = a1a2 · · · an, α−i = (a1−1)a2a3 · · · an, and
α+
i = (a1+1)a2a3 · · · an. We define a sequence Sh = (β2, x2, y2), (β3, x3, y3), . . . , (βm, xm, ym) for this

ordered partition where each (βi, xi, yi, zi) is defined as follows:
. βi = a2a3 · · · an,
. xi = ai − 1,
. yi = a1,

. zi =


a1 + 1 α+

i ∈ Rh(n)
a1 − 2 α−i ∈ Rh(n)
a1 − 1 otherwise.

When proving that Sh is a spanning sequence in the next lemma, we show that it is not possible for both α+
i

and α−i to be in Rh(n). Thus, the definition of zi is well-defined.
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Example 3 Consider the UC-partition T1,T2, . . . ,T20 of Wh(4) with respect to f(w1w2 · · ·wn) = w1 where
the sets are listed in lexicographic order with respect to their unique representatives in Rh(n). The following table
illustrates this ordered partition by its representatives α1, α2, . . . , α20 along with its corresponding sequence Sh.

i αi (βi, xi, yi, zi)
1 0000 -
2 1000 (000, 0, 1, 0)
3 1010 (010, 0, 1, 2)
4 1100 (100, 0, 1, 2)
5 1110 (110, 0, 1, 2)
6 2001 (001, 1, 2, 1)
7 2011 (011, 1, 2, 1)
8 2010 (010, 1, 2, 0)
9 2100 (100, 1, 2, 0)
10 2101 (101, 1, 2, 1)

i αi (βi, xi, yi, zi)
11 2110 (110, 1, 2, 0)
12 2120 (120, 1, 2, 3)
13 2201 (201, 1, 2, 3)
14 2210 (210, 1, 2, 3)
15 3012 (012, 2, 3, 2)
16 3021 (021, 2, 3, 2)
17 3102 (102, 2, 3, 2)
18 3120 (120, 2, 3, 1)
19 3201 (201, 2, 3, 1)
20 3210 (210, 2, 3, 1)

The partition and sequence Sh is illustrated by the following graph. The nodes are the representatives αi of each
Ti where each βi is underlined. Consider two nodes αi and αj where j < i. If βi is unique, then there is a
bi-directional edge (αi, αj) if xiβi ∈ Tj . If βi is not unique, there is a uni-directional edge (αi, αj) if xiβi ∈ Tj

and a dashed (red) uni-directional edge (αj , αi) if ziβi ∈ Tj .

1100

0000

1000

1010 2010

1110 2110

2011 2101

2120 2201

2001

2100

3210

3102

3201

3021

22103120

3012

Lemma 4.1 Sh is a spanning sequence of the ordered partition T1,T2, . . . ,Tm.

Proof. We demonstrate that Sh satisfies the three conditions of its definition. Consider 1 < i ≤ m. By
definition yiβi = αi and thus yiβi ∈ Ti, satisfying condition (i). Since αi ∈Wh(n), every symbol from 0
to a1 appears in αi. Thus, xiβi = (a1 − 1)βi is a valid weak order and moreover, it must belong to some set
Tj where j < i by the ordering of the sets. Thus condition (ii) is satisfied. For condition (iii) we consider the
following two cases:
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(a) If αi is the only string in Rh(n) with the suffix βi then xi = zi = a1 − 1. Thus, the cyclic string
described in (iii) is simply xiyi and clearly xiyizi is a substring of this string when the former is
considered cyclicly.

(b) If αi is not the only string in Rh(n) with the suffix βi, then we show that there can be at most one more
string with the suffix βi. Suppose a1 is the uniquely largest element in αi. Then any string (a1+t)βi for
t > 0 will not be in Wh(n). Moreover, any string (a1− t)βi for t > 1 will not be the lexicographically
largest amongst all its rotations and hence is not in Rh(n). Thus it must be that α−i ∈ Rh(n). For this
case xi = a1 − 1, yi = a1 and zi = a1 − 2. The representative for α−i must be for some set Tj where
j < i and by definition xj = a1 − 2, yj = a1 − 1 and zj = a1. Furthermore, j will be the smallest
index of a tuple containing βi. Thus, the cyclic string described in (iii) is (a1−2)(a1−1)(a1) and xiyizi
is a substring of this string when the former is considered cyclicly, satisfying condition (iii).

Otherwise, it must be that a1 is one of the largest but not the uniquely largest element in αi. In this
case, any string (a1 + t)βi for t > 1 will not be in Wh(n). Moreover, any string (a1 − t)βi for t > 0
will not be the lexicographically largest amongst all its rotations and hence is not in Rh(n). Thus it
must be that α+

i ∈ Rh(n). For this case xi = a1 − 1, yi = a1 and zi = a1 + 1. The representative
for α+

i must be for some set Tj where i < j and will have xj = a1, yj = a1 + 1, and zj = a1 − 1.
Furthermore, i will be the smallest index of a tuple containing βi. Thus, the cyclic string described in
(iii) is (a1−1)(a1)(a1+1) = xiyizi. Thus condition (iii) is satisfied.

2

With the spanning sequence Sh we can apply Theorem 2.2 to obtain two UC-successors gh and g′h for
Wh(n) where ω = w1 · · ·wn ∈Wh(n), and

ω′ = (w1+1)w2 · · ·wn, ω′′ = (w1+2)w2 · · ·wn, ω− = (w1−1)w2 · · ·wn.

gh(ω) =


w1 + 1 if ω′ ∈ Rh(n);
w1 − 1 if ω′ /∈ Rh(n) and ω ∈ Rh(n) and ω− /∈ Rh(n);
w1 − 2 if ω′ /∈ Rh(n) and ω ∈ Rh(n) and ω− ∈ Rh(n);
w1 otherwise.

g′h(ω) =


w1 − 1 if ω ∈ Rh(n);
w1 + 1 if ω /∈ Rh(n) and ω′ ∈ Rh(n) and ω′′ /∈ Rh(n);
w1 + 2 if ω /∈ Rh(n) and ω′ ∈ Rh(n) and ω′′ ∈ Rh(n);
w1 otherwise,

Theorem 4.2 The functions gh and g′h are UC-successors for Wh(n).

Proof. The function g′h for Wh(n) is obtained from the spanning sequence Sh by applying Theorem 2.2 and
then the observations from Lemma 4.1. The first case of Lemma 4.1 is handled by the first and second lines
of g′h. The second case of the Lemma 4.1 is handled by the first, second, and third line of g′h. The sub-case
with a1 being the uniquely largest element in αi is handled by the first and third line of g′h, while the sub-case
with a1 being one of the largest but not the uniquely largest element in αi is handled by the first and second
lines of g′h. The proof for gh is similar. 2

Testing whether or not a string is in Rh(n) can be done in O(n) time by applying a result from [1]. Thus,
we obtain the following corollary.
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Corollary 4.3 A universal cycle for Wh(n) can be constructed using either the successor gh(ω) or g′h(ω)
starting from any initial weak order ω ∈Wh(n). Each universal cycle can be constructed in O(n) time per
symbol using O(n) space.

By applying the UC-successor gh starting from 0n, we obtain the following two universal cycles for Wh(n)
for n = 3 and n = 4:

. n = 3: 0001012011021;

. n = 4: 000010102010012001101210231022103210112021302120312012301220132011102110021.

By applying the UC-successor g′h starting from 0n, we obtain the following two universal cycles for Wh(n)
for n = 3 and n = 4:
. n = 3: 0001021012011;
. n = 4: 000010201010021001200110211012103210231022101120312021302120132012301220111.
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