
he prospect of anytime, any-
where network access presents both opportunity and challenge
to application writers. Providing connectivity to those on the
move enables entirely new services while expanding the reach
of current applications. Unfortunately, taking advantage of
pervasive networking is difficult. The quality of network con-
nectivity afforded mobile users is extremely turbulent: it
changes frequently, dramatically, and without warning. Appli-
cations must somehow cope with these changes.

There are many reasons for this dynamic behavior. An
individual wireless channel is subject to path loss, fading, and
environmental interference [1]. Together, these can have a
significant impact on the performance of the channel. Further,
overlay networks arrange wireless coverage as a set of over-
lapping technologies, each providing a different tradeoff
between bandwidth, coverage, cost, and reliability [2].

How can applications deal with such variation? Ideally,
they would take advantage of high-quality connectivity when
available, but behave reasonably over networks with poor per-
formance. In the past, systems have dealt with variation by
trading plentiful resources for those that are scarce. For
example, Web caches [3] attempt to insulate clients from the
vagaries of wide-area network performance by spending disk
space. Unfortunately, such techniques are not able to hide the
orders-of-magnitude changes in performance that are all too
common in wireless networks.

Rather than rely on the system to manage resources trans-
parently, applications must themselves adapt to prevailing net-
work characteristics. This article presents an overview of our
experience with Odyssey, a platform for adaptive mobile data
access. We have developed several applications for Odyssey,
including a Web browser, a video player, and a speech recog-
nition system. Each of these applications is described in more
detail in a forthcoming paper [4].

Odyssey’s approach to adaptation is to adjust the quality of
accessed data to match available resources. For example,
when faced with a sharp decrease in bandwidth, a Web brows-
er might ask for more highly-compressed images; a video play-
er may reduce frame rate or frame quality of the stream; and
a map viewer may filter out small or irrelevant features. In

order to trade data quality for resource consumption and per-
formance, one must first have a notion of quality. We intro-
duce fidelity, Odyssey’s notion of data quality, and present a
few simple examples of its use.

We present Odyssey’s division of labor between applica-
tions and the operating system for making adaptive decisions.
In this division, the system provides the mechanisms enabling
adaptation, leaving applications free to set adaptive policy.
We present the client architecture used to provide this collab-
oration, and discuss the programming model induced by it.

In order to adapt to turbulent environments, a system must
react to significant changes as fast as they occur. In other words,
an adaptive system must be as agile as possible. We discuss the
importance of agility, and describe how it can be evaluated. This
section concludes with a description of the bandwidth estimation
mechanism, which proves to be the limit on agility.

Unfortunately, maximizing agility can come at the expense
of stability. Often, this tradeoff is preferable; optimizing for
agility provides the best possible fidelity given the resources
available. But, what should one do when the pursuit of agility
leads to instability that is disconcerting for the user? We pre-
sent this problem, and outline our plan to address it.

Context for this Work
Odyssey was designed to support a broad range of mobile infor-
mation access applications. Such applications reside on a mobile
client, but access or update data stored on a remote server. We
assume that these servers are more capable and trustworthy
than clients; they need not be mobile and are administered by
some central authority. Our target client platform has been lap-
tops running a variant of UNIX, typically NetBSD or Linux.

Given this model, we have focused on the client as the
provider of adaptive services in the system. The client is best
positioned to understand what resources are available to it
and what its current priorities are in using those resources.
Therefore, adaptive decisions are driven entirely by the client.
For their part, servers are able to support these adaptive deci-
sions by providing data at various qualities, but do not take an
active role in quality selection or resource monitoring.

IEEE Personal Communications • February 200044 1070-9916/00/$10.00 © 2000 IEEE

T

System Support for
Mobile, Adaptive Applications

Brian Noble, University of Michigan

Abstract
Imagine that, while on a business trip to Paris, you decide to take a few extra days to sample the city’s museums. When you buy your museum

pass, you are given a virtual tour guide device — a small PDA that can deliver information about specific pieces in the museum system as well as
general information about the city. This device communicates via wireless networks. In or near a museum, the device has access to a high-speed
micro-cellular network; in the rest of the city, it makes use of the GSM infrastructure. The user can ask this device to elaborate on specific sites
or pieces, display related information, or perform geographically-based queries. These requests are satisfied by applications such as a customized
Web browser and a video playback application. When within range of a museum’s high-quality network, the displayed information is of excellent
quality: images are at high resolution and color, and video is delivered in full motion. However, when the user strays away from the high-band-

width network, each application degrades the quality of the data it delivers so that it arrives in a timely fashion.

IEEE Personal Communications • February 2000 45

Fidelity: A Measure of
Data Quality

In order to define a notion of data quality, one must
first have a standard against which to compare: a refer-
ence copy. Any data item accessed by a client has such a
reference copy, which is the most complete, current,
and detailed version of that item available. When
resources are plentiful, a mobile client will access and
manipulate the reference copy. However, when
resources become scarce, the mobile client may choose
to access or manipulate an item that has been degraded,
consuming fewer resources. We define fidelity as the
degree to which a data item used by a mobile client
matches the reference copy. Note that lossless compres-
sion is not a fidelity-changing operation, as the com-
pressed object is indistinguishable from the original.

Fidelity is a property of potentially many dimensions.
One such dimension, consistency, is shared by every data
item regardless of type. For example, suppose a mobile
client has cached some data element that has been updated
by some other host. If network bandwidth to that host is
plentiful, the client might fetch the new version immediate-
ly. However, if bandwidth is scarce, the client might choose
to defer retrieval, instead working with the stale copy.

While the consistency of any data item may be weak-
ened regardless of type, other dimensions of fidelity
require knowledge of the item’s structure. For example,
one might degrade video streams in several ways:
reduce the frame rate, reduce the quality of individual
frames, or reduce the size of individual frames. Any of
these operations requires significant knowledge about the
video’s representation. Likewise, a map might be degraded by
omitting features below a certain size, or by showing only ele-
vations and rivers, but not roads.

It is important to remember that fidelity is per type, not
per application. A video editor and a video player have the
same dimensions of fidelity at their disposal, though they may
choose to manipulate them differently.

Figure 1 illustrates the notion of fidelity as a multi-dimen-
sional property. Figure 1a shows the reference copy of a pic-
ture of the University of Michigan’s EECS building. In Fig.
1b, the size of the image is the same as in the reference copy,
but the image quality is substantially degraded; in Fig. 1c the
converse is true. Figure 1d shows the image both at reduced
size and image quality.

In order to effectively trade fidelity for performance, one
must quantify it. As we are still exploring the space of possible
adaptations, we have focused on a single dimension per data
type. The fidelity metrics for each possible fidelity are assigned
as a scalar value between 0.0 and 1.0. The latter is assigned to
the reference copy, while the former would be assigned to a
representation with no information content. While the
assigned metrics do provide a total ordering on available
fidelities, they do not provide a relative measure; a fidelity of
0.5 cannot be said to be “half as good” as a fidelity of 1.0.

Clearly, a relative weighting would be useful. However,
such a definition of fidelity depends critically on the perceived
quality of each version. For some data types, such as images
[5] and video [6], perceptual quality is relatively well under-
stood. For others, such as maps, the problem has not been
fully examined. Furthermore, the relative importance of dif-
ferent fidelity dimensions may depend on the use to which the
data is being put. For example, video data from a teleconfer-
ence may more usefully preserve motion while sacrificing
detail. In contrast, video of a lecture might need to preserve
detail so that the chalkboard is readable.

Application-Aware Adaptation:
Shared Responsibility

Which entity on the client is responsible for making adapta-
tion decisions: the operating system, or individual applica-
tions? Odyssey takes the position that decisions must be made
jointly by the two parties. The operating system, as the arbiter
of shared resources, is in the best position to determine
resource availability. It provides the mechanisms for adapta-
tion and a common point of resource control. However, the
application is the only entity that can properly decide how to
adapt to a given situation, and must be free to specify adap-
tive policy. We call this collaborative model of responsibility
application-aware adaptation.

Why a Collaboration?
To see why such a collaboration is required, consider the
alternatives. In the first, called laissez-faire adaptation, concur-
rent applications compete for resources, but each is solely
responsible for its own adaptation. In this model, each appli-
cation must infer the resource consumption of the others to
make the best possible adaptation decisions. However, with-
out a common point of resource control, they cannot have
accurate knowledge of one another, and will tend to adapt at
cross purposes. Correctly accounting for competing applica-
tions through a central point of resource control is critical to
providing good adaptive behavior. Experiments with a set of
representative applications show significant improvement in
quality within specified performance bounds when compared
to laissez-faire adaptation [7].

At the other extreme, consider the case where the operat-
ing system on the mobile node is wholly responsible for mak-
ing adaptation decisions for applications; we call this model
application-transparent adaptation. In it, the competition for
scarce resources is correctly accounted for, but individual

■■ Figure 1. Fidelity dimensions for images.

(a) Reference copy

(c) Smaller size (d) Smaller, lower quality

(b) Lower quality

IEEE Personal Communications • February 200046

applications cannot choose to make their own adaptive deci-
sions. For example, the teleconference user and the student
viewing a remote lecture would each be forced to use the
same adaptive policy. It is hard to imagine a single policy that
could satisfy both users’ needs.

Of course, systems providing application-aware adaptation
might decide to divide functionality between the operating
system and applications in any number of ways. In other
words, application-aware adaptation describes a spectrum of
approaches between laissez-faire and application-transparent
adaptation, as illustrated in Fig. 2. Odyssey explores a single
point in this space.

Architecture of an Adaptive Client
The architecture through which Odyssey provides application-
aware adaptation is shown in Fig. 3. Odyssey can be most
properly thought of as a set of operating system extensions
supporting adaptive applications. It was implemented as a ker-
nel component in user space for simplicity, but could have
also been implemented directly in the operating system kernel
or as a middleware layer.

Odyssey provides access to objects that it manages through
the client file system. The interceptor module in the kernel
redirects file system operations on these objects to Odyssey
proper, which comprises two kinds of components: the viceroy
and a set of wardens.

The viceroy is responsible for all type-independent tasks on
the client. The most important of these is monitoring resource
usage and notifying applications of significant changes in
resource availability. The viceroy acts as the single point of
resource control, enabling support for concurrent applications.

Because adaptive policy is the province of applications, they
must be able to specify which changes in resource availability
are important to them. Since this information must flow across
the application/kernel boundary, providing it is potentially
expensive. However, applications need not be informed of
every small change to a resource. To see why, consider a video
conferencing application that adapts to changes in network
bandwidth. At a given bandwidth, there is some lower bound
below which the application will be forced to degrade the
video stream. Likewise, there is an upper bound above which
the application might increase video fidelity. Together, these
bounds form a window of tolerance on bandwidth.

When an application chooses a fidelity, it informs Odyssey
of the windows of tolerance for any resources of interest. It
does so through a new system call, the resource request, nam-
ing the window of tolerance for one resource along with a
function to call if that window is violated. This request is
passed on to the viceroy. Thereafter, as the viceroy updates its
estimates of resource availability, it will notify an application
of any estimate that lies outside of its declared window
through an upcall [8]. This carries with it the new resource
value so that the application might properly react. Details of
these and other Odyssey extensions to the application pro-
gramming interface can be found elsewhere [9].

Fidelity, and hence adaptation, is a type-specific notion.
The wardens are the code components in Odyssey that pro-
vide all type-specific functionality, one per type. Wardens

manage all communication between the client and various
servers, and offer a menu of fidelities from which applications
can pick. Their inclusion in the operating system allows one to
incorporate type-specific knowledge into resource usage deci-
sions. For example, the wardens can provide customized
buffer cache replacement policies when the expected data
access patterns warrant.

To avoid explicitly encoding each fidelity-changing opera-
tion in the API, Odyssey instead provides a general mecha-
nism, the type-specific operation, or tsop. The tsop() call is
not interpreted by any code component other than the war-
den; it is similar in spirit to the ioctl() system call found in
most UNIX-like systems. In addition to fidelity-changing
operations, tsop() also enables the provision of type-specific
access methods. Applications can then use abstractions more
suited to the data at hand than the low-level read/write inter-
face provided for untyped files. For example, video applica-
tions can speak in terms of frames of video, rather than
ranges of bytes. This can simplify applications significantly.

Each Odyssey application is linked with the Odyssey runtime
library. This library hides the details of the tsop() call behind
more meaningful abstractions. It also provides the required
user-level support for upcalls used in resource notification.

Programming Model
The programming model induced by Odyssey’s API is one of
an adaptive decision loop, illustrated in Fig. 4. This control
loop first selects a fidelity, then places resource requests with
the viceroy as appropriate. The viceroy monitors resource
availability and, when a significant change is detected, informs
each interested application. The applications then select a
new fidelity, repeating the process.

In each of our sample applications, this adaptive decision
loop is outside of the main body of control; it is invoked asyn-
chronously by the upcall mechanism. This has important impli-
cations for adaptive applications, namely, that they be equipped
to handle data of differing fidelities as it is presented.

While this may seem a significant restriction, it has not
proven to be so. This is because data types amenable to
sophisticated fidelity degradations are self-descriptive, and the
applications using them are already capable of handling many
different representations. For example, a Web browser is able
to decode a number of different image formats, and images of
a single format are all decoded the same way, regardless of
the degree of compression. The same is true for most other
data types of interest.

To take the best advantage of Odyssey’s services, applica-
tions must be modified to use its API. However, there are
ways to support shrink-wrapped applications, those for which
source code is unavailable. For example, we have incorporat-
ed Netscape’s Web browser into Odyssey by interposing a
proxy between it and Odyssey. This proxy acts as the adaptive
application. By intercepting file and network system calls, one
could achieve similar results for other legacy applications.

■■ Figure 2. Spectrum of adaptation models.

Application-aware
collaboration

Laissez-faire
application

Application-transparent
system

■■ Figure 3. Odyssey client architecture.

Application

Kernel

tsop,
request

Odyssey runtime

Odyssey

Video
warden

Web
warden

V
ic

er
oy

Upcalls

Interceptor

IEEE Personal Communications • February 2000 47

Agility: The Limit on Adaptation

In order to provide support in the broadest possible set of
environments, an adaptive system must be as agile as possible.
That is, it must be able to react to true changes in the envi-
ronment quickly. A system that cannot adapt as fast as
changes occur will be forced to lower its expectations to the
worst case, or suffer unacceptable performance.

The agility of Odyssey is determined by the adaptive deci-
sion loop in Fig. 4. The first step of this process, fidelity selec-
tion, is the province of the application and server. However,
Odyssey is responsible for the other three steps; they deter-
mine the upper bound on agility for any application.

Measuring the costs of placing requests and notifying
applications is straightforward. Micro-benchmarks show that
the time for each of these operations is on the order of a mil-
lisecond [6], approximately the cost of a null IPC between two
processes on that same machine. These costs could be made
substantially smaller with a better-tuned IPC system or an in-
kernel implementation.

Measuring Agility
While requests and notifications are easy to measure, it is more
challenging to measure the system’s ability to detect changes in
network performance. It is tempting to run the system over a
live, wireless network and record the results. However, it is not
clear how one should interpret those results. Wireless networks
exhibit performance that is both rapidly changing and impossi-
ble to duplicate precisely. The former leads to uncertainty as to
how the system should perform in a given trial, while the latter
makes aggregating multiple trials difficult.

Instead, we use a technique called network trace modula-
tion. Trace modulation is an extension to a client’s operating
system that delays or drops all network packets according to a
simple performance model. The parameters to this model can
be varied over time by providing a list of parameters, and the
duration for which each parameter set should be applied; this
is called a replay trace. This technique allows us to approxi-
mate arbitrary network performance, much as a sequence of
short, straight lines approximates a curve.

Trace modulation allows live software to be run over a
simulated networking environment in real time. The descrip-
tion of this environment – the replay trace – can be generated
either empirically or synthetically. Empirical traces are generat-
ed by first measuring the performance of a wireless network
from a mobile client’s perspective over some period of time.
These performance observations can then be distilled to a
replay trace that, when run on a client capable of trace modu-
lation, faithfully recreates the performance seen by the mea-
suring host. Using this technique, one can gain insight as to
how a system will perform in the wireless environment, but at
a complexity comparable to performing experiments in a
wired networking testbed. A detailed description and valida-
tion of empirical trace replay can be found elsewhere [11].

Empirical trace replay has been a valuable tool in our eval-
uation of mobile systems. However, it falls short in assessing
the agility with which one can detect changes in networking
performance. This is because the network performance recre-
ated by an empirical trace is still too complicated to yield to
tractable analysis.

Instead, we subject Odyssey to synthetic traces that provide
instantaneous, ideal changes in network bandwidth. This pro-
cess is very similar to the control-theoretic technique of
impulse response analysis. By characterizing real client perfor-
mance in the context of such ideal circumstances, it is much
simpler to see what limits to agility are placed by the network
estimator.

Network Estimation in Odyssey
In order to provide adaptive services, an Odyssey client must
estimate the quality of the network paths used by various
applications. It does so through passive observation of the traf-
fic generated by these applications, all of which passes through
the viceroy. This traffic is composed of both short interactions
with servers through remote procedure call, or RPC, as well as
bulk transfer of large objects [12]. The latter provides sliding-
window, selective-acknowledgement flow control.

The communications layer in Odyssey records the time
required for each RPC, minus the server-side computation
time. This gives an estimate of round-trip time, and hence
latency, to the server in question. By observing the time need-
ed to complete each window of a bulk transfer, the client can
estimate throughput. Given both throughput and latency, one
can estimate the available bandwidth to the server. Odyssey
updates its estimates of latency and bandwidth using a simple
low-pass filter, updating once every half second. This filter
biases heavily toward the most recent observations to provide
the best agility possible.

Note that this scheme assumes the path between the server
and client is symmetric; that is, that the performance from serv-
er to client is identical to that from client to server. In practice
this is not true, though often the differences in performance
are small. To account for asymmetry, one would need reliably
synchronized clocks at each end of the path in question.

Detecting Decreases: Limit on Agility
To determine Odyssey’s agility in detecting changes in net-
work bandwidth, we subjected it to a set of reference wave-
forms. These waveforms are synthetically generated replay
traces, used by the trace modulation tool to vary the band-
width available to the client. Because Odyssey must rely on
passive observations to produce estimates, we run a synthetic
application that streams traffic between a server and an
Odyssey client as fast as the underlying network will allow.
This removes any application-dependent limits on agility,
allowing us to focus on those limits placed by Odyssey proper.

The results for two of these waveforms are shown in Fig. 5
and Fig. 6. Each waveform lasts one minute. The first wave-
form, called step-up, instantaneously increases the available
bandwidth from 40 kbytes/s to 120 kbytes/s halfway through the
trace. The second waveform, called step-down, decreases band-
width from 120 kbytes/s to 40 kbytes/s. The x axis is time in sec-
onds; the y axis is estimated bandwidth, in bytes per second.

Each graph depicts the waveform, as well as all estimates
made by the viceroy over five trials. The waveform itself is

■■ Figure 4. Adaptive decision loop.

Notify application

Detect change

Place request

Select fidelity

System-limited stages

IEEE Personal Communications • February 200048

shown as two gray curves. The uppermost, dashed curve shows
the nominal bandwidth of the waveform. The lower, dotted
curve shows the long-term throughput achieved by the syn-
thetic applications over a modulated network of that band-
width. Each observation is represented as a single dot. A
perfectly agile estimator would produce observations entirely
within these two curves.

As Fig. 5 shows, increases in bandwidth are easy to detect;
the estimates reach the new value within the sampling period.
However, Fig. 6 paints a more pessimistic picture for decreas-
es in bandwidth. In each experiment, several estimates fall in
between the old and new bandwidth values. This is because
Odyssey is limited to observing completed windows of data.
When network performance is good, these windows are
allowed to grow large. When performance later drops precipi-
tously, the in-flight window is elongated in time, resulting in
estimates that are off the mark. This problem is exacerbated
by the protocol’s efforts to perform its own adaptations, fur-
ther delaying timely performance updates.

Stability: Improving the
User Experience

The agility of a system is an important metric. It defines the
most turbulent environment in which a system can operate. A
more agile system will provide better fidelity and performance
to users than a less agile one would. However, pursuing agility
while completely sacrificing stability can be counterproductive.

To see why, consider a video player with three
available fidelities. Each of the fidelities provides the
same frame rate, but a different frame quality: high-
quality color, low-quality color, and grayscale. To the
user, the difference between the first two fidelities is
small; one has to look closely to see the artifacts
introduced in the low-quality color frames. However,
the perceived difference between the latter two fideli-
ties is large. Rapidly switching between them is likely
to result in an unpleasant experience for the user.

We believe there is a general principle underlying
this observation: users are tolerant of frequent
changes between fidelities with small perceptual dif-
ferences, but are intolerant of frequent, perceptually
large changes. One might suspect that users would
prefer to remain at a lower fidelity than be exposed
to such changes, much as users prefer systems with
predictable response times to those with variable
latency, even if the average response time is some-
what longer [13].

Tolerance of change, and hence the need for sta-
bility, depends on both the data type at hand and
the application making use of it. The former is easy
to see, as stability is required only when perceptual
differences are pronounced. However, one can
imagine applications that would prefer to increase
or decrease stability independent of perceptual qual-
ity. We are currently exploring ways to include sta-
bility in Odyssey applications. The remainder of this
section outlines our plans for doing so.

Incorporating stability in the core system – the
viceroy – would unnecessarily limit its applicability.
Because the viceroy imposes a fundamental limit on
the agility of all applications, decreasing its agility
would hamper those applications requiring more.
Instead, stability is properly incorporated by individ-
ual applications, as their circumstances warrant.

For example, consider again the video player
with three fidelities. When playing at the middle fidelity, it
must quickly degrade to the lowest one when bandwidth
decreases, else it might suffer a loss of service. However,
when playing at the lowest fidelity, the video player might
choose to be skeptical of an increase in bandwidth, and
delay the corresponding increase in fidelity until it is clear
that the change in performance is a persistent one. This
notion of skepticism is quite general. Each proposed
increase in fidelity might be met with some degree of skep-
ticism, proportional to the perceptual distance between old
and new fidelities.

While the viceroy should not provide stability itself, it can
assist applications in the task of incorporating skepticism.
When notifying an application about a change in resource
availability, the viceroy could also include information about
the expected variance in that estimate. When variance is low,
the application can place more faith in the new estimate, and
reduce its skepticism accordingly. Conversely, when variance
is high, the application must increase its skepticism to avoid
disconcerting oscillations in fidelity choice. While the case for
including uncertainty with estimation is clear for adaptive
applications, there are many other domains in which it might
be useful [14].

Future Work
While we have gained substantial experience in providing
adaptive services to applications, there is much left to be
done. We are currently extending our work along three fronts:

■■ Figure 5. Detecting increased bandwidth.

150
Nominal bandwidth
Estimated bandwidth
Measured throughput

100

50

Es
ti

m
at

ed
 b

an
dw

id
th

 (
kb

yt
es

/s
)

Elapsed time (s)

0
0 20 40 60

■■ Figure 6. Detecting decreased bandwidth.

150

100

50

Es
ti

m
at

ed
 b

an
dw

id
th

 (
kb

yt
es

/s
)

Elapsed time (s)

0
0 20 40 60

Nominal bandwidth
Estimated bandwidth
Measured throughput

IEEE Personal Communications • February 2000 49

improving our notion of fidelity, supporting peer-to-peer, col-
laborative services, and improving the quality of information
passed across the software/radio interface.

Quantifying fidelity in terms of perceptual quality will allow
us to make more direct comparison between different adaptive
schemes. Together with the exposure of variance in resource
estimates, it also enables an exploration of how one might
properly balance the competing concerns of agility and stability.

We are also exploring the impact that interactive, collabora-
tive services place on Odyssey’s model of adaptation. Support-
ing such services is clearly important; doing so will allow us to
directly support peer-to-peer systems. When compared to
stored information, the timeliness constraints of interactive
services reduces the degree to which buffering can mask net-
work variations. Further, one often has at best an approxi-
mate estimate of how on-line fidelity degradation will affect
the size and resource requirements of data. Thus, one needs
to cope with unforeseen variations in the demand for
resources, as well as the supply of them.

Finally, we are exploring the currently inviolable interface
between wireless devices and mobile software. Most software
assumes only that wireless networks forward and deliver pack-
ets as best they can. Likewise, devices treat software only as
equal-opportunity consumers and producers of packets. At
best, each layer hides valuable information from the other; at
worst the layers adapt at cross-purposes. In the Mackinac pro-
ject, we are exploring the use of translucent interfaces to ex-
change the right information across these two layers without
unduly complicating either of them. There are many potential
applications of such information. For example, it might allow
us to more rapidly detect certain classes of network constric-
tion events, such as that in Fig. 6.

Conclusion
We have been exploring application-aware adaptation through
Odyssey for the past several years. Structuring an adaptive,
mobile system as a collaboration between the operating sys-
tem, which provides the mechanisms for adaptation, and the
applications, which supply adaptive policy, has proven to be
powerful. Applications can take their own goals into account
when choosing how to adapt to mobile environments, but can
do so safely in the presence of other applications competing
for the same set of scarce resources.

Acknowledgments
Although this article has a single author, it describes work with
many contributors at both the University of Michigan and
Carnegie Mellon University. Much of the work on Odyssey
was performed at CMU under the author’s doctoral advisor,
M. Satyanarayanan, and with the help of many colleagues,
including Jason Flinn, Dushyanth Narayanan, Morgan Price,

Eric Tilton, and Kip Walker. Work continues on the problem
of mobile data access at Michigan with the help of David
Barkovic, Mark Corner, Ben Fleis, Minkyong Kim, Jim
Zajkowski, and the author’s colleague, Kimberly Wasserman.

This research was supported by the Air Force Materiel
Command (AFMC) under DARPA contract numbers F19628-
93-C-0193 and F19628-96-C-0061, and the Space and Naval
Warfare Systems Center (SPAWAR) under DARPA contract
number N66001-96-C-8505. Additional support was provided
by AT&T, IBM, and Novell. The views and conclusions con-
tained here are those of the author and should not be inter-
preted as necessarily representing the official policies or
endorsements, either express or implied, of AFMC,
SPAWAR, DARPA, AT&T, IBM, Novell, The University of
Michigan, Carnegie Mellon University, or the Governments of
the United States or the State of Michigan.

References
[1] T. S. Rappaport, Wireless Communications: Principles and Practice,

Upper Saddle River, NJ: Prentice Hall PTR. 1996.
[2] R. H. Katz and E. A. Brewer, “The Case for Wireless Overlay Networks,”

Multimedia Computing and Networking 1996, San Jose, CA, Jan 1996,
pp. 77–88.

[3] A. Luotonen and K. Altis, “World-Wide Web proxies,” Computer Net-
works and ISDN Sys., vol. 27, no. 2, Nov. 1994, pp. 147–54.

[4] B. D. Noble and M. Satyanarayanan, “Experience with Adaptive, Mobile
Applications in Odyssey,” Mobile Networks and Apps., to appear.

[5] A. B. Watson, Ed., Digital Images and Human Vision, Cambridge, MA:
MIT Press, 1993.

[6] A. A. Webster et al., “An Objective Video Quality Assessment System
Based on Human Perception,” Human Vision, Visual Processing, and
Digital Display IV, Feb. 1993, San Jose, CA, pp. 15–26.

[7] B. D. Noble et al., “Agile Application-Aware Adaptation for Mobility,”
Proc. 16th ACM Symp. Op. Sys. Principles, St. Malo, France, Oct. 1997,
pp. 276–87.

[8] D. D. Clark, “The Structuring of Systems Using Upcalls,” Proc. 10th ACM
Symp. Op. Sys. Principles, Orcas Island, WA, Dec. 1985, pp. 171–80.

[9] B. D. Noble, M. Price, and M. Satyanarayanan, “A Programming Inter-
face for Application-Aware Adaptation in Mobile Computing,” Comp.
Sys., vol. 8, no. 4, 1995, pp. 345–63.

[10] B. D. Noble, “Mobile Data Access,” Carnegie Mellon University, Ph.D.
thesis, CMU-CS-98-118, 1998.

[11] B. D. Noble et al., “Trace-Based Mobile Network Emulation,” ACM SIG-
COMM ‘97 Conf. Apps., Technologies, Architectures, and Protocols for
Comp. Commun., Cannes, France, Sept. 1997, pp. 51–62.

[12] M. Satyanarayanan, “RPC2 User Guide and Reference Manual,” School
of Comp. Sci., Carnegie Mellon Univ., Oct. 1991.

[13] B. Shneiderman, Designing the User Interface: Strategies for Effective
Human-Computer Interaction, 3rd ed., Reading, MA: Addison-Wesley. 1998.

[14] B. D. Noble, L. Li, and A. Prakash, “The Case for Better Throughput Esti-
mation,” Proc. 7th Wksp. Hot Topics Op. Sys., Rio Rico, AZ, Mar. 1999.

Biography
BRIAN NOBLE (bnoble@umich.edu) is an assistant professor in the Electrical
Engineering and Computer Science Department at the University of Michi-
gan. His research centers on the software supporting mobile computing
systems and wide area information access, including networking, infra-
structure, and end-system concerns. He received the Ph.D. in computer sci-
ence from Carnegie Mellon University in 1998.

