
Wireless Networks 8, 213–230, 2002
 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

An Architecture for Secure Wide-Area Service Discovery

TODD D. HODES, STEVEN E. CZERWINSKI, BEN Y. ZHAO, ANTHONY D. JOSEPH and RANDY H. KATZ
Computer Science Division, University of California, Berkeley, USA

Abstract. The widespread deployment of inexpensive communications technology, computational resources in the networking infrastruc-
ture, and network-enabled end devices poses an interesting problem for end users: how to locate a particular network service or device out
of hundreds of thousands of accessible services and devices. This paper presents the architecture and implementation of a secure wide-area
Service Discovery Service (SDS). Service providers use the SDS to advertise descriptions of available or already running services, while
clients use the SDS to compose complex queries for locating these services. Service descriptions and queries use the eXtensible Markup
Language (XML) to encode such factors as cost, performance, location, and device- or service-specific capabilities. The SDS provides a
fault-tolerant, incrementally scalable service for locating services in the wide-area. Security is a core component of the SDS: communica-
tions are both encrypted and authenticated where necessary, and the system uses a hybrid access control list and capability system to control
access to service information. Wide-area query routing is also a core component of the SDS: all information in the system is potentially
reachable by all clients.

Keywords: network protocols, service discovery, location services, name lookup

1. Introduction

The decreasing cost of networking technology and net-
work-enabled devices is enabling the large-scale deployment
of both [51]. Simultaneously, significant computational re-
sources are being deployed within the network infrastructure,
and this computational infrastructure is being used to offer
many new and innovative services to users of these network-
enabled devices. We define such “services” as applications
with well-known interfaces that perform computation or ac-
tions on behalf of users. For example, an application that al-
lows a user to control the lights in a room [23] is a service.
Other examples of services are printers, fax machines, music
servers, and web services such as the FreeDB.org CD data-
base.

Ultimately, we expect that, just as there are hundreds of
thousands of web servers, there will be at least hundreds of
thousands of services available to end users. Given this as-
sumption, a key challenge for these end users will be locating
the appropriate service for a given task, where “appropriate”
has a user-specific definition (e.g., cost, location, accessibil-
ity, etc.). Clients cannot be expected to track which services
are running or to know which ones can be trusted. Thus,
clients will require a directory service that enables them to
locate the services that they are interested in using, and this
service will have to address such issues as trustworthiness, se-
cure access, (dis)trust management, endpoint mobility, com-
plex query support, and scaling behavior. We have built such
a platform, the Ninja1 Service Discovery Service (SDS). The
SDS enables clients to more effectively search for and use the
services available via the network.

1 The Ninja project is developing a scalable, fault-tolerant, distributed, com-
posable services platform [19].

The SDS is a scalable, fault-tolerant, and secure informa-
tion repository providing clients with directory-style access to
all available services. The SDS can store many types of infor-
mation, including descriptions of services that are available
for execution (“unpinned” services), services running at spe-
cific hosts (“pinned” services), available service platforms,
and passive data. The SDS supports both push-based and pull-
based access; the former allows passive discovery, while the
latter permits the use of a query model.

Service descriptions and queries are specified in eXtensi-
ble Markup Language (XML) [4], leveraging the flexibility
and semantic-rich content of this self-describing syntax.

The SDS also plays an important role in helping clients de-
termine the trustworthiness of services, and vice versa. This
role is critical in an open environment, where there are many
opportunities for misuse, both from fraudulent services and
misbehaving clients. To address security concerns, the SDS
controls the set of agents that have the ability to discover ser-
vices, allowing capability-based access control, i.e., to hide
the existence of services rather than disallowing access to a
located service.

As a globally-distributed, wide-area service, the SDS ar-
chitecture addresses challenges beyond those that operate
solely in the local area: network partitions, component fail-
ures, potential bandwidth limitations between entities, work-
load distribution, and application-level query routing between
components.

This paper presents the design of the SDS, focusing on the
architecture of the directory service, the security features of
the system, and the wide-area query model. Section 2 de-
scribes the system design concepts. Section 3 discusses the
SDS architecture and its security features. Section 4 discusses
wide-area operation. Section 5 presents performance mea-
surements from the SDS prototype implementation. Section 6

214 HODES ET AL.

situates the work with a discussion of related systems. Finally,
we summarize and mention future work in section 7.

2. Design concepts

The SDS system is composed of three main components:
clients, services, and SDS servers. Clients want to discover
the services that are running in the network. SDS servers en-
able this by soliciting information from the services and then
using it to fulfill client queries. In this section, we will discuss
some of the major concepts used in the SDS design to meet
the needs of service discovery, specifically accounting for our
goals of scalability, client and service mobility, support for
complex queries, and secure access.

2.1. Announcement-based information dissemination

In a system composed of hundreds of thousands of servers
and services, the mean time between component failures will
be small. Thus, one of the most important functions of the
SDS is to quickly react to faults. Additionally, we would like
to support at least coarse-grained mobility of clients and ser-
vices, allowing them to change the point where they connect
into the system as they move.

The SDS addresses these issues by using soft state through-
out the system [35]. Soft state is maintained through the
combination of periodic multicast announcements as the pri-
mary information propagation technique, and information
caching rather than reliable state maintenance in system enti-
ties. The caches are updated by the periodic announcements
or purged based on the lack of them. In this manner, com-
ponent failures and mobility are tolerated in the normal mode
of operation (periodic sending and receiving) rather than ad-
dressed through a special recovery procedure [1]. The combi-
nation of periodicity and the use of multicast is often called
the “announce/listen” model in the literature; it is appropri-
ate where the weaker semantics of “eventual consistency”
suffice (versus transactional semantics). The announce/listen
model initially appeared in IGMP [9], and was further devel-
oped and clarified in protocols such as RTP/RTCP and the
MBone Session Announcement Protocol [30]. Refinement of
the announce/listen idea to provide for tolerance of host faults
(leveraging multicast’s indirection within cluster computing
environments [2]) appeared in the context of the AS1 “Active
Services” framework [1]. We will describe our specific use of
announce/listen in sections 3.1 and 3.2.

2.2. XML service descriptions

Rather than use flat name–value pairs (as in, e.g., the Session
Description Protocol [22]), the SDS uses XML [4] to describe
both service descriptions (the identifying information submit-
ted by services) and client queries. XML allows the encoding
of arbitrary structures of hierarchical named values; this flex-
ibility allows service providers to create descriptions that are
tailored to their type of service, while additionally enabling
“subtyping” via nesting of tags.

Figure 1. (A) an example XML query, (B) a matching service description,
and (C) a failed match.

Valid service descriptions have a few required standard
parameters, while allowing service providers to add service-
specific information, e.g., a printer service might have a
color tag that specifies whether or not the printer is capable
of printing in color. An important advantage of XML over
name–value pairs is the ability to validate service descriptions
against a set schema, in the form of Document Type Defini-
tions (DTDs). Unlike a database schema, DTDs provide flexi-
bility by allowing optional validation on a per tag granularity.
This allows DTDs to evolve to support new tags while main-
taining backwards compatibility with older XML documents.

Services encode their service metadata as XML documents
and register them with the SDS. Typical metadata fields in-
clude location, required capabilities, timeout period, connec-
tion protocol, and contact address/port. Clients specify their
queries using an XML template to match against, which can
include service-specific tags. A sample query for a color Post-
script printer and its matching service description are pre-
sented in figure 1.

2.3. Privacy and authentication

Unlike many other directory services, the SDS assumes that
malicious users may attack the system via eavesdropping on
network traffic, endpoint spoofing, replaying packets, mak-
ing changes to in-flight packets (e.g., using a “man-in-the-
middle” attack to return fraudulent information in response
to requests), and the like. To thwart such attacks, privacy
is maintained via encryption of all information sent between
system entities (i.e., between clients and SDS servers and be-
tween services and SDS servers). To reduce the overhead
of the encryption, a traditional hybrid of asymmetric and
symmetric-key cryptography is used.

However, encryption alone is insufficient to prevent fraud.
Thus, the SDS uses cryptographic methods to provide strong
authentication of endpoints. Associated with every compo-
nent in the SDS system is a principal name and public-key
certificate that can be used to prove the component’s identity

AN ARCHITECTURE FOR SECURE WIDE-AREA SERVICE DISCOVERY 215

Figure 2. Components of the Service Discovery Service. Dashed lines correspond to periodic multicast communication between components, while solid
lines correspond to one-time Java RMI connections.

to all other components (see section 3.3). By making authen-
tication an integral part of the SDS, we can incorporate trust
levels into the process used by clients to locate useful ser-
vices. Clients can specify the principals that they both trust
and have access to, and when they pose queries, a SDS server
will return only those services that are run by the specified,
trusted principals.

For example, the official network support staff in a com-
puter science department could maintain an official CS Divi-
sion principal. All the services they maintain, from printers to
email servers, would be signed using this principal. Whenever
clients perform searches, they could specify that they only de-
sire services run by the CS Division principal, ensuring that
only the official email servers and printers would be returned.
This prevents them from accidentally connecting to services
run by individuals in the department. Of course, they can
make use of these service by simply including those individ-
ual’s principals in their searches.

The SDS also supports the advertisement and location of
private services, by allowing services to specify which “ca-
pabilities” are required to learn of a service’s existence. Ca-
pabilities are signed messages indicating that a particular user
has access to a class of services. Whenever a client makes a
query, it also supplies the user’s capabilities to the SDS server.
The SDS server ensures that it will only return the services for
which the user has valid capabilities. Section 3.4 elaborates
on the use of capabilities.

Section 3.5 provides details of our use of authentica-
tion and encryption in the architecture, while section 5.1.1
presents our measurements of the cost of these security com-
ponents.

2.4. Hierarchical organization

As a scalability mechanism, SDS servers organize into mul-
tiple shared hierarchies. Figure 2 illustrates an example con-

figuration with a single hierarchy. Service announcers and
queriers dynamically discover some server in the hierarchy
and interact with the entire system through it, similar to DNS
[32]. The coverage of a particular SDS server is called a “do-
main”, and it is defined as a list of CIDR address ranges that
can change with time.

In addition to providing a structure for the neighbor rela-
tionships between running servers, hierarchical organization
also provides a mechanism for shedding server load – if a
particular SDS server is overloaded, a new SDS server can be
spawned on a nearby machine (if available), assigned to be a
child of the overloaded server, and allocated a portion of the
network extent and, thus, a portion of the load.

Discussion of hierarchical organization is treated in sec-
tion 4.3.

3. Architecture

Figure 2 illustrates the architecture of the Service Discovery
Service, which consists of five components: SDS servers, ser-
vices, capability managers, certificate authorities, and clients.
In the following sections, we describe the components that
compose the SDS, focusing on their roles in the system and
how they interact with one another to provide SDS system
functionality.

3.1. SDS servers

3.1.1. Basic operation
Each server is responsible for sending authenticated messages
containing a list of the domains that it is responsible for on the
well-known SDS multicast channel. These domain advertise-
ments contain the multicast address to use for sending service
announcements, the desired service announcement rate, and
contact information for the Certificate Authority and Capa-

216 HODES ET AL.

bility Manager (described in sections 3.3 and 3.4). The mes-
sages are sent periodically using announce/listen. The aggre-
gate rate of the channel is set by the server administrator to a
fixed fraction of total available bandwidth; the maximum in-
dividual announcement rate is determined by listening to the
channel, estimating the message population, and from this es-
timate, determining the per-message repeat rate, ala SAP [30]
and RTCP [45]. (SDS servers send this value out as a part
of their advertisements so individual services do not have to
compute it.) Varying the aggregate announcement rate ex-
hibits a bandwidth/latency tradeoff: higher rates reduce SDS
server failure discovery latency at a cost of more network traf-
fic. Using a measurement-based periodicity estimation algo-
rithm keeps the traffic from overloading the channel as the
number of advertisers grows, allowing local traffic to scale.

3.1.2. Cluster operation and fault tolerance
SDS servers can utilize local computer clusters to address
coarse-grained load balancing and add robustness to node
failures. In the case of load balancing, when the service load
reaches a certain threshold on an SDS server, it can optionally
spawn a new child server. The new server is assigned to be a
child of the parent in one or more hierarchies, and is allocated
a portion of the existing load by accepting a fraction of the
parent’s network extent. In the case of fault tolerance, nearby
servers that share multicast connectivity act as mirrors, shar-
ing local multicast state updates. If a server goes down, a peer
will notice and, silent to the clients and services, take over [1].

If a server with no transparent backups goes down, its
neighbors will notice the lapse in heartbeats and optionally
attempt to restart it (possibly elsewhere if the node itself is no
longer available). Restarted servers populate their databases
by listening to the existing service announcements, thereby
avoiding the need for an explicit recovery mechanism. Ad-
ditionally, because registered services are still sending to the
original multicast address while this transition occurs, the re-
building is transparent to them. If more than one server goes
down, recovery will start from the top of the hierarchy and
cascade downwards using the regular protocol operation.

In the case of a network partition, a parent will detect
the loss of its child’s heartbeats and either start a new child
to serve the child’s domain or add the child’s domain to its
own announcements. It will think the child has crashed even
though it has not. The disconnected child will attempt to find
a new parent. If it finds one, it will graft onto the hierarchy
at this new point, and if not, it simply continues operating
as before. Clients and services will continue to use the run-
ning server on their side of the partition, possibly after a delay
of one or more announcement periods for those transitioning
to the newly-spawned child or to the parent (i.e., they need
to hear either a new or modified announcement). Operation
continues as usual until the network partition heals. At this
point, there will be two servers advertising overlapping net-
work extent, possibly with different parents. This is detected
either when these servers hear each other’s announcements on
the bootstrap address, or when a child hears two overlapping
announcements. (Clients will be the only ones able to detect

this when the servers are using directed broadcast rather than
multicast to serve multiple subnets, as is done with BOOTP,
DHCP, and the like.) At this point, based on their combined
load, they either elect one to be a transparent mirror (as de-
scribed above) or they split the domain into non-overlapping
sections to service independently. The children may still not
share a parent, but this does not affect the correctness of the
protocol operation. Advanced hierarchy maintenance proto-
cols can detect this non-optimal operating behavior at a coarse
time scale and adapt to it by notifying particular servers to
change their network extent; while we have not defined such
a process, it can be implemented using the existing protocol
mechanisms.

3.1.3. Accepting services and clients
An SDS server’s domain is specified as a list of CIDR net-
work address/mask pairs. This syntax allows for complete
flexibility in coverage space while providing efficient rep-
resentation when domains align to the underlying topology.
Once an SDS server has established its own domain, it be-
gins caching the service descriptions that are advertised in the
domain. The SDS server does this by decrypting all incom-
ing service announcements using the secure one-way service
broadcast protocol (see section 3.5.2), a protocol that pro-
vides service description privacy and authentication. Once
the description is decrypted, the SDS server adds the descrip-
tion to its database and updates the description’s timestamp.
Periodically, the SDS flushes old service descriptions based
on the timestamp of their last announcement. The flush time-
out is an absolute threshold which currently defaults to five
times the requested announcement period.

The primary function of the SDS is to answer client
queries. A client uses Authenticated RMI (section 3.5.3) to
connect to the SDS server providing coverage for its area,
and submits a query in the form of an XML template along
with the client’s capabilities (access rights). The SDS server
uses its internal XSet [55] XML search engine to search for
service descriptions that both match the query and are acces-
sible to the user (i.e., the user’s capability is on the service
description’s ACL). Depending upon the type of query, the
SDS server returns either the best match or a list of possible
matches. In those cases where the local server fails to find a
match, it forwards the query to other SDS servers based on its
wide-area query routing tables as described in section 4.

Note that SDS servers are a trusted resource in this archi-
tecture: services trust SDS servers with descriptions of private
services in the domain. Because of this trust, careful secu-
rity precautions must be taken with computers running SDS
servers – such as, e.g., physically securing them in locked
rooms. On the other hand, the SDS server does not provide
any guarantee that a “matched” service correctly implements
the service advertised. It only guarantees that the returned
service description is signed by the certificate authority spec-
ified in the description. Clients must decide for themselves if
they trust a particular service based on the signing certificate
authority.

AN ARCHITECTURE FOR SECURE WIDE-AREA SERVICE DISCOVERY 217

3.2. Services

Services need to perform three tasks in order to participate
in the SDS system. The first task is to continuously listen for
SDS server announcements on the global multicast channel in
order to determine the appropriate SDS server for its service
descriptions. Finding the correct SDS server is not a one-
time task because SDS servers may crash or new servers may
be added to the system, and the service must react to these
changes.

After determining the correct SDS server, a service then
multicasts its service descriptions to the proper channel, with
the proper frequency, as specified in the SDS server’s an-
nouncement. The service sends the descriptions using authen-
ticated, encrypted one-way service broadcasts. The service
can optionally allow other clients to listen to these announce-
ments by distributing the encryption key.

Finally, individual services are responsible for contacting a
Capability Manager and properly defining the capabilities for
individual users (as will be described in section 3.4 below).

3.3. Certificate authority

The SDS uses certificates to authenticate the bindings be-
tween principals and their public keys (i.e., verifying the dig-
ital signatures used to establish the identities of SDS com-
ponents). Certificates are signed by a well-known Certificate
Authority (CA), whose public key is assumed to be known by
everyone. The CA also distributes encryption key certificates
that bind a short-lived encryption key (instead of a long-lived
authentication key) to a principal. This encryption key is used
to securely send information to that principal. These encryp-
tion key certificates are signed using the principal’s public
key.

The operation of the Certificate Authority is fairly straight-
forward: a client contacts the CA and specifies the princi-
pal’s certificate that it is interested in, and the CA returns the
matching certificate. Since certificates are meant to be public,
the CA does not need to authenticate the client to distribute
the certificate to him; possessing a certificate does not bene-
fit a client unless he also possesses the private key associated
with it. Accepting new certificates and encryption key certifi-
cates is also simple, since the certificates can be verified by
examining the signatures that are embedded within the cer-
tificates. This also means the administration and protection
of the Certificate Authority does not have to be elaborate.

3.4. Capability manager

The SDS uses capabilities as a hybrid access control mech-
anism to enable services to control the set of users that are
allowed to discover their existence. In traditional access con-
trol, SDS servers would have to talk to a central server to ver-
ify a user’s access rights for each search. Capabilities avoid
this because they can be verified locally, eliminating the need
to contact a central server each time an access control list
check is needed.

A capability proves that a particular client is on the access
control list for a service by embedding the client’s principal
name and the service name, signed by some well-known au-
thority. To aid in revocation, capabilities have embedded ex-
piration times.

To avoid burdening each service with the requirement that
it generate and distribute capabilities to all its users, we use
a Capability Manager (CM) to perform the function. Each
service contacts the CM, and after authentication, specifies
an access control list (a list of the principal names, as de-
fined in section 2.3, of all clients that are permitted access to
the service’s description). The CM then generates the appro-
priate capabilities and saves them for later distribution to the
clients. Since the signing is done on-line, the host running the
CM must be secure. Capability distribution itself can be done
without authentication because capabilities, like certificates,
are securely associated with a single principal, and only the
clients possessing the appropriate private key can use them.

3.5. Secure SDS communication

The communication methods used by the SDS balance infor-
mation privacy and security against information dissemina-
tion efficiency. In the following sections, we discuss the vari-
ous types of communication used by the SDS.

3.5.1. Authenticated server announcements
Due to the nature of SDS servers, their announcements must
have two properties: they must be readable by all clients and
non-forgeable. Given these requirements, SDS servers sign
their announcements but do not encrypt them. In addition,
they include a timestamp to prevent replay attacks.

3.5.2. Secure one-way service description announcements
Protecting service announcements is more complicated than
protecting server announcements: their information must be
kept private while allowing the receiver to verify authenticity.
A simple solution would be to use asymmetric encryption, but
the difficulty with this is that asymmetric cryptography is ex-
tremely slow. Efficiency is an issue in this case, because SDS
servers might have to handle thousands of these announce-
ments per hour. Using just symmetric key encryption would
ensure suitable performance, but is also a poor choice, be-
cause it requires both the server and service to share a secret,
violating the soft-state model.

Our solution is to use a hybrid public/symmetric key sys-
tem that allows services to transmit a single packet describing
themselves securely while allowing SDS servers to decrypt
the payload using a symmetric key. Figure 3 shows the packet
format for service announcements. The ciphered secret por-
tion of the packet contains a symmetric key (SK) that is en-
crypted using the destination server’s public encryption key
(EK). This symmetric key SK is then used to encrypt the rest
of the packet (the data payload).

To further improve efficiency, services change their sym-
metric key infrequently. Thus, SDS servers can cache the
symmetric key for a particular service and avoid performing

218 HODES ET AL.

Figure 3. Secure one-way broadcast packet format: SK – shared service-to-server secret key, Sign(CP) – signature of the ciphered secret using the service
private key, EK – server public key, and MAC – message authentication code.

the public key decryption for future messages for the lifetime
of the symmetric key. Additionally, if the service desires other
clients to be able to decrypt the announcements, the service
needs only to distribute SK .

The design of one-way service description announcements
is a good match to the SDS soft-state model: each announce-
ment includes all the information the SDS server needs to de-
crypt it.

3.5.3. Authenticated RMI
For communication between pairs of SDS servers and be-
tween client applications and SDS servers, we use Authen-
ticated Remote Method Invocation (ARMI), as implemented
by the Ninja project [52]. ARMI allows applications to in-
voke methods on remote objects in a two-way authenticated
and encrypted fashion. The choice of ARMI is a function
of our use of Java and orthogonal to the system design; the
necessary functionality can be mapped onto other secure in-
vocation protocols.

Authentication consists of a short handshake that estab-
lishes a symmetric key used for the rest of the session. As
with the other components in the SDS, ARMI uses certificates
to authenticate each of the endpoints. The implementation
also allows application writers to specify a set of certificates
to be accepted for a connection. This enables a client to set a
policy that restricts access to only those remote SDS servers
that have valid “sds-server” certificates. The performance of
ARMI is discussed in section 5.

3.6. Bootstrapping

The SDS bootstrapping technique is analogous to “foreign
agent solicitation” and “foreign agent advertisement” in Mo-
bile IP [33] extended beyond a single local subnet. Clients
discover the SDS server for their domain by listening to a
well-known SDS global multicast address. Our assumption
is that all participating subnets will be covered by some SDS
server that has multicast connectivity to its potential clients;
in the case where a server does not have multicast connectiv-
ity to some portion of its network extent, it will try directed
broadcasts to those subnets. If these are filtered (due to their
potential use in denial-of-service attacks), affected clients will
only be able to use previously-discovered SDS servers until
another in the same multicast scope appears. Alternatively or
additionally, as an optimization, a client can solicit an asyn-
chronous SDS server announcement by using expanding ring
search (ERS) [10]: TTL-limited query messages are sent to
the SDS global multicast address, and the TTL is increased
until there is a response.

4. Wide-area support

The previous section detailed the local interactions of SDS
servers, clients, and service advertisers. In this section, we
describe our approach to server-to-server interaction. In this
regime, the key problem is scaling with respect to the number
of service descriptions and queries in the system.

We begin with a discussion of the basic problem posed by
distributed multi-criteria search, and use this to motivate our
approach to addressing this issue, a hierarchical query filter-
ing infrastructure.

4.1. The challenge of multi-criteria search

One novelty of the SDS is that it attacks a more difficult prob-
lem than other lookup infrastructures. This is due to the al-
lowance for multi-criteria selection in queries (i.e., arbitrary
sets of attribute-value pairs rather than a single element in a
flat or hierarchical namespace), and the fact that these com-
plex queries are allowed to transit the entire global Internet
during resolution. Multiple existing systems present solutions
for either complex queries or wide-area distribution indepen-
dently; few address both.

Many popular service location schemes do not attempt
to address wide-area distribution – e.g., Jini’s Lookup ser-
vice [50] and the IETF Service Location Protocol (SLP) [21].2

Location schemes for name lookup that do provide global-
scale operation can be dissected into categories based on their
approach to query routing and their support (or lack thereof)
for multi-criteria selection. These categories are Centraliza-
tion, Mapping, and Flooding, and we describe the general
principles of each in turn.

Centralization. Schemes that use centralization include
Napster [16] and Web search engines. The scheme enables
multi-criteria search, and can be scaled up through the use
of computer clusters connected by fast LAN or SAN net-
works [17]. Unfortunately, though, this elegant approach suf-
fers known problems: the cluster is a single point of failure,
a single point of litigation (i.e., must secure legal rights to the
data it is processing), and cannot be shared by entities that are
unwilling to trust one another with their data.

Name-specified mapping to neighbor(s). Given the limits
of centralization, schemes such as Globe [49], OceanStore’s
Tapestry [56], Chord [47], Freenet [6], and DataSpace [24]
permit data to remain distributed and partitioned, using some
scheme to decide where to pass a query given the name to

2 A deprecated SLP extension [40] does attempt to provision for “cross-
domain brokering”, but does not give any indication of how to scale such
an approach.

AN ARCHITECTURE FOR SECURE WIDE-AREA SERVICE DISCOVERY 219

be resolved. A popular scheme for providing these mappings
is hashing, e.g., Consistent Hashing [26]. These mappings
are 1-to-M , where M is small, thereby giving a namespace-
determined, deterministic mapping from a name to a set of
nodes. This provides a natural partitioning of the system data,
and thus query and inter-server message traffic is carefully
managed: only a small number of endpoints are given a query,
and together they can unequivocally respond with a negative
or positive response.

The problem with namespace-based mapping is that it can-
not provide multi-criteria selection. The intuition validat-
ing this claim is as follows. Assume that each document in
the system is assigned to a unique partition based on some
name-based mapping scheme. Without loss of generality, as-
sume documents satisfying CRITERIA1 maps to NODES1 and
CRITERIA2 maps to NODES2. Now consider a document sat-
isfying both CRITERIA1 and CRITERIA2. For queries con-
taining either CRITERIA1 or CRITERIA2 to return correct re-
sults, the documents would have to live at both NODES1 and
NODES2, violating the non-duplication assumption. Thus,
our only alternative is that NODES1 = NODES2. Taking this
a step further, the transitive closure of overlapping criteria
form cliques, and these cliques must all live at the same set
of nodes. In other words, if DOC1 satisfies CRITERIA1 and
CRITERIA2, and DOC2 satisfies CRITERIA2 and CRITERIA3,
and DOC3 satisfies CRITERIA3 and CRITERIA4, all docu-
ments DOC1, DOC2, and DOC3 must be colocated, greatly
constraining our ability to partition data. In the worst case,
a certain criteria could be very popular, and thus, force most
documents to one set of nodes. One way around this is by un-
naturally biasing toward one criteria, and requiring all queries
to contain it, as is done in DataSpace. Another way is to al-
low documents to reside in multiple partitions. In this latter
case, though, using a similar argument as that above, each
document in a clique would have to be duplicated at each re-
lated node, leading to excessive duplication. This defeats the
purpose of partitioning.

Thus, the implication of supporting multi-criteria selection
is that there is no natural data partition. Lack of partitioned
data leads us to the next technique.

Flooding. An approach that avoids the listed limitations of
centralization and mapping is flooding, the technique used by
Gnutella [18] and link-state IP routing protocols [31]. Flood-
ing addresses the lack of controlled data partitioning by send-
ing queries to all nodes in the system. This has been shown to
work at the “enterprise” level, and to a limited degree beyond
that, but there are inherent limitations to the scalability of
such an approach: the least-provisioned links limit the ability
to propagate messages through the rest of the system [7,38].
This is not a problem for inter-domain IP routing table main-
tenance because the workload is controlled through the spec-
ification of the update periodicity. Location infrastructures
cannot similarly bound the workload because it is not a sys-
tem parameter – queries are user-generated.

Other strategies use a hybrid of one or more of these ap-
proaches. For example, the stalwart DNS [32] hybridizes

mapping and centralization: data is partitioned, and names
are mapped hop-by-hop based on name suffixes, while reli-
able “base pointers” for all names are centralized (at the root
servers). The scheme works well through the use of exten-
sive positive and negative caching and by keeping update rates
low.

4.2. A new approach: query filtering

We have now summarized the three classes of location tech-
niques and their shortcomings. In the design of the SDS we
have made a design decision that, in steady-state conditions,
an advertised service should be found by a matching query.
We call this property full reachability. This enables clients
to access all services in all SDS servers, modulo access con-
trol provisions. Additionally, the SDS provides support for
the type of multi-criteria selection enabled by local-area, cen-
tralized approaches. Given these decisions, an obvious next
question is: how do we support this feature set in a manner
that scales better than flooding?

Our answer is an approach called filtered query flooding,
or more simply, query filtering. It hybridizes flooding, map-
ping, and when used in a hierarchy, centralization. There are
two key ideas here. First, instead of using only a pull-based
protocol, where a query initiates an exchange of information,
we can also apply a push model, where state information is re-
ported to nodes in the system via proactive update messages.
Second, instead of proactively filling nodes with cached query
responses from the information in updates, we instead prop-
agate summaries of node contents, which are used as filters
that are applied to queries. In this sense, updates are filter
state updates rather than data cache updates.

A third idea is that, when used with nodes organized in
a hierarchy, the approach utilizes centralization. Summaries
are collapsed and aggregated as they move farther from their
source, eventually all culminating at the top of the hierarchy.
The centralization is not a requisite feature, though, only a
byproduct of its use with a tree topology.

Filtered query flooding draws from existing approaches in
its design. In the distributed database community, the notion
of allowing data to be sent to the queries, in addition to vice-
versa, is called “hybrid-shipping client–server query process-
ing” or “cache investment” [27]. In the context of distrib-
uted Web caching, our approach looks like a combination of
the use of the pull-based Internet Cache Protocol (ICP) [53]
and push-based Cache Digests [41], modified to account for
multiple-criteria queries.

To implement query filtering, we have to address its two
major components: dynamic construction and adaptation of
the neighbor relationships between SDS servers, and provi-
sioning of an application-level filtering infrastructure allow-
ing servers to propagate information through the topology.
The information propagation problem can be further decom-
posed into two sub-problems: providing lossy aggregation of
service descriptions as they travel farther from their source
(setting up filter state along the way), and dynamically flood-
ing client queries through the filters to the appropriate servers

220 HODES ET AL.

based on the local aggregate data. In short, we must build and
use “query routing tables”.

We now discuss our proposed solutions to these problems,
and variations on the approach. We start with topology man-
agement, then cover information aggregation and query rout-
ing. With continue with details on range queries, wildcards,
negative caching, and soft-state encoding of the system mes-
sages, and close with a description of our testbed. Experi-
mental results are in section 5.

4.3. Server topology management

The two most common topologies for peer-to-peer location
systems are meshes and trees; all the systems discussed thus
far in this paper use one or the other. OceanStore’s archi-
tecture illustrates the tradeoffs and features of each through
its separation of discovery into (1) a mesh-based probabilis-
tic search, combined with (2) a deterministic approach that
builds a hierarchy (tree) per data item inside a shared hyper-
cube [28].

Following the example of DNS [32], the SDS runs over
a set of hierarchical interconnections. In doing so, the SDS
avoids the need for loop detection (which is left to be man-
aged at a lower layer), and avoids the need for maintaining
per-query state for unresolved queries – all path info is bun-
dled into query metadata and passed along with it. In contrast,
systems not guaranteed to be loop-free must either maintain
a cache of unique identifiers for all queries that have been
handled, and/or rely on decrementing a TTL field, in order to
know when to drop queries. Additionally, the use of a tree
for distribution provides an intrinsic notion of “up”, thereby
allowing us to (optionally) avoid maintaining filter state for
one direction, a direction that is passed missed queries by de-
fault. The major disadvantage of a hierarchical topology is
that a node cannot shortcut arbitrary combinations of paths,
i.e., cannot be in two places in the hierarchy efficiently, as it
could be in a mesh structure.3

Two key questions arise given the use of hierarchy: what
trees to build, and how to construct them. The first question
is a policy decision that we feel must be determined through
experience rather than wired into the architecture; the sec-
ond is a choice of mechanism that is dependent on the type
of hierarchy to be maintained. Because the policy decision
is left to be determined by operational experience, our solu-
tion to it is to allow for the use of multiple hierarchies, and
thus support multiple policies. Examples of possible use-
ful hierarchies include those based on administrative domains
(school or company divisions), network topology (network
hops), network metrics (bandwidth or delay), or geographic
location (distance). The additional utility of supporting multi-
ple hierarchies is that they are independently useful: users can
choose to make queries that resolve based on a specific hier-
archy, thereby allowing querying for a service based on, e.g.,

3 Allowing “cross-cutting paths” in our hierarchy – basically, additional con-
nection and filter state between interior nodes – is a possible way to emulate
mesh path shortcuts, but the utility of such an approach has not been veri-
fied.

geographic proximity in one case and ownership in another.
Additionally, as underlying network characteristics change,
servers can gradually build new hierarchies aligned to the new
circumstances, and transition to use of them.

Individual SDS servers participate in one or more of these
hierarchies by maintaining separate pointers to parents and
children for each hierarchy, along with any associated “rout-
ing table data” (described below) for each pointer. To guar-
antee that a query can reach all SDS servers, one particular
hierarchy must be supported by all servers – the so-called
“primary” hierarchy. Our current implementation uses an ad-
ministrative primary hierarchy (called ADMIN), but a better
choice would be one based on the underlying network charac-
teristics – such as topology or bandwidth – because such a hi-
erarchy requires no manual setup. Specification of a primary
hierarchy is not a requirement for correct operation, but in-
stead a optional, recommended way of supporting full reach-
ability.

Our previous descriptions of SDS client/server operation
does not address how parent/child relationships are deter-
mined, only the mechanisms used to maintain them once
they are known. Examples of possible mechanisms for con-
structing these parent/child relationships include using man-
ual specification in configuration files (e.g., to indicate ad-
ministrative divisions), using geographic data (e.g., through
the use of GPS or DNS LOC records [8]), using topological
data (e.g., using topology discovery [29,37], or using network
measurements (e.g., using a tool such as SPAND [46] to de-
rive bandwidth and latency information). A novel and robust
approach for generating distribution trees (in our case, shared)
is that taken by Gossamer [5]: build a resilient mesh at a lower
layer, and run a routing protocol atop it to construct the trees.
Leveraging the layering of the Gossamer protocol stack, with
its clear distinction between Mesh Management, Routing, and
Data Distribution, we can reuse their lower-layer function-
ality, replacing Gossamer’s data distribution layer – which
focuses on multipoint distribution – with our own for query
and update distribution. Additionally, the SDS would benefit
from replacing Gossamer’s latency-based path metric with a
bandwidth-based one.

Individual node failures can be tolerated in the same man-
ner as is used to tolerate single-server failure in the local-
area case: have multiple workstations listen in on the an-
nounce/listen messages and leverage the indirection to trans-
parently select amongst themselves, a form of mirroring de-
scribed in the Active Services framework [1].

4.4. Description aggregation and query routing

Query filtering reduces the load on servers in the upper tiers
of the hierarchy by localizing query traffic. Similarly, indi-
vidual update operations are not propagated up the hierarchy;
instead, information about these events is summarized into an
“index”. We call the summarization of service descriptions
as they travel up the hierarchy “description aggregation”, and
the process used to combine descriptions the lossy aggrega-
tion function of the hierarchy. We call the operation of iterat-

AN ARCHITECTURE FOR SECURE WIDE-AREA SERVICE DISCOVERY 221

Table 1
Summary of query filtering schemes. Filters determine whether to send queries through or turn them back.
The “Possible responses” column indicates the nature of the information contained in the filter, any of four
types: “yes” – can indicate a hit will occur if the query is sent through; “false yes” – can indicate a hit will
occur, while actually the query will result in a miss; “no” – can indicate a miss will occur; “false no” – can
indicate a miss will occur, while actually the query will result in a hit. “terminals” and “crossed terminals”

are defined in section 4.4.1.

Name Description Possible responses

All-pass/Null filtering No updates – equivalent to flooding yes, false yes
Brokering Subset of list of service descriptions yes, no, false no
Centroid-indexed terminals (CIT) List of all tag values for each element yes, no, false yes
Bloom-filtered crossed terminals (BCT) Criteria hashes put into a Bloom filter yes, no, false yes

ing through the tree, comparing queries against the indices to
determine whether the branch they are summarizing contains
a match for that query, “query routing”. Naturally, these op-
erations are often inextricably combined, as the nature of the
description aggregation defines how queries are routed.

Now that the context has been set, we can delve into
some example query filtering schemes. A summary of these
schemes is shown in table 1. We start by describing the filter-
ing scheme designed for use with the SDS – Bloom-filtered
crossed terminals (BCT) – and then describe the others that
we compare against it.

4.4.1. Bloom-filtered crossed terminals
The default SDS query filtering strategy is “Bloom-filtered
crossed terminals” (BCT). BCT is based on the idea of break-
ing queries/services down to their constituent criteria, hashing
them alone and in aggregate, and inserting these into a Bloom
filter [3] to compress the list of hashes. The intuition and de-
tails are as follows.

Existing name-based mapping strategies hash an object
identifier to decide its location (as might be done with URLs
in web caching). Because we wish to locate services based
on subsets of tags, just computing hashes over service de-
scriptions and queries is not sufficient for correct operation:
all possible matching query values hashes would have to be
computed. To clarify the problem, imagine a service descrip-
tion with three tags. There are seven possible queries that
should “hit” it: each tag individually, the three combinations
of pairs of tags, and all three tags together. Each of these pos-
sible queries would need to be hashed and these hashes stored
to guarantee correctness. There are obvious problems with
computing all these possible hashes: the number of hashes
scales exponentially with respect to the number of tags, and
thus the amount of space required to store and transmit the
hashes produced (seen as memory usage at local servers and
update bandwidth on the network) would be excessive. Ad-
ditionally, there is no way to bound the size of the resulting
list.

Our solution to this problem is to limit the number of
hashes by limiting the number of tag concatenations. We de-
fine the generation of hash entries from tags in terms of a
parameter that effectively trades an increased probability of
false positives for hash-list size and vice versa. The para-
meter, N , is a measure of the completeness of the tag con-
catenations relative to the original document. More formally,

CT3 = ⋃3
i=1 {A,B,C}i

= {A,B,C} ∪ {A,B,C}2 ∪ {A,B,C}3

= {A,B,C} ∪ {AB,AC,BC} ∪ {ABC}
= {A,B,C,AB,AC,BC,ABC}

Figure 4. An example of computing the third-degree crossed terminal set
from a base terminal set (A, B, C).

we define the initial base set of data from a description or
query a terminal set. A terminal set is the linearization of
an hierarchical XML document, comprised of the list of tags
generated by walking from root-to-leaf for all nodes in the
DOM tree [54] of the document. We then define a N th-degree
crossed terminal set as the set containing all combinations of
elements from the terminal set of length less than or equal
to N . Specifically:

⋃N
i=1 terminalsi where the product of set

elements, termA ⊗ termB , is defined as concatenation when
termA < termB and the empty set when termA � termB ;
comparisons are lexigraphic. An example is shown in fig-
ure 4. Limiting the degree of the crossed terminal set (reduc-
ing N) increases the probability of false positives, but also
limits the number of items to hash. Thus, the degree addresses
the exponential growth in a manner that gives a “knob” that
can trade false positives for list size and vice versa.

Incoming queries must be similarly broken up into crossed
terminals (groups of tag combinations) and checked to avoid
a false negative.

Given the use of crossed terminal sets, we would like to
limit the total space that can be occupied by them. To do so,
we insert them into a Bloom filter to compress them. The
key property of Bloom filters is that they provide summariza-
tion of a set of data, but collapse this data into a fixed-size ta-
ble, trading off an increased probability of false positives (“in-
creased summarization”) for index size – exactly the knob we
need to address the issue of long hash lists. This use of Bloom
filters is motivated by a similar use in Web caching [14].
A Bloom filter compresses a list of data d1, . . . , dn by using a
given list of salts4 s1, . . . , sk to create a bit vector of length L.
Bit x is set if and only if hash(di + sj) mod L = x for some
i and j . Inclusion of data item d is queried by testing all
the bit positions hash(d + si) mod L for each i ∈ 1, . . . , k.
If all are set, then the item is assumed to be a member of

4 The salts are used to produce multiple hash values from a single data value.

222 HODES ET AL.

Figure 5. Aggregation of Bloom filters.

the compressed list of data, though it may or may not be
(there can be false positive responses). If any are not set, then
d /∈ d1, . . . , dn. The basic probability of false positives (in-
dependent of table aggregation or degree of the crossed ter-
minals that are hashed) can be reduced by using more salts
and/or a longer bit vector [15]. This approach never causes
false negatives, thereby maintaining the correctness of our
lossy aggregation function in the face of the need for full
reachability.

Now we explain how these ideas are applied to SDS query
routing: upon receipt of a service announcement, an SDS
server S1 applies multiple hash functions (using keyed MD5
and/or groups of bits from a single MD5 depending on ta-
ble size) to various subsets of tags in the service description
(the crossed terminal set) and uses the results to set bits in
a bit vector. The resulting bit vector (the filter) summarizes
its collection of descriptions. This filter is given to neighbor
S2. When S2 receives a query that it cannot resolve locally, it
checks to see if the query should be forwarded to S1 by sim-
ilarly multiply hashing it and checking that all the matching
bits are set in S1’s filter. If any are not set, then the service is
definitely not there – it is a “true miss”. If all are set, then ei-
ther the query hit, or a “false positive” may have occurred due
to aliasing in the table. The latter forces unneeded additional
forwarding of the query, but does not sacrifice correctness.

If an SDS server is also acting as an internal node, it will
have children. Associated with each child will be a similar
bit vector. To perform index aggregation, each server takes
all its children’s bit vectors and ORs them together with each
other and its own bit vector. This fixed-size table is passed
to the parent (using a delta encoding to conserve bandwidth),
who then associates it with that branch of the tree. This is
illustrated in figure 5.

To route queries, the algorithm is as follows: if a query
is coming up the hierarchy, the receiving SDS server checks
to see if it hits locally or in any of its children; if not, it
passes it upward. If it is coming down the hierarchy, the
query is checked locally and against the children’s tables. If
there is a hit locally, the query is resolved locally. If there
is a hit in any of the children’s tables, the query is routed
down to the matching children either sequentially or in par-
allel. If neither of these occur, it is a known miss. We call
this forwarding scheme parent-based filtering (PBF) because
updates are propagated only up the hierarchy, not down to

Figure 6. An example of computing the centroid of XML fragments from
three documents. At top is the data to be summarized; below it is the resulting

centroid.

children. An implemented variation on the above, called full
indexing, maintains filter information for parents in addition
to children. In this case, the algorithm is simpler: instead of
checking only children and then passing to the parent if they
all miss, the server checks all neighbors’ filters and acts ac-
cordingly.

A final problem to address: the bit vectors must be cleaned
up when a service shuts down or moves – we would like
to zero their matching bits. Bits cannot be zeroed directly,
though, because another hash operation may have also set
them, and zeroing them would not preserve full reachability
(i.e., could cause a false miss). To address this, the tables
must either be periodically rebuilt, or per-bit counts must be
tallied and propagated along with the tables. We use per-bit
reference counting, as is done in the Summary Cache [14]
work.

4.4.2. Alternative filtering schemes
We now discuss the other three filtering schemes from table 1.

The simplest possible filter is the “all-pass” or “null” filter,
which lets everything through. This behavior is equivalent to
flooding, as with Gnutella, except that due to the SDS’s tree
structure, queries eventually go to the root rather than circu-
late through a mesh. The benefits of a null filter is that no up-
dates are required, while the disadvantage is that is promises
maximal query load.

Another possible approach is “brokering”. With broker-
ing, a child decides some criteria for determining whether to
pass service descriptions along to its parent. Those that do not
match the criteria remain unreported, available only to those
nodes locally attached (violating full reachability); those that
do are sent in full to the neighbor. Depending on the selec-
tivity of the criteria, this can arbitrarily reduce query load and
update load. Also, passing the complete description is ver-
bose – no compression occurs as the list grows – but it sup-
ports fast and correct operation (no false positives).

A more substantial filter is the “centroid-indexed termi-
nals” scheme (CIT). The basis for this filter scheme is an
approach for WHOIS++/LDAP server content trading called
“centroids” [13]. Computing a centroid involves taking a list
of key-value pairs and creating a concordance of all possible
values for each key. An example is shown in figure 6.

Because the SDS deals with hierarchical sets of key-value
pairs (XML documents) instead of a flat list, we have im-
plemented a modified form of this approach. To do so, we
first create the terminal set (as defined above) of the service

AN ARCHITECTURE FOR SECURE WIDE-AREA SERVICE DISCOVERY 223

descriptions to be sent, and the centroid is then computed
on the terminal set. The benefit of CIT is the fact that up-
dates decrease in size as they are aggregated (except in statis-
tically unlikely worst-case workloads); the downside is that
both aliasing (e.g., “Frank Lennon” in figure 6) and the use of
the terminal set can lead to false positives.

4.5. Range queries, wildcards, and negative caching

Various filtering techniques have different levels of sup-
port for searches with wildcards and/or range queries, e.g.,
those expressed as <name comparison=‘*’>*Zappa
</name> or <size comparison=‘gt’>10</size>.
Flooding, brokering, and CIT support both these query types
naturally, with no additional performance degradation; BCT
supports neither naturally. Full support for both of these more
powerful query types is added by having forwarding nodes
treat XML elements with the special comparison attributes
differently: when making filtering decisions, the compari-
son attribute and element’s value are elided. This maintains
correctness but reduces the efficacy of the filters. (The at-
tribute and value are used when querying against the cache
of service descriptions, and this can done efficiently via XSet,
XQL [39], XML-QL [11], or the like.)

BCT does not efficiently support such wildcarding or
range queries because of a more general problem: it can not
determine the cause of false positives. A way around this
difficulty is to append information on known false positives
(KFPs) to the metadata of failed queries. This technique is
the equivalent of negative caching in the regime of query
filtering; Mockapetris and Dunlap show the importance of
such negative caching for name lookup in the context of the
DNS [32]. KFP caching is implemented as follows. When re-
turning a true miss, a server can optionally attempt to recog-
nize the criteria combination that caused the false positive that
got it there in the first place, and list it as a KFP on the re-
sponse. Such a thing might occur due to the complexity of the
query (having many common terms), the use of a wildcard, or
the use of a range query. KFPs are cached on a per-filter basis,
and used to allow more aggressive pruning of query propaga-
tion, and, more importantly, to address the problem of popular
true misses.

KFPs cannot be passed further down a tree blindly because
updates to neighbors are indications of the aggregate state of
all outgoing links of a node, not the state of a single link. They
can be passed, though, when all the other links in the node
have either (1) a known negative or (2) an identical cached
KFP – information that would be obtained after the first time
a miss is flooded throughout the tree.

4.6. Encoding issues for soft-state messaging

Communications using a soft-state approach must not rely on
state maintenance at the endpoints [35]. This means that ei-
ther a complete set of information must be contained in appli-
cation data units (ADUs), or information must be versioned
and version mismatches must cause the soft-state cache to be

flushed – the endpoints are implying that they no longer agree
what the contents of any shared state may be. Following this
model, the various soft-state encodings of the messages for
wide-area query routing are as follows:

• Updates. In addition to including the deltas (differences)
between the current table state and the previous table state,
a fragment of the existing table is also included. The par-
ticular fragment changes with time, as can its size. The ad-
dition of these table fragments allows any errors or omis-
sions in the local copy of the remote table to be eventually
corrected – without requiring the endpoints to know the
exact state of each other.

• Queries. Queries are inherently stateless, as all path infor-
mation is maintained as metadata wrapped up along with
the query. SDS servers along the path read and update this
metadata at each hop to mark the progress of the query
through the overall structure.

• Query replies. Query replies, like queries, are basically
inherently stateless – except for the optional inclusion of
negative caching information in the form of known false
positives (KFPs). To address this, KFP lists are encoded
as deltas with associated version numbers. If a receiving
server notes a jump in the version number that is not cor-
rected via retransmissions, it flushes its cache of KFPs.

4.7. Summary of node internals

The complete operation of an SDS server node performing
wide-area query filtering is summarized in figure 7. The fig-
ure shows the path of queries as bold arrows and the path of
filter updates at thin arrows. Query responses follow the re-
verse path of queries.

4.8. Testbed

We have implemented and simulated the components of our
wide-area query routing solution and a suite of variations to
better understand the design space. In addition to Bloom-
based filtering (BCT), we have implemented all the filtering
strategies from table 1. In addition to parent-based query
forwarding, we have implemented an update algorithm that
propagates update information to all neighbors – “full” update
forwarding. In addition to sequential (serial) query forward-
ing, we have implemented a query routing scheme that allows
queries to “bifurcate” through the tree in parallel rather than
sequentially. Detailed quantitative results showing tradeoffs
with the four indexing strategies are presented in section 5.2.

5. System performance

In this section, we examine the performance of the SDS and
its underlying search capabilities.

5.1. Single-server performance

Measurements of the local-area service-to-server and client-
to-server interactions are averaged over 100 trials and were

224 HODES ET AL.

Figure 7. SDS node internals for a single hierarchy. Dark arrows are the path of a query; thin arrows are the path of filter updates. Replies follow the reverse
path of queries. The service description cache returns hits; the known false positives cache and filter return misses.

Table 2
Timings of cryptographic routines.

Name Time

DSA signature 33.1 ms
DSA verification 133.4 ms
RSA encryption 15.5 ms
RSA decryption 142.5 ms
Blowfish encryption 2.0 ms
Blowfish decryption 1.7 ms

made using Intel Pentium II 350 MHz machines with 128 MB
of RAM, running Slackware Linux 2.0.36. We used Sun’s
JDK 1.1.7 with the TYA JIT compiler. For security support,
we use the java.security package, where possible, and
otherwise we use the Cryptix security library. For the XML
parser, we use Microsoft’s MSXML version 1.9. We assume
that the majority of SDS queries will contain a small num-
ber of search constraints, and use that model for our perfor-
mance tests. The XML workload consists of XML files gen-
erated by converting other sources of data: printer configura-
tion information and a subset of the CDs from the FreeDB CD
database. For secure communications, SDS uses an authen-
ticated RMI implementation developed by the Ninja research
group [52], which we modified to use Blowfish [43] instead
of TripleDES.

5.1.1. Security component
Table 2 lists the various costs of the security mechanisms used
in the SDS. We profile the use of DSA certificates [42] for
both signing and verifying information, RSA [42] encryption
and decryption as used in the service broadcasts, and Blow-
fish as used in authenticated RMI. Note that both DSA and
RSA are asymmetric key algorithms, while Blowfish is a sym-
metric key algorithm. All execution times were determined
by verifying/signing or encrypting/decrypting 1 KB input
blocks. The measurements verify what should be expected:
the asymmetric algorithms, DSA and RSA, are much more
computationally expensive than the symmetric key algorithm.
This validates the design choice of providing symmetric-key
crypto for the fast path. DSA verification time is especially

Table 3
XSet query performance.

Files Query time

1000 1.17 ms
5000 1.43 ms

10000 2.64 ms
20000 2.76 ms
40000 4.40 ms
80000 5.64 ms

160000 6.24 ms

Table 4
Query latencies for various configurations.

Empty query Full query

Insecure 24.5 ms 36.0 ms
Secure 40.5 ms 82.0 ms

high because it verifies two signatures per certificate: the cer-
tificate owner’s signature and the certificate authority’s signa-
ture.

5.1.2. XML search component
We use the XSet XML [55] search engine to perform queries
against the service description cache. To maximize perfor-
mance, XSet builds an evolutionary hierarchical tag index,
with per tag references stored in treaps (probabilistic self-
balancing trees). As a result, XSet’s query latency increases
only logarithmically with increases in the size of the dataset.
The performance results are shown in table 3. To reduce the
cost of query processing, validation of service descriptions
against their associated Document Type Definition (DTD) is
performed only once, the first time it is seen, not per query or
per announcement.

5.1.3. Aggregate search performance
Table 4 lists the latencies for various SDS single-node
queries: both empty and full queries, with security enabled
and disabled. Times do not include the cost of session ini-
tialization, which is amortized over multiple queries. The

AN ARCHITECTURE FOR SECURE WIDE-AREA SERVICE DISCOVERY 225

Table 5
Secure query latency breakdown.

Query component Latency

Query encryption (client-side) 5.3 ms
Query decryption (server-side) 5.2 ms
RMI overhead 18.3 ms
Query XML processing 9.8 ms
Capability checking 18.0 ms
Query result encryption (server-side) 5.6 ms
Query result decryption (client-side) 5.4 ms
Query unaccounted overhead 14.4 ms

Total (secure XML query) 82.0 ms

basic (empty, insecure) query time includes RMI and net-
work overhead; secure queries add encryption overhead, and
non-null (“full”) queries add search time and overhead due
to their additional length. Service announcement processing
time, which includes both decryption and processing of a sin-
gle 1.2 KB service announcement, averages 9.2 ms.

Table 5 shows the average performance breakdown of a
single-node secure SDS query from a single client. The
SDS server was receiving service descriptions at a rate of 10
1.2 KB announcements per second; XSet contained twenty
service descriptions; and the search lists seven different capa-
bilities to test. (As figure 3 shows, expanding the service de-
scription database contributes little additional latency.) Note
that the table splits encryption time between its client and
server components, and that RMI overhead includes the time
spent reading from the network. The unaccounted overhead
is probably due to context switches, competing network traf-
fic, and object/array copying. As can be inferred from the
table, security accounts for 27% of the total processing cost,
a significant but not dominating percentage.

Extrapolating these performance numbers, we approxi-
mate that a single SDS server can handle approximately
eighty clients sending queries at a rate of one query per sec-
ond.

5.2. Wide-area performance

Measurements of wide-area interaction were made using an
Intel Pentium III 500 MHz with 512 KB of cache and 128 MB
of RAM running Red Hat Linux 2.2.12-20 and Sun’s JDK 1.2.
Our testbed runs on a single node, with messages sent be-
tween SDS servers via intra-JVM method calls. Every aspect
of these “simulations” is identical to real operation except
for the transport mechanism. For XML processing we use
a non-validating parser written by ourselves. For the bench-
marks, queries are sent up neighbor links in some serial order
(not “bifurcated”), we use only a single hierarchy, encryption
and authentication are turned off, and parent-based forward-
ing (rather than full forwarding) is used. Workloads are com-
prised of services announcements derived from CD descrip-
tions from the FreeDB CD database (converted to XML) and
queries are generated by randomly selecting a single tag from
a possible service description and asking for it. For the case
of Brokering, all service descriptions are passed to neighbors

Figure 8. Line, Q : U = 2 : 1. Comparison of aggregate query bandwidth,
update bandwidth, and total bandwidth for the four filtering schemes in a

linear topology with twice as many queries as updates.

(the brokering criteria is “send all services”), thereby main-
taining full reachability and not artificially skewing results in
favor of the scheme.

We now present the results of direct comparisons of the
four implemented indexing strategies from section 4.4. We
attempt to tease out the fundamental tradeoffs between the
schemes through the use of focused “microbenchmark” work-
loads on small topologies. In assessing the approaches, there
are two key components to account for: required update traf-
fic (determined by the description aggregation scheme) and
its effect on query traffic. A given workload can be used to
analyze filters by summing their total update message load
and total query traffic load on a per-link basis. This aggregate
metric – total load – can then be further compared by looking
at averages, the maximum, etc. In a hierarchy, the roots will
often be the scaling bottleneck, and thus, we compare worst-
case maximum total loads.

Our first benchmark looks at ten SDS servers in a linear
topology, thereby investigating the basic properties of a sam-
ple leaf-to-root path. Each server in the line has one entity
communicating with it, either a querier or service announcer
alternating along the line. Queriers send periodic queries,
while service announcers send periodic service registrations.
There are twice as many queries as updates, and thus, the
query-to-update ratio is two (notated “Q : U = 2 : 1”). Re-
sults are shown in figure 8. The figure (and the others like it) is
composed of three bar graphs. The top-left graph shows total
update load on the y axis, and the various links in the topol-
ogy sorted along the x axis. The top-right graph shows total
query load on the y axis, and also has the various links in the
topology along the y. The larger bar graph is the sum of the
two smaller graphs, and it indicates per-link total load. As can
be seen, null filtering requires no update traffic but pays the
toll in much greater query traffic. Brokering, CIT, and BCT
all send similar amounts of query traffic, but broker updates

226 HODES ET AL.

Figure 9. Tree, Q : U = 2 : 1. Comparison of aggregate query bandwidth,
update bandwidth, and total bandwidth for the four filtering schemes in a

binary tree topology with twice as many queries as updates.

Figure 10. Tree, Q : U = 2 : 1. Comparison of aggregate query bandwidth,
update bandwidth, and total bandwidth for the four filtering schemes in a

binary tree topology with an equal number of updates and queries.

are larger than CIT updates, which in turn are larger than BCT
updates. Thus, the worst-case total load is smallest for BCT,
illustrating it works well for this workload and topology.

Our second and third benchmarks look at a seven-node bi-
nary tree topology. In this case there is a querier and service
announcer at each node in the tree. Results are shown in fig-
ures 9 and 10. They are treated here together to illustrate the
importance of update-to-query ratio. The only difference be-
tween the two tests is that in figure 9 the query-to-update ratio
is 2 : 1, while in figure 10 this ratio is 1 : 1. In the former case,
the performance results maintain that the filtering strategies
perform in the same rank order as with the linear topology
(BCT performs best). In the latter, it is actually the null filter

that exhibits minimum worst-case total load. What this illus-
trates is that the cost of updates, whatever the scheme, must
be offset by enough of a query load to make the investment
worthwhile. In short, with very high service join/leave rates,
flooding may be the best policy. Of known workloads for lo-
cation services (e.g., mp3 file sharing, DNS lookups), query
rate dominates service join/leave rate, and thus our results
generally suggest the use of query filtering rather than tree
flooding. But figure 10 is instructive: it argues for workload-
based filter policy control, where the push/pull tradeoff is ei-
ther based on an analysis of a static workload, or otherwise
dynamically adapted as the workload varies.

6. Related work

Service discovery is an area of research that has a long his-
tory. Many of the ideas in the SDS have been influenced by
previous projects.

6.1. DNS and Globe

The Internet Domain Naming Service [32] and Globe [49]
(conceptual descendents of Grapevine [44]) are examples of
systems which perform global discovery of known services:
in the former case, names are mapped to addresses; in the
latter, object identifiers are mapped to the object broker that
manages it. An assumption of this type of service discov-
ery is that keys (DNS fully-qualified domain names or Globe
unique object identifiers) uniquely map to a service, and that
these keys are the query terms. Another assumption is that all
resources are public; access control is done at the application
level rather than in the discovery infrastructure.

The scalability and robustness of DNS and Globe derives
from the hierarchical structure inherent in their unique service
names. The resolution path to the service is embedded in-
side the name, establishing implicit query-routing, thus mak-
ing the problem they address different from that of the SDS.

6.2. Condor classads

The “classads” [34] service discovery model was designed
to address resource allocation (primarily locating and using
off-peak computing cycles) in the Condor system. Classads
provides confidential service discovery and management us-
ing a flexible and complex description language. Descrip-
tions of services are kept by a centralized matchmaker; the
matcher maps clients’ requests to advertised services, and
informs both parties of the pairing. Advertisements and re-
quirements published by the client adhere to a classad spec-
ification, which is an extensible language similar to XML.
The matchmaking protocol provides flexible matching poli-
cies. Because classads are designed to only provide hints
for matching service owners and clients, a weak consistency
model is sufficient and solves the stale data problem.

The classads model is not applicable to wide-area service
discovery. The matchmaker is a single point of failure and

AN ARCHITECTURE FOR SECURE WIDE-AREA SERVICE DISCOVERY 227

performance bottleneck, limiting both scalability and fault-
tolerance. Additionally, while the matchmaker ensures the
authenticity and confidentiality of service, communication
between parties is not secure.

6.3. Jini

The Jini [50] software package from Sun Microsystems pro-
vides the basis for both the Jini connection technology and
the Jini distributed system. In order for clients to discover
new hardware and software services, the system provides the
Jini Lookup Service [48], which has functionality similar to
the SDS.

When a new service or Jini device is first connected to
a Jini connection system, it locates the local Lookup ser-
vice using a combination of multicast announcement, request,
and unicast response protocols (discovery). The service then
sends a Java object to the Lookup service that implements its
service interface (join), which is used as a search template
for future client search requests (lookup). Freshness is main-
tained through the use of leases.

The query model in Jini is drastically different from that
of the SDS. The Jini searching mechanism uses the Java se-
rialized object matching mechanism from JavaSpaces [48],
which is based on exact matching of serialized objects. As
a result, it is prone to false negatives due to, e.g., class ver-
sioning problems. One benefit of the Jini approach is that
it permits matching against subtypes, which is analogous to
matching subtrees in XML. A detriment of the model is that
it requires a Java interface object be sent over the network
to the lookup service to act as the template; such represen-
tations cannot be stored or transported as efficiently as other
approaches.

Security has not been a focus of Jini. Access control is
checked upon attempting to register with a service, rather than
when attempting to discover it; in other words, Jini protects
access to the service but not discovery of the service. Fur-
thermore, communication in the Jini Lookup service is done
via Java RMI, which is non-encrypted and prone to snooping.
Finally, the Jini Lookup Service specifies no mechanism for
server-, client-, or service-side authentication.

A final point of distinction is the approach to wide area
scalability. While the SDS has a notion of distributed hierar-
chies for data partitioning and an aggregation scheme among
them, Jini uses a loose notion of federations, each correspond-
ing to a local administrative domain. While Jini mentions the
use of inter-lookup service registration, it’s unclear how Jini
will use it to solve the wide-area scaling issue. In addition,
the use of Java serialized objects makes aggregation difficult.

Despite the differences in architecture, we have created a
Jini proxy that enables the SDS to discover Jini-enabled ser-
vices and devices, similar to the SLP-Jini bridge [20]. In
essence, we created a proxy that listens for Jini services using
their discovery protocol, and upon finding new services, re-
lays their descriptions (suitably transformed) to the SDS sys-
tem.

6.4. SLP

The IETF Service Location Protocol (SLP) [21], and its wide-
area extension (WASRV) [40], address many of the same is-
sues as the SDS, and some that are not (e.g., internationaliza-
tion). The design of the SDS has benefited from many of the
ideas found in SLP, while attempting to make improvements
in selected areas.

The SLP local-area discovery techniques are nearly identi-
cal to those of the SDS: Multicast is used for announcements
and bootstrapping, and service information is cached in Di-
rectory Agents (DAs), a counterpart to the SDS server. Time-
outs are used for implicit service deregistration.

As for scaling beyond the local area, there are actually
two different mechanisms: named scopes and brokering. In
the former scheme, the local administrative domain is parti-
tioned into named User Agent “scopes” from a flat scoping
namespace. The scheme is not designed to scale globally. In
the latter scheme, the approach is to pick an entity in each
SLP administrative domain (SLPD) to act as an Advertising
Agent (AA), and for these AAs to multicast selected service
information to a wide-area multicast group shared amongst
them. Brokering Agents (BAs) in each SLPD listen to multi-
casts from SLPD AAs, and advertise those services to the lo-
cal SLPD as if they were SAs in the local domain. While the
WASRV strategy does succeed in bridging multiple SLPDs,
it does not address a basic problem: the AAs must be config-
ured to determine which service descriptions are propagated
between SLPDs; in the worst case, everything is propagated,
each domain will have a copy of all services, and thus, there is
no “lossy aggregation” of service information. This inhibits
the scheme from scaling any better than linearly with the
number of services advertised and the number of AAs/BAs.
Additionally, WASRV’s reliance on wide-area multicast is
ill-advised given existing deployment difficulties with inter-
domain multicast routing [12].

One of the most useful aspects of SLP is its structure for
describing service information. Services are organized into
service types, and each type is associated with a service tem-
plate that defines the required attributes that a service descrip-
tion for that service type must contain [21]. The functionality
and expressiveness of this framework is almost an exact map-
ping onto the functionality of XML: each template in SLP
provides the same functionality as an XML DTD. Queries in
SLP return a service URL, whereas XML queries in the SDS
returns the XML document itself (which can itself be a pointer
using the XML XRef facility). There are some benefits to us-
ing XML rather than templates for this task. First, because
of XML’s flexible tag structure, service descriptions may, for
example, have multiple location values or provide novel ex-
tensions (for example, encoding Java RMI stubs inside the
XML document itself). Second, since references to DTDs
reside within XML documents, SDS service descriptions are
self-describing.

A final point of contrast between SLP and SDS is security.
SLP provides authentication in the local administrative do-
main, but not cross-domain. Authentication blocks can be re-

228 HODES ET AL.

quested using an optional field in the service request, provid-
ing a guarantee of data integrity, but no mechanism is offered
for authentication of User Agents. Additionally, because of a
lack of access control, confidentiality of service information
cannot be guaranteed.

Though the systems are disparate, we would like SLP and
the SDS to cooperate rather than compete in providing infor-
mation to clients. We believe that, as with Jini, this could be
achieved through proxying.

6.5. Decentralized distributed location services

Recent projects such as Tapestry [56], Chord [47], and
Content-Addressable Networks (CAN) [36] have focused on
providing name-to-location mapping services over the wide-
area utilizing overlay networks. The systems provide a dis-
tributed hashtable interface, mapping an object’s location
given its global unique identifier.

These location services are novel in that they provide wide-
area scalability in a decentralized manner by organizing nodes
in the form of hypercubes or meshes, with each node main-
taining routing state that scales sublinearly with the size of the
network. Queries for objects are routed based on the object
identifier directly to the object location.

The key distinction between these location services and
the SDS is support for multi-criteria searches. While Chord,
CAN, and Tapestry provide efficient mappings from a single
unique identifier to a location, they are insufficient when users
are searching for an unknown resource or object based on de-
scriptive requirements.

7. Conclusion

7.1. Summary

The continuing growth of networks, network-enabled devices,
and network services is increasing the need for network di-
rectory services. The SDS provides network-enabled devices
with an easy-to-use method for discovering services that are
available. It is a directory-style service that provides a con-
tact point for making complex queries against cached service
descriptions advertised by services. The SDS automatically
adapts its behavior to handle failures of both SDS servers and
services, hiding the complexities of fault recovery from the
client applications. The SDS is also security-minded; it en-
sures that all communication between components is secure
and aids in determining the trustworthiness of particular ser-
vices.

The SDS soft-state model and announcement-based ar-
chitecture offers superior handling of faults and changes in
the network topology. It easily handles the addition of new
servers and services, while also recognizing when existing
services have failed or are otherwise no longer available.

The use of XML to encode service descriptions and client
queries also gives the SDS a unique advantage. Service
providers will be able to capitalize on the extensibility of

XML by constructing service-specific tags to better describe
the services that they offer. Likewise, XML will enable clients
to make more powerful queries by taking advantage of the
semantic-rich service descriptions.

Finally, the SDS integrated security model protects the
sensitive information belonging to services, as well as assists
clients in locating trustworthy services. The SDS is one of
the few service discovery systems that attempts to solve these
security concerns. By exploring design issues in the SDS, we
hope to better understand the tradeoffs involved in offering
this level of privacy.

7.2. Future work

In ongoing work, we are incorporating various result caching
strategies to enable short-cut routing from one interior node to
another. Additionally, we are investigating an approach that
allows indexing strategies to differ based on the workload pre-
sented to the system and the local traffic conditions. We call
this approach “hybrid indexing”, and believe it is a fruitful av-
enue for further investigation: given that particular indexing
strategies perform better for differing workloads (specifically,
the ratio of service join/leave rate to query rate), and given no
a priori knowledge of workload, allowing local optimizations
rather than a static strategy should enable better overall per-
formance. SDS servers could measure the query-to-update
ratio, and vary the amount of information in updates and/or
the underlying filtering strategy.

A more radical design change we are considering is to at-
tempt query filtering over a mesh rather than in a shared hier-
archy. One possible approach to accomplish this would be to
generate a set of loop-free paths in the mesh (possibly reusing
underlying BGP path vectors), and apply the update/filtering
technique as before. This maintains the basic query filter-
ing functionality, but generalizes it in a way where misses do
not propagate to some shared root node – instead, each au-
tonomous system (AS) would know the contents of its BGP
neighbors, and queries would be passed from domain to do-
main.

We have generated performance results showing the trade-
off between update bandwidth and query routing efficiency
exposed by full forwarding, but have not had the time to ana-
lyze them. Similarly, were are still investigating the results on
the tradeoff between query response latency and total band-
width used when queries bifurcate.

Finally, our approach to mobility support can be aug-
mented with the use of forwarding pointers [25] to deal
with especially high-mobility clients, and such pointers could
elevate to stable positions in the hierarchy as is done in
Globe [49].

Acknowledgements

We thank the students and faculty of the Ninja and Iceberg
projects for their assistance in implementing the infrastruc-
ture and for their comments on earlier drafts. We also thank

AN ARCHITECTURE FOR SECURE WIDE-AREA SERVICE DISCOVERY 229

Ketan Mayer-Patel, Michelle Munson, Andrew Begel, and the
anonymous reviewers for their insightful commentary and in-
terest in this work.

References

[1] E. Amir, S. McCanne and R. Katz, An active services framework and
its application to real-time multimedia transcoding, in: Proceedings of
SIGCOMM’98 (1998).

[2] T. Anderson, D. Patterson, D. Culler and the NOW Team, A case for
networks of workstations: NOW, IEEE Micro (February 1995).

[3] B. Bloom, Space/time tradeoffs in hash coding with allowable errors,
Communications of the ACM 13(7) (July 1970) 422–426.

[4] T. Bray, J. Paoli and C.M. Sperberg-McQueen, eXtensible Markup
Language (XML), W3C Recommendation (February 1998) http:
//www.w3.org/XML

[5] Y. Chawathe, S. McCanne and E. Brewer, An architecture for Inter-
net content distribution as an infrastructure service (February 2000)
http://www.cs.berkeley.edu/~yatin/papers/

[6] I. Clarke, O. Sandberg, B. Wiley and T.W. Hong, Freenet: A distributed
anonymous information storage and retrieval system, in: ICSI Work-
shop on Design Issues in Anonymity and Unobservability (July 2000).

[7] Clip 2 Distributed Search Solutions, Bandwidth barriers to Gnutella
network scalability, http://dss.clip2.com/dss_barrier.
html

[8] C. Davis, P. Vixie, T. Goodwin and I. Dickinson, A means for express-
ing location information in the domain name system, IETF, RFC-1876
(January 1996).

[9] S. Deering, Host extensions for IP multicasting, IETF, RFC-1112, SRI
International, Menlo Park, CA (August 1989).

[10] S.E. Deering, Multicast routing in a datagram internetwork, PhD thesis,
Stanford University (1991).

[11] A. Deutsch et al., XML-QL: A query language for XML (August 1998)
http://www.w3.org/TR/1998/NOTE-xml-ql-19980819/

[12] C. Diot, B.N. Levine, B. Lyles, H. Kassem and D. Balensiefen, De-
ployment issues for the IP multicast service and architecture, IEEE
Network, Special Issue on Multicasting (January/February 2000).

[13] P. Faltstrom, R. Schoultz and C. Weider, How to interact with a
WHOIS++ mesh, IETF, RFC-1914 (1995).

[14] L. Fan, P. Cao, J. Almeida and A. Broder, Summary cache: A scal-
able wide-area Web cache sharing protocol, in: Proceedings of SIG-
COMM’98 (1998).

[15] L. Fan, P. Cao, J. Almeida and A. Broder, Summary cache: A scalable
wide-area Web cache sharing protocol, Technical report 1361, Com-
puter Sciences Department, University of Wisconsin-Madison (Febru-
ary 1999).

[16] S. Fanning, Napster, http://www.napster.com
[17] A. Fox, S.D. Gribble, Y. Chawathe, E.A. Brewer and P. Gauthier,

Cluster-based scalable network services, in: Proceedings of the Six-
teenth ACM Symposium on Operating Systems Principles, Vol. 16,
Saint-Malo, France (ACM, October 1997).

[18] J. Frankel and T. Pepper, Gnutella, http://gnutella.wego.com
[19] S. Gribble, M. Welsh et al., The Ninja architecture for robust Internet-

scale systems and services, Special Issue of Computer Networks
on Pervasive Computing (2001) http://ninja.cs.berkeley.
edu

[20] E. Guttman and J. Kempf, Automatic discovery of thin servers: SLP,
Jini and the SLP-Jini bridge, in: Proceedings of the 25th Annual Con-
ference of the IEEE Industrial Electronics Society (1999) pp. 722–
727.

[21] E. Guttman, C. Perkins, J. Veizades and M. Day, Service Location Pro-
tocol, Version 2, IETF, RFC 2165 (November 1998).

[22] M. Handley and V. Jacobson, SDP: Session Description Protocol, IETF,
RFC-2327 (1998).

[23] T. Hodes and R.H. Katz, Composable ad hoc location-based services
for heterogeneous mobile clients, Wireless Networks 5(5), Special Is-

sue on Mobile Computing: Selected Papers from MobiCom’97 (Octo-
ber 1999) 411–427.

[24] T. Imielinski and S. Goel, DataSpace – querying and monitoring deeply
networked collections in physical space, IEEE Personal Communica-
tions Magazine (October 2000).

[25] R. Jain and Y. Lin, An auxiliary user location strategy employing for-
warding pointers to reduce network impact of PCS, Wireless Networks
1(2) (July 1995) 197–210.

[26] D.R. Karger et al., Consistent hashing and random trees: Distributed
caching protocols for relieving hot spots on the World Wide Web, in:
Proceedings of STOC’97 (1997) pp. 654–663.

[27] D. Kossmann, M. Franklin and G. Drasch, Cache investment: Integrat-
ing query optimization and dynamic data placement, ACM Transac-
tions on Database Systems (December 2000).

[28] J. Kubiatowicz et al., OceanStore: An architecture for global-scale per-
sistent storage, in: Proceeedings of the Ninth International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS 2000) (November 2000).

[29] B. Levine, S. Paul and J. Garcia-Luna-Aceves, Organizing multicast re-
ceivers deterministically according to packet-loss correlation, in: Pro-
ceedings of ACM Multimedia’98 (September 1998).

[30] M.P. Maher and C. Perkins, Session Announcement Protocol: Version
2, IETF Internet Draft (November 1998) draft-ietf-mmusic-
sap-v2-00.txt

[31] J. McQuillan, I. Richer and E. Rosen, The new routing algorithm for the
ARPANET, IEEE Transactions on Communications 28(5) (May 1980)
711–719.

[32] P.V. Mockapetris and K. Dunlap, Development of the domain name
system, in: Proceedings of SIGCOMM’88 (August 1988).

[33] C. Perkins et al., IP Mobility Support, IETF, RFC 2002 (October 1996).
[34] R. Raman, M. Livny and M. Solomon, Matchmaking: Distributed re-

source management for high throughput computing, in: Proceedings of
the Seventh IEEE International Symposium on High Performance Dis-
tributed Computing (July 1998).

[35] S. Raman and S. McCanne, A model, analysis, and protocol frame-
work for soft state-based communication, in: Proceedings of ACM SIG-
COMM’99 (September 1999).

[36] S. Ratnasamy, P. Francis, M. Handley, R. Karp and S. Schenker,
A scalable content-addressable network, in: Proceedings of SIGCOMM
(ACM, August 2001).

[37] S. Ratnasamy and S. McCanne, Inference of multicast routing trees and
bottleneck bandwidths using end-to-end measurements, in: Proceed-
ings of INFOCOM’99 (March 1999).

[38] J. Ritter, Why Gnutella can’t scale. No, really, http://www.
darkridge.com/~jpr5/doc/gnutella.html

[39] J. Robie, J. Lapp and D. Schach, XML query language (XQL), in:
QL’98 – The Query Languages Workshop (W3C, December 1998)
http://www.w3.org/TandS/QL/QL98/pp/xql.html

[40] J. Rosenberg, H. Schulzrinne and B. Suter, Wide area network service
location, IETF Draft, Request for Comments (RFC) (December 1997)
draft-ietf-svrloc-wasrv-01.txt

[41] A. Rousskov and D. Wessels, Cache digests, in: Proceedings of the
Third International Web Caching Workshop (June 1998).

[42] B. Schneier, Applied Cryptography, 1st ed. (Wiley, 1993).
[43] B. Schneier, Description of a new variable-length key, 64-bit block

cipher (Blowfish), in: Fast Software Encryption, Cambridge Security
Workshop Proceedings (Springer-Verlag, December 1993) pp. 191–
204.

[44] M. Schroeder, A. Birrell, Jr., and R. Needham, Experience with
Grapevine: the growth of a distributed system, ACM Transactions on
Computer Systems 2(1) (February 1984) 3–23.

[45] H. Schulzrinne, S. Casner, R. Frederick and V. Jacobson, RTP: A trans-
port protocol for real-time applications, IETF, RFC 1889 (January
1996).

[46] S. Seshan, M. Stemm and R.H. Katz, SPAND: Shared passive net-
work performance discovery, in: 1st Usenix Symposium on Inter-
net Technologies and Systems (USITS’97), Monterey, CA (December
1997).

230 HODES ET AL.

[47] I. Stoica, R. Morris, D. Karger, F. Kaashoek and H. Balakrishnan,
Chord: A peer-to-peer lookup service for Internet applications, in:
Proc. ACM SIGCOMM 2001 (September 2001).

[48] Sun Microsystems, Jini technology specifications, White paper, http:
//www.sun.com/jini/specs/

[49] M. van Steen, F. Hauck, P. Homburg and A. Tanenbaum, Locating ob-
jects in wide-area systems, IEEE Communications Magazine (January
1998) 104–109.

[50] J. Waldo, The Jini Architecture for network-centric computing, Com-
munications of the ACM (July 1999) 76–82.

[51] M. Weiser, The computer for the 21st century, Scientific American
265(3) (September 1991) 94–104.

[52] M. Welsh, Ninja RMI, http://www.cs.berkeley.edu/~mdw/
proj/ninja/ninjarmi.html

[53] D. Wessels and K. Claffy, ICP and the squid Web cache, IEEE Journal
on Selected Areas in Communications 16(3) (April 1998) 345–357.

[54] L. Wood, V. Apparao et al., Document Object Model Level 1 specifica-
tion, W3C DOM working group (October 1998) http://www.w3c.
org/DOM/

[55] B. Zhao, XSet, http://www.cs.berkeley.edu/~ravenben/
xset/

[56] B.Y. Zhao, J.D. Kubiatowicz and A.D. Joseph, Tapestry: An infrastruc-
ture for fault-tolerant wide-area location and routing, Technical report
UCB/CSD-01-1141, University of California at Berkeley, Computer
Science Division (April 2001).

Todd David Hodes is a Ph.D. candidate in the com-
puter science division of the department of electri-
cal engineering and computer sciences at UC Berke-
ley. He received his B.S. with high honors in both
computer science and applied mathematics from the
University of Virginia in 1994, and his M.S. in com-
puter science from Berkeley in 1997. His current re-
search interests include large-scale service location
systems, location-based services, service component
frameworks, on-the-fly adaptation of service inter-

faces to account for device heterogeneity, and implementation of applications
that leverage the above.
E-mail: hodes@cs.berkeley.edu

Steven Czerwinski received his Bachelors of Sci-
ence and Masters of Engineering in computer sci-
ence from the Massachusetts Institute of Technology
in 1997. He is currently studying towards his Ph.D.
in computer science at the University of California
at Berkeley under Professor Anthony Joseph. His re-
search interests include application-level protocols in
mobile environments, data and code migration tech-
niques, and security.
E-mail: czerwin@cs.berkeley.edu

Ben Y. Zhao received his B.S. degree in computer
science from Yale University in 1993, and his M.S.
degree from UC Berkeley in 2000. He is currently a
Ph.D. candidate at UC Berkeley’s Computer Science
Division, where his dissertation work is the Tapestry
wide-area location and routing infrastructure. His
research interests include wide-area distributed sys-
tems and associated algorithms, data structures, and
applications.
E-mail: ravenben@cs.berkeley.edu

Anthony D. Joseph received his Ph.D. degree from
MIT in 1998, and joined the faculty of UC Berke-
ley in the Department of Electrical Engineering and
Computer Sciences. His primary research interests
are in mobile and distributed computing, wireless
communications (networking and telephony), and
smart spaces. He is exploring these areas in two ef-
forts, the Iceberg project and the Ninja project, and
in a broader collaboration, the Internet-scale Systems
Research Group.

E-mail: adj@cs.berkeley.edu

Randy Howard Katz received his undergraduate
degree from Cornell University, and his M.S. and
Ph.D. degrees from the University of California,
Berkeley. He joined the faculty at Berkeley in 1983,
where he is now the United Microelectronics Cor-
poration Distinguished Professor in Electrical Engi-
neering and Computer Science. He is a Fellow of
the ACM and the IEEE, and a member of the Na-
tional Academy of Engineering. He has published
over 180 refereed technical papers, book chapters,

and books. His hardware design textbook, Contemporary Logic Design, has
sold over 85,000 copies worldwide. He has supervised 32 M.S. theses and
17 Ph.D. dissertations. He has won numerous awards, including seven best
paper awards, one “test of time” paper award, three best presentation awards,
the Berkeley Distinguished Teaching Award, the 1999 IEEE Reynolds John-
son Information Storage Award, the 1999 ASEE Frederic E. Terman Award,
and the 1999 ACM Karl V. Karlstrom Outstanding Educator Award. With
colleagues at Berkeley, he developed Redundant Arrays of Inexpensive Disks
(RAID), an $18 billion per year industry sector today. While on leave for
government service in 1993–1994, he established whitehouse.gov and
connecting the White House to the Internet. His current research interests are
Internet services architecture, mobile computing, and computer–telephony
integration.
E-mail: randy@cs.berkeley.edu

