Software Testing

Overview of Testing
Faults and Errors
Testing Concepts
Is it a bug? No it is a fault!
Faults and errors
Test cases
Test stubs and drivers
Testing Activities
Unit Testing
Integration Testing
System Testing GUELPH

http://www.guelphhumber.ca Copyright © Qusay H. Mahmoud

Overview of Testing

Some definitions:

Error: The system is in a state such that further
processing by the system will lead to a failure

Fault: (commonly called bug) mechanical or
algorithmic cause of an error

vvvvvvvvvvvv

http://www.guelphhumber.ca Copyright © Qusay H. Mahmoud

=

Faults and Errors (1)

Example of a fault (bug or defect) which is a
design of coding mistake that may cause
abnormal component behavior

vvvvvvvvvvvvv

http://www.guelphhumber.ca Copyright © Qusay H. Mahmoud

Faults and Errors (2)

Example of an error, which is a
manifestation of a fault during the execution
of a system

vvvvvvvvvvvvv

http://www.guelphhumber.ca Copyright © Qusay H. Mahmoud

IN

Faults and Errors (3)

A fault can have an algorithmic cause (e.g.
wrong implementation of the specification by
one of the teams, or bad communication
between development teams)

vvvvvvvvvvvvv

http://www.guelphhumber.ca Copyright © Qusay H. Mahmoud

How do we deal with errors
and faults?

Modular redundancy
Expensive

vvvvvvvvvvvvv

http://www.guelphhumber.ca Copyright © Qusay H. Mahmoud

eV

How do we deal with errors
and faults?

Declare a bug as a Patching
feature (MS) Slows down performance

http://www.guelphhumber.ca Copyright © Qusay H. Mahmoud

Software Testing

What is it?
Systematic attempt to find errors in a planned way
Software Requirements Document vs. observed behavior
Goals:
Maximize the number of discovered faults
Demonstrating that errors are not present

Dijkstra: show the presence of faults but not their
absence

Demonstrating that the software can be depended upon.

vvvvvvvvvvvvv

http://www.guelphhumber.ca Copyright © Qusay H. Mahmoud

[E>N

Examples of Errors

Interface specification: mismatch between
requirements and implementations

Algorithmic faults: missing initialization,
branching errors, missing tests for null

Mechanical faults: user manual doesn’t
match operating procedures

Omissions: features described in
requirements not implemented

vvvvvvvvvvvvv

http://www.guelphhumber.ca Copyright © Qusay H. Mahmoud

Overview of Testing
Activities

Unit Testing: finding faults in objects with respect
to use cases

Integration Testing: finding faults when testing the
components together (subsystems)

System Testing: test all the components together
Functional Testing: test the requirements from RAD

Performance Testing: checks nonfunctional requirements
and design goals from SDD

Acceptance and Installation Testing: checks the
requirements against the project agreement (done by
client, with support from developers if necessary@.ﬁﬁﬁ,H

HUMBER

http://www.guelphhumber.ca Copyright © Qusay H. Mahmoud

ol

Testing Concepts

Test Case

A set of inputs and expected results that exercises a
component with the purpose of causing failure and
detecting faults

Test Stub

A partial implementation of components on which the
tested component depends

Test Driver

A partial implementation of a component that depends
on the tested components

vvvvvvvvvvvv

faults) GUELPH

http://www.guelphhumber.ca Copyright © Qusay H. Mahmoud

Test Cases

Has five attributes:

Name: unique name to distinguish between other test
cases. Testing Deposit(), call it Test_Deposit()

Input: the set of input data or commands to be entered
by the actor of the test case (tester or test driver)

Oracle: expected behavior (output data or commands)
Log: output produced by the test

vvvvvvvvvvvv

http://www.guelphhumber.ca Copyright © Qusay H. Mahmoud

[

Test Cases

Classified into:

Blackbox tests
Focus on input output behavior of the component
Do not deal with internal aspects of components
Do not deal with behavior or structure of components

Whitebox tests:
Focus on internal structure of the component
Every states in the dynamic model and all object interactions are

tests
Most tests require input data that could not be derived from a
description of the functional requirements

vvvvvvvvvvvv

http://www.guelphhumber.ca Copyright © Qusay H. Mahmoud

Test Stubs and Drivers

Used to substitute for missing parts of the system

Test driver

Simulates the part of the system calling the component
under test (it passes the test inputs identified in the test
case to the component and displays the results

Test stub
Simulates components that are called by the tested
component (it provides the same API as the method of
the simulated component and must return a value
compliant with the return result type of the method’s

signature

Copyright © Qusay H. Mahmoud

http://www.guelphhumber.ca

I~

Corrections

A correction is a chance to repair a fault

New faults may get introduced. Techniques
to handle new faults

Problem tracking: keep track of each failure,
error, or fault, its correction, and revisions

Regression testing: re-execution of all prior tests
after change to ensure that functionality worked
before correction hasn’t been affected

vvvvvvvvvvvv

http://www.guelphhumber.ca

| HUMBER
Copyright © Qusay H. Mahmoud

Unit Testing

Motivations:
Reduces the complexity of the overall test activities
(concentrate on smaller units of the system)
Make it easier to pinpoint and correct faults
Allows parallelism in the testing activities (each
component can be tested independent of one another)
Techniques
Equivalence testing
Boundary testing
Path testing

Tools: www.junit.org

vvvvvvvvvvvv

_ HUMBER
http://www.guelphhumber.ca Copyright © Qusay H. Mahmoud

[oe]

Equivalence Testing (1)

A blackbox testing technique to minimize the
number of test cases

Possible inputs are partitioned into equivalence
classes (a test case is selected for each class)

Example: if an object is supposed to accept a negative
number, testing one negative number is enough)

Consists of two steps:

Identification of equivalence classes
Selection of test inputs

vvvvvvvvvvvv

http://www.guelphhumber.ca Copyright © Qusay H. Mahmoud

Equivalence Testing (2)

Criteria for determining equivalence classes

Coverage: every possible input belongs to one of the
equivalence classes

Selecting equivalence classes (guidelines)
Input is valid across range of values. Select test cases
from 3 equivalence classes:
Below the range
Within the range
Above the range

For each Select two

Valid value
Invalid value GUELPH
_ HUMBER
http://www.guelphhumber.ca Copyright © Qusay H. Mahmoud

[©

Equivalence Testing (4)

Example:
class Calendar {

public static int getNumDays(int month, int year) { ...}

Three equivalence classes for the month parameter:
months with (31 days), (30 days), and Feb (28 or 29)
Two equivalence classes the year parameter: leap years
and non-leap years
GUELPH
_ HUMBER
http://www.guelphhumber.ca Copyright © Qusay H. Mahmoud

Equivalence Testing (5)

Example (continued)
Non-positive integers and integers > 12 are invalid value
for the month parameter

Negative integers are invalid for the year parameter

Procedure:
Select one valid value for each parameter and equivalence class
(e.g. Feb, June, July, 1901, 1904)

The method depends on both parameters, therefore we must
combine values to test for interaction...result in 6 equivalence

classes

vvvvvvvvvvvv

http://www.guelphhumber.ca Copyright © Qusay H. Mahmoud

Equivalence Testing (5)

Equivalence Value for Value for

MORRSPwith 31 days, | 7R 1561

non-leap years

Months with 31 days, 7 (_]u|y) 1904

leap years

Months with 30 days, 6 (June) 1901

non-leap years

Months with 30 days, 6 (June) 1904

leap years

Months with 28 or 29 2 (Febr 1901

days, non-leap (b uaw) 90

Months with 28 or 29, |9 (February) 1904 ...

leaps years GUELPH
HUMBER

http://www.guelphhumber.ca Copyright © Qusay H. Mahmoud

Boundary Testing (1)

What is boundary testing?

A special case of equivalence testing that focuses on the
conditions at the boundary of the equivalence classes

Instead of selecting any element in the equivalence

class, boundary testing requires that elements be

selected from the “edges” of the equivalence class.
In our example:

Feb presents several boundary cases

Years that are multiple of 4 are leap years. Years that
are multiple of 100 are not unless they are multiple of
400. Is 2000 a leap year? What about 19007

Other boundary cases: month 0, 13 GUELPH

http://www.guelphhumber.ca Copyright © Qusay H. Mahmoud

Boundary Testing (2)

Additionatdeounslalyeefises: | Value of year
clas$rs divisible by | MO&khary) 2000
400
Non-leap years 2 (February) 1900
divisible by 100
Nonpositive invalid |0 1291
months
Positive invalid 13 1315
months

vvvvvvvvvvvv

http://www.guelphhumber.ca Copyright © Qusay H. Mahmoud

Path Testing (1)

A whitebox testing technique that identifies faults
in the implementation of a component

Assumption: exercising all possible paths through

the code at least once, most faults will trigger
failures

Identification of paths require knowledge of source code
and data structures

Starting point: flow graph

Consists of nodes representing executable blocks and
associations representing flow of control

A block is a number of statements between two
decisions GUELPH

http://www.guelphhumber.ca Copyright © Qusay H. Mahmoud

Path Testing (2)

Flow graphs:

A flow graph can be constructed from the code
of a component by mapping decision statements
(if, while loops, etc) to node lines

Statements between each decision point (then
block, else block) are mapped to other nodes

Associations between each node represent the
precedence relationship

vvvvvvvvvvvvv

http://www.guelphhumber.ca Copyright © Qusay H. Mahmoud

Path Testing (9)

The minimum number of tests necessary to
cover all edges is equal to the number of
independent paths through the flow graph

Cyclomatic complexity
cc = number of edges — number of nodes + 2

vvvvvvvvvvvvv

http://www.guelphhumber.ca Copyright © Qusay H. Mahmoud

Integration Testing (1)

Detects faults that have not been detected
during unit testing

Two or more components are integrated and
tested...if no faults, additional components
are added to the group

In which order would you test components?
This is important as it can influence the total
effort required

vvvvvvvvvvvvv

http://www.guelphhumber.ca Copyright © Qusay H. Mahmoud

