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Abstract
Classic cycle-joining techniques have found widespread application in creating universal cycles for a diverse range of combinatorial

objects, such as shorthand permutations, weak orders, orientable sequences, and various subsets of k-ary strings, including de Bruijn
sequences. In the most favorable scenarios, these algorithms operate with a space complexity of O(n) and require O(n) time to generate
each symbol in the sequences. In contrast, concatenation-based methods have been developed for a limited selection of universal cycles. In
each of these instances, the universal cycles can be generated far more efficiently, with an amortized time complexity of O(1) per symbol,
while still using O(n) space. This paper introduces concatenation trees, which serve as the fundamental structures needed to bridge the gap
between cycle-joining constructions and corresponding concatenation-based approaches. They immediately demystify the relationship
between the classic Lyndon word (necklace) concatenation construction of de Bruijn sequences and a corresponding cycle-joining based
construction. To underscore their significance, concatenation trees are applied to construct universal cycles for shorthand permutations,
weak orders, and orientable sequences in O(1)-amortized time per symbol.
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1 Introduction

Readers are likely familiar with the concept of a de Bruijn sequence (DB sequence), which is a circular string of length
kn in which every k-ary string of length n appears once as a substring. For example, a binary DB sequence for n = 4 is
0000100110101111. The study of these sequences dates back to Pingala’s Chandah. śāstra (’A Treatise on Prosody’)
over two thousand years ago (see [33, 48, 49, 50]). They have a wide variety of well-known modern-day applications [1] and
their theory is even being applied to de novo assembly of read sequences into a genome [4, 9, 35, 47, 52]. More broadly, when
the underlying objects are not k-ary strings, the analogous concept is often called a universal cycle [8], and they have been
studied for many fundamental objects including permutations [27, 32, 38, 51], combinations [10, 29, 30], set partitions [26],
and graphs [6].

In this paper, we develop a concatenation framework for the generation of DB sequences and universal cycles. We prove
that each such sequence is equivalent to one generated by a corresponding successor rule that is based on an underlying
cycle-joining tree. As we demonstrate, the concatenation constructions can often be implemented to generate the sequences in
O(1)-amortized time per symbol, whereas the corresponding successor-rule generally requires O(n) time. To illustrate our
approach, it is helpful to consider a slightly more complex object. A weak order is a way competitors can rank in an event,
where ties are allowed. For example, in a horse race with five horses labeled h1, h2, h3, h4, h5, the weak order (using a rank
representation) 22451 indicates h5 finished first, the horses h1 and h2 tied for second, horse h3 finished fourth, and horse h4
finished fifth. No horse finished third as a result of the tie for second. Let W(n) denote the set of weak orders of order n. For
example, the thirteen weak orders for n = 3 are given below:

W(3) = {111, 113, 131, 311, 122, 212, 221, 123, 132, 213, 231, 312, 321}.

Note that W(n) is closed under rotation. For this reason, we can apply the pure cycling register (PCR), which corresponds to
the function f(a1a2 · · · an) = a2 · · · ana1, to induce small cycles. Then, we repeatedly join the smaller cycles together to
obtain a universal cycle. In this approach, we partition W(n) into equivalence classes under rotation. These classes are called
necklaces and we use the lexicographically smallest member of each class as its representative. So {113, 131, 311} is one
class with representative 113, and {111} is another class. Each class of size t has a universal cycle of length t, namely the
representative’s aperiodic prefix (i.e., the shortest prefix of a string that can be concatenated some number of times to create
the entire string). So 113 is a universal cycle for {113, 131, 311}, and 1 is a universal cycle for {111} (since 1 is viewed
cyclically). Each necklace class can be viewed as a directed cycle induced by the PCR, where each edge corresponds to a
rotation (i.e., the leftmost symbol is shifted out and then shifted back in as the new rightmost symbol), as seen in Figure 1a for
n = 3. Two cycles can be joined together via a conjugate pair (formally defined in Section 2.1) to create a larger cycle as
illustrated in Figure 1b. This is done by replacing a pair of rotation edges with a pair of edges that shift in a new symbol.
Repeating this process yields a universal cycle 1113213122123 for W(3).
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(a) Necklace cycles for W(3), where the representative of each class is at the top
of its cycle, and the universal cycle is in the middle.
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(b) Necklace cycles 122 and 123 are joined into a single cycle.
The universal cycle for these strings is 122123.

Figure 1 Initial steps to building a universal cycle for W3.

In many cases, pairs of cycles can be joined together to form a cycle-joining tree. For example, Figure 2a illustrates a
cycle-joining tree for W(4) based on an explicit parent rule stated in Section 5.3. Given a cycle-joining tree, existing results
in the literature [23, 24] allow us to generate a corresponding universal cycle one symbol at a time. But what if we want to
generate the universal cycle faster? For instance, suppose that instead of generating one symbol at a time, we can generate
necklaces one at a time.1 How can we do this? This goal of generating one necklace at a time has been achieved in only a

1 In practice, a DB sequence (or universal cycle) does not need to be returned to an application one symbol at a time, but rather a word can be
shared between the generation algorithm and the application. The algorithm repeatedly informs the application that the next batch of symbols in
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(a) A cycle-joining tree for weak orders when n = 4. The precise parent
rule appears in Section 5.3.
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(b) A concatenation tree Tweak for weak orders when n = 4 illustrating
the RCL order.

Figure 2 Two tree structures for creating a universal cycle for W4.

handful of cases [12, 17, 20, 37, 41]. Most notably, the DB sequence known as the Ford sequence, or the Granddaddy (see
Knuth [34]), can be created by concatenating the associated representatives in lexicographic order [18], matching the DB
sequence given earlier: 0 0001 0011 01 0111 1. But these concatenation constructions have been the exception rather than the
rule, and there has been no theoretical framework for understanding why they work. Here, we provide the missing link. For
example, the unordered cycle joining tree in Figure 2a is redrawn in Figure 2b. The new diagram is a bifurcated ordered tree
(formally defined in Section 3), meaning that children are ordered and partitioned into left and right classes, and importantly
some representatives have changed. If the tree is explored using an RCL traversal (i.e., right children, then current, then left
children), then — presto! — a concatenation construction of a universal cycle for W(4) is created:

1 1114 3214 3124 2124 3114 1323 1324 13 1314 2214 2314 1133 1134 2133 2134 1222 1224 1233 1234.

Main result: This paper introduces concatenation trees and RCL traversals, which bridge the gap between k-ary
PCR-based cycle-joining trees and concatenation constructions for corresponding universal cycles. We apply the
framework to construct universal cycles in O(1)-amortized time per symbol using polynomial space for (1) shorthand
permutations, (2) weak orders, (3) orientable sequences, and (4) DB sequences.

Our main result generalizes many interesting results for DB sequences and their relatives, with details provided in Section 2.2
and Section 5.1.

1. It demystifies the relationship between the successor rule and the concatenation construction of the previously mentioned
Granddaddy DB sequence [16, 18], by providing a clear correspondence between the concatenation construction and the
successor rule derived from an underlying cycle-joining tree.

2. Similar to the Grandaddy, it demystifies the relationship between the known successor rule and concatenation construction
of the Grandmama DB sequence [12].

3. It provides the first proof of an observed correspondence between a successor rule construction [31, 45] and a simple
concatenation construction observed in [20] (that we later name the Granny DB sequence).

4. It generalizes known results for bounded weight universal cycles [40, 43, 44] and universal cycles with forbidden 0j

substring [20, 44]; the latter has recent application in quantum key distribution schemes [7].

Additionally, we apply the framework to other combinatorial objects to highlight its general significance.

the sequence is ready. This allows the generation algorithm to slightly modify the shared word and provide O(n) symbols to the application as
efficiently as O(1)-amortized time [12].
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1. Concatenation trees are applied to a O(n) time per symbol cycle-joining construction for shorthand permutations [24] to
generate the same universal cycle in O(1)-amortized time per symbol using O(n2) space.

2. Concatenation trees are applied to a O(n) time per symbol cycle-joining construction for weak orders [46] to generate the
same universal cycle in O(1)-amortized time per symbol using O(n2) space.

3. Concatenation trees are applied to a O(n) time per symbol cycle-joining construction for orientable sequences [22] to
generate the same universal cycle in O(1)-amortized time per symbol using O(n2) space.

While our focus is on PCR-based cycle-joining trees, preliminary evidence indicates that our framework can be generalized
(though non-trivially) to other underlying feedback functions in the binary case including:

the Complementing Cycling Register (CCR) with feedback function f(a1a2 · · · an) = 1 ⊕ a1 = a1,

the Pure Summing Register (PSR) with feedback function f(a1a2 · · · an) = a1 ⊕ a2 · · · ⊕ an,

the Complementing Summing Register (CSR) with feedback function f(a1a2 · · · an) = 1 ⊕ a1 ⊕ a2 · · · ⊕ an, and

the Pure Run-length Register (PRR) with feedback function f(a1a2 · · · an) = a1 ⊕ a2 ⊕ an,

where ⊕ is addition modulo 2, and x is the complement of x. This has the potential to unify a large body of independent results,
enabling new and interesting results. In particular, the recently introduced pure run-length register (PRR) [39] is conjectured
to be the underlying feedback function used in a lexicographic composition construction [17]. Furthermore, the PRR is
proved to be the underlying function used in the greedy prefer-same [13] and prefer-opposite [3] constructions; however, no
concatenation construction is known. The first successor rule based on the complementing cycling register (CCR) is noted to
have a very good local 0-1 balance [28]; however, no corresponding concatenation construction is known. There are two known
CCR-based concatenation constructions [19, 20], but there is no clear correlation to an underlying cycle-joining approach,
even though one appears to be equivalent to a successor rule from [23]. The cool-lex concatenation constructions [37]
have equivalent underlying successor rules based on the pure summing register (PSR) and the complementing summing
register (CSR). This correspondence was not observed until considering larger alphabets [41], though little insight to the
correspondence is provided in the proof. Cycle-joining constructions based on the PSR/CSR are also considered in [14, 15].

Outline. In Section 2, we present the necessary background definitions and notation along with a detailed discussion of
cycle-joining trees and their corresponding successor rules. In Section 3, we introduce bifurcated ordered trees, which are the
structure underlying concatenation trees. In Section 4, we introduce concatenation trees along with a statement of our main
result. In Section 5, we apply our framework to a wide variety of interesting combinatorial objects, including DB sequences.
Implementation of the universal cycle algorithms presented in this paper are available at http://debruijnsequence.
org.

2 Preliminaries

Let Σ = {0, 1, 2, . . . , k − 1} denote an alphabet with k symbols. Let Σn denote the set of all length-n strings over Σ.
Let α = a1a2 · · · an denote a string in Σn. The notation αt denotes t copies of α concatenated together. The aperiodic
prefix of α is the shortest string β such that α = βt for some t ≥ 1; the period of α is |β|. Let ap(α1, α2, . . . , αn)
denote the concatenation of the aperiodic prefixes of α1, α2, . . . , αt. For example ap(0000, 0111, 1010) = 0011110, and
ap(010101) = 01. Note that 010101 has period equal to 2. If the period of α is n, then α is said to be aperiodic (or primitive);
otherwise, it is said to be periodic (or a proper power). When k = 2, let ai denote the complement of a bit ai.

A necklace class is an equivalence class of strings under rotation. A necklace is the lexicographically smallest representative
of a necklace class. A Lyndon word is an aperiodic necklace. Let Nk(n) denote the set of all k-ary necklaces of order n. As
an example, the six binary necklaces for n = 4 are: N2(4) = {0000, 0001, 0011, 0101, 0111, 1111}. Let [α] denote the set of
all strings in α’s necklace class, i.e., the set of all rotations of α. For example, [0001] = [1000] = {0001, 0010, 0100, 1000}
and [0101] = {0101, 1010}. The pure cycling register (PCR) is a shift register with feedback function f(a1a2 · · · an) = a1.
Starting with α, it induces a cycle containing the strings in α’s necklace class. For example,

0001 → 0010 → 0100 → 1000 → 0001

http://debruijnsequence.org
http://debruijnsequence.org
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is a cycle induced by the PCR that can be represented by any string in the cycle. Given a tree T with nodes (cycles induced by
the PCR) labeled by necklace representatives {α1, α2, . . . , αt}, let ST = [α1] ∪ [α2] ∪ · · · ∪ [αt]. For example, if n = 4 and
T contains two nodes {0001, 0101} then ST = {0001, 0010, 0100, 1000} ∪ {0101, 1010}.

Given S ⊆ Σn, a universal cycle U for S is a cyclic sequence of length |S| that contains each string in S as a substring
(exactly once). Given a universal cycle U for a set S ⊆ Σn, a successor rule for U is a function f : S → Σ such that f(α) is
the symbol following α in U .

2.1 Cycle joining trees

In this section we review how two universal cycles can be joined to obtain a larger universal cycle. Let x, y be distinct symbols
in Σ. If α = xa2 · · · an and α̂ = ya2 · · · an, then α and α̂ are said to be conjugates of each other, and (α, α̂) is called a
conjugate pair. The following well-known result (see for instance Lemma 3 in [42]) based on conjugate pairs is the crux of
the cycle-joining approach.2

▶ Theorem 1. Let S1 and S2 be disjoint subsets of Σn such that α = xa2 · · · an ∈ S1 and α̂ = ya2 · · · an ∈ S2; (α, α̂) is
a conjugate pair. If U1 is a universal cycle for S1 with suffix α and U2 is a universal cycle for S2 with suffix α̂ then U = U1U2
is a universal cycle for S1 ∪ S2.

Let Ui denote a universal cycle for Si ⊆ Σn. Two universal cycles U1 and U2 are said to be disjoint if S1 ∩ S2 = ∅. A
cycle-joining tree T is an unordered tree where the nodes correspond to a disjoint set of universal cycles U1, U2, . . . , Ut; an
edge between Ui and Uj is defined by a conjugate pair (α, α̂) such that α ∈ Si and α̂ ∈ Sj . For our purposes, we consider
cycle-joining trees to be rooted. If the cycles are induced by the PCR, i.e., the cycles correspond to necklace classes, then T is
said to be a PCR-based cycle-joining tree. As examples, four PCR-based cycle-joining trees are illustrated in Figure 3; their
nodes are labeled by the necklaces N2(6). They are defined by the following parent-rules, which determines the parent of a
given non-root node.

Four “simple” parent rules defining binary PCR-based cycle-joining trees

T1: rooted at 1n and the parent of every other node α ∈ N2(n) is obtained by flipping the last 0.
T2: rooted at 0n and the parent of every other node α ∈ N2(n) is obtained by flipping the first 1.
T3: rooted at 0n and the parent of every other node α ∈ N2(n) is obtained by flipping the last 1.
T4: rooted at 1n and the parent of every other node α ∈ N2(n) is obtained by flipping the first 0.

Note that for T3 and T4, the parent of a node α is obtained by first flipping the named bit and then rotating the string to its
lexicographically least rotation to obtain a necklace. Each node α and its parent β are joined by a conjugate pair where the
highlighted bit in α is the first bit in one of the conjugates. For example, the nodes α = 011011 and β = 001011 in T2 from
Figure 3 are joined by the conjugate pair (110110, 010110).

When two adjacent nodes Ui and Uj in a cycle-joining tree T are joined to obtain U via Theorem 1 (rotating the cycles as
appropriate), the nodes are unified and replaced with U (the edge between Ui and Uj is contracted). Repeating this process
until only one node remains produces a universal cycle for S1 ∪ S2 ∪ · · · ∪ St. In the binary case, the same universal cycle is
produced, no matter the order in which the cycles are joined. This is because no string can belong to more than one conjugate
pair in the underlying definition of T. However, when k > 2, the order that the cycles are joined can be important.

Example 1 The following illustrates two different ways to join the cycles in a PCR-based cycle-joining tree T for n = 3 and
k = 3 with three nodes represented by 001, 002, and 003 joined via conjugate pairs (100, 200), (200, 300). Note the string 200
belongs to both conjugate pairs.

2 The cycle-joining approach has graph theoretic underpinnings related to Hierholzer’s algorithm for constructing Euler cycles [25].



5

111111

011111

001111 010111 011011

001011 001101 010101000111

000011 000101 001001

000001

000000

T1: Last 0

000000

000001

000011000101001001

000111001011001101010101

001111010111011011

011111

111111

T2: First 1

T3: Last 1 T4: First 0

111111

011111

011011 010111 001111

000111

000011

000001

000000

001011010101001101

000101001001

000000

000001

000011

000111

001111

011111

111111

011011

001101

000101 001001

001011 010101

010111

Figure 3 Cycle-joining trees for n = 6 and k = 2 derived from the four simple parent rules. The node 001101 is joined to a different
parent cycle in each tree. In particular, the edge 001101–001111 in T1 is obtained by flipping its last 0.
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The resulting universal cycle for ST = [001] ∪ [002] ∪ [003] is different in each case.

In upcoming discussion regarding both successor rules and concatenation trees, we require the underlying cycle-joining
trees to have the following property when k > 2.
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Chain Property: If a node in a cycle-joining tree T has two children joined via conjugate pairs (xa2 · · · an, ya2 · · · an)
and (x′b2 · · · bn, y′b2 · · · bn), then a2 · · · an ̸= b2 · · · bn.

000

001002

Observe that the Chain Property is satisfied in Example 1, and is always satisfied when k = 2. The
cycle-joining tree on the right with conjugate pairs (000, 100) and (000, 200) illustrates a rooted
tree that does not satisfy the Chain Property.

2.2 Successor-rule constructions

Let T be a PCR-based cycle-joining tree where the nodes are joined by a set C of conjugate pairs. We say γ belongs to a
conjugate pair (α, α̂) if either γ = α or γ = α̂. If k = 2, the following function f0 is a successor rule for the corresponding
universal cycle for ST [23], where α = a1a2 · · · an:

f0(α) =
{

a1 if α belongs to some conjugate pair in C;
a1 otherwise.

Applying the successor rule f0 directly requires an exponential amount of memory to store the conjugate pairs. However, a
cycle-joining tree defined by a straightforward parent rule may allow for a much more efficient implementation, using as little
as O(n) space and O(n) time. Recall the four parent rules stated for the trees T1, T2, T3, T4. The upcoming four successor
rules pcr1, pcr2, pcr3, pcr4, which correspond to f0, are stated generally for any subtree T of the corresponding cycle-joining
tree; they will be revisited in Section 5.1. Previously, these successor rules were stated for the entire trees in [23], and then for
subtrees that included all nodes up to a given level [24] putting a restriction on the minimum or maximum weight (number of
1s) of any length-n substring.

T1 (Last 0) Let j be the smallest index of α = a1a2 · · · an such that aj = 0 and j > 1, or j = n+1 if no such index exists. Let
γ = ajaj+1 · · · an0a2 · · · aj−1 = ajaj+1 · · · an01j−2.

pcr1(α) =
{

a1 if γ is a necklace and a2 · · · ana1 ∈ ST ;
a1 otherwise.

T2 (First 1) Let j be the largest index of α = a1a2 · · · an such that aj = 1, or j = 0 if no such index exists. Let γ =
aj+1aj+2 · · · an1a2 · · · aj = 0n−j1a2 · · · aj .

pcr2(α) =
{

a1 if γ is a necklace and a2 · · · ana1 ∈ ST ;
a1 otherwise.

T3 (Last 1) Let α = a1a2 · · · an and let γ = a2a3 · · · an1.

pcr3(α) =
{

a1 if γ is a necklace and a2 · · · ana1 ∈ ST ;
a1 otherwise.

T4 (First 0) Let α = a1a2 · · · an and let γ = 0a2a3 · · · an.

pcr4(α) =
{

a1 if γ is a necklace and a2 · · · ana1 ∈ ST ;
a1 otherwise.

The DB sequences obtained by applying the four successor rules for n = 6 and k = 2 to T = T1,T2,T3,T4,
respectively, are provided in Table 1. The spacing between some symbols are used to illustrate the correspondence to
upcoming concatenation constructions. The DB sequence generated by pcr1 is the well-known Ford sequence [16], and is
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Successor rule DB sequence for n = 6 and k = 2
pcr1 0 000001 000011 000101 000111 001 001011 001101 001111 01 010111 011 011111 1
pcr2 0 000001 001 000101 01 001101 000011 001011 011 000111 010111 001111 011111 1
pcr3 1 111110 111100 111000 110 110100 110000 101110 101100 10 101000 100 100000 0
pcr4 1 111110 110 100 100110 111010 10 110010 100010 111100 111000 110000 100000 0

Table 1 DB sequences resulting from the successor rules corresponding to the cycle-joining trees T1, T2, T3, T4 from Figure 3.

called the Granddaddy by Knuth [34]. It is the lexicographically smallest DB sequence, and it can also be generated by a
prefer-0 greedy approach attributed to Martin [36]. Furthermore, Fredricksen and Maiorana [18] demonstrate an equivalent
necklace (or Lyndon word) concatenation construction that can generate the sequence in O(1)-amortized time per bit. The
DB sequence generated by pcr2 is called the Grandmama by Dragon et al. [12]; it can also be generated in O(1)-amortized
time per bit by concatenating necklaces in co-lexicographic order. The DB sequence generated by pcr3, was first discovered
by Jansen [31] for k = 2, then generalized in [45]. It is conjectured to have a concatenation construction by Gabric and
Sawada [20], a fact we prove in Section 5.1. The DB sequence generated by pcr4, was first discovered by Gabric, Sawada,
Williams, and Wong [23]. No concatenation construction for this sequence was previously known which served as the initial
motivation for this work.

2.2.1 Non-binary alphabets

Consider a non-binary alphabet where k > 2. Recall from Example 1, that the order the cycles are joined in a cycle-joining
tree T may be important. This means defining a natural and generic successor rule is more challenging, especially if T does not
satisfy the Chain Property, i.e., T has a node with two children joined via conjugate pairs of the form (xβ, yβ) and (xβ, zβ),
for some k-ary string β. Thus, going forward, assume that T satisfies the Chain Property.

Let α1, α2, . . . , αm denote a maximal length path of nodes in T such that for each 1 ≤ i < m, the node αi is the parent
of αi+1 and they are joined via a conjugate pair of the form (xiβ, xi+1β); β is the same in each conjugate pair. We call
such a path a chain of length m, and define first(xiβ) = x1. For each such chain in T, assign a permutation d1d2 · · · dm of
{1, 2, . . . , m} in which no element appears in its original position (a derangement).

Let α = a1a2 · · · an. If α = xiβ belongs to a conjugate pair that joins two nodes in a chain α1, α2, . . . , αm with
corresponding derangement d1d2 · · · dm, let g(α) = xdi

. Then the following function f1 is a successor rule for a corresponding
universal cycle for ST (based on the theory in [24]):

f1(α) =
{

g(α) if α belongs to a conjugate pair in C;
a1 otherwise.

When k = 2, f1 = f0.

Example 2 Continuing Example 1, let α = 300; it belongs to a conjugate pair. Note that α1 = 001, α2 = 002, and α3 = 003
form a chain of length m = 3. If the derangement assigned to this chain is 231, then f1 is the successor rule for the universal cycle
100200300. If the derangement assigned to this chain is 312, then f1 is the successor rule for the universal cycle 300200100.

Perhaps the most natural derangements for the chains in T are of the form 23 · · · m1 and m12 · · · (m−1). Specifically, let:

↑f1(α) denote the function f1(α) when all chain derangements have the form 23 · · · m1, and
↓f1(α) denote the function f1(α) when all chain derangements have the form m12 · · · (m−1).

These are precisely the successor rules that correspond to our upcoming concatenation tree results. They are also the ones used
in the generic successor rules stated in Theorem 2.8 and Theorem 2.9 from [24]; they lead to the definition of natural successor
rules for eight different DB sequences including the k-ary Granddaddy (lex smallest) [18] and the k-ary Grandmama [12].
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2.3 Insights into concatenation trees

The sequence in Table 1 generated by pcr1 starting with 0n has an interesting property: It corresponds to concatenating
the aperiodic prefixes of each node in the corresponding cycle-joining tree T1 (illustrated in Figure 3) as they are visited
in post-order, where the children of a node are listed in lexicographic order. Notice also, that a post-order traversal visits
the necklaces (nodes) as they appear in lexicographic order; this corresponds to the well-known Granddaddy necklace
concatenation construction for DB sequences [18]. Similarly, the sequence generated by the successor rule pcr2 starting with
0n corresponds to concatenating the aperiodic prefixes of each node in the corresponding cycle-joining tree T2 as they are
visited in pre-order, where the children of a node are listed in colex order. This traversal visits the necklaces (nodes) as they
appear in colex order, which is known as the Grandmama concatenation construction for DB sequences [12]. Unfortunately,
this magic does not carry over to the trees T3 and T4, no matter how we order the children; the existing proofs for T1 and T2
offer no higher-level insights or pathways towards generalization.

Our discovery to finding a concatenation construction for a given successor rule is to tweak the corresponding cycle-joining
tree by: (i) determining the appropriate representative of each cycle, (ii) determining an ordering of the children, and (iii)
determining how the tree is traversed. The resulting concatenation trees for T1,T2,T3, and T4, which are formally defined
in Section 4, are illustrated in Figure 8 for n = 6. The concatenation trees derived from T1 and T2 look very similar to
the original cycle-joining trees. For the concatenation tree derived from T3, the representatives are obtained by rotating the
initial prefix of 0s of a necklace to the suffix; a post-order traversal produces the corresponding DB sequence in Table 1.
This traversal corresponds to visiting these representatives in reverse lexicographic order that is equivalent to a construction
defined in [20]. The concatenation tree derived from T4 is non-trivial and proved to be the basis for discovering our more
general result. Each representative is determined from its parent, and the tree differentiates “left-children” (blue dots) from
“right-children” (red dots). A concatenation construction corresponding to pcr4 is obtained by a somewhat unconventional
traversal that recursively visits right-children, followed by the current node, followed by the left-children.

3 Bifurcated ordered trees

Our new “concatenation-tree” approach to generating universal cycles and DB sequences relies on tree structures that mix
together ordered trees and binary trees. First we review basic tree concepts. Then we introduce our notion of a bifurcated
ordered tree together with a traversal called an RCL traversal.

An ordered tree is a rooted tree in which the children of each node are given a total order. For example, a node in an
ordered tree with three children has a first child, a second child, and a third (last) child. In contrast, a cardinal tree is a rooted
tree in which the children of each node occupy specific positions. In particular, a k-ary tree has k positions for the children of
each node. For example, each child of a node in a 3-ary tree is either a left-child, a middle child, or a right-child.

We consider a new type of tree that is both ordinal and cardinal; while ordered trees have one “type” of child, our trees will
have two types of children. We refer to such a tree as a bifurcated ordered tree (BOT), with the two types of children being
left-children and right-children. To illustrate bifurcated ordered trees, Figure 4 provides all BOTs with n = 3 nodes. This

Figure 4 All eight bifurcated ordered trees (BOTs) with n=3 nodes. Each left-child descends from a blue •, while each right-child
descends from a red •.

type of “ordinal-cardinal” tree seems quite natural and it is very likely to have been used in previous academic investigations.
Nevertheless, the authors have not been able to find an exact match in the literature. In particular, 2-tuplet trees use a different
notion of a root, and correspond more closely to ordered forests of BOTs. The number of BOTS with n = 1, 2, . . . , 12 nodes
is given by:
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1, 2, 7, 30, 143, 728, 3876, 21318, 120175, 690690, 4032015, 23841480.

This listing corresponds to sequence A006013 in the Online Encyclopedia of Integer Sequences [2].

3.1 Right-Current-Left (RCL) traversals

The distinction between left-children and right-children in a BOT allows for a very natural notion of an in-order traversal:
visit the left-children from first to last, then the current node, then the right-children from first to last. During our work with
concatenation trees (see Section 4) it will be more natural to use a modified traversal, in which the right-children are visited
before the left-children. Formally, we recursively define a Right-Current-Left (RCL) traversal of a bifurcated ordered tree
starting from the root as follows:

5

6 11 12

7 8 9 10

3

4 2

1

Figure 5 A BOT with its n=12 nodes
labeled as they appear in RCL order.

visit all right-children of the current node from first to last;
visit the current node;
visit all left-children of the current node from first to last.

Note that the resulting RCL order is not the same as a reverse in-order traversal
(i.e., an in-order traversal written in reverse), since the children of each type are
visited in the usual order (i.e., first to last) rather than in reverse order (i.e., last
to first). An example of an RCL traversal is shown in Figure 5.

Define the following relationships given a node x in a BOT.

A right-descendant of x is a node obtained by traversing down zero or more right-children.
A left-descendant of x is a node obtained by traversing down zero or more left-children.
The rightmost left-descendant of x is the node obtained by repeatedly traversing down the last left-child as long as one exists.
The leftmost right-descendant of x is the node obtained by repeatedly traversing down the first right-child as long as one exists.

Note that a node is its own leftmost right-descendent if it has no right-children. Similarly, a node is its own rightmost
left-descendent if it has no left-children. The following remark details the cases for when two nodes from a BOT appear
consecutively in RCL order; they are illustrated in Figure 6.

▶ Remark 2. If a bifurcated ordered tree has RCL traversal . . . , x, y, . . ., then one of the following three cases holds:

(a) x is an ancestor of y: y is the leftmost right-descendant of x’s first left-child;
(b) x is a descendant of y: x is the rightmost left-descendent of y’s last right-child;
(c) x and y are descendants of a common ancestor a (other than x and y): x is the rightmost left-descendant and y is the

leftmost right-descendant of consecutive left-children or right-children of a.

Moreover, if the traversal sequence is cyclic (i.e., x is last in the ordering and y is first), there are three additional cases:

(d) x is an ancestor of y: x is the root and y is its leftmost right-descendant;
(e) x is a descendant of y: y is the root and x is its rightmost left-descendant;
(f) x and y are descendants of a common ancestor a (other than x and y): x is the rightmost left-descendant of the root, and y

is the leftmost right-descendant of the root.

Figure 6 illustrates the six cases from the above remark. The three cases provided for cyclic sequences are stated in a way
to convince the reader that all options are considered; however, they can be collapsed to the single case (f) if we allow the
common ancestor a to be x or y.

4 Concatenation trees

Let T be a PCR-based cycle-joining tree rooted at r satisfying the Chain Property. In this section we describe how T can be
converted into a labeled BOT T we call a concatenation tree. The nodes and the parent-child relationship in T are the same
as in T; however, the labels (representatives) of the nodes may change. The definitions of these labels are defined recursively
along with a corresponding change index, the unique index where a node’s label differs from that of its parent. The root of
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x

. . .

`1

y

y

. . .

x

rm

. . . . . .

a

`i `i+1

yx

x=root

y

y=root

x

root

yx

(cyclic)

(a) (b) (c) (d) (e) (f)

Figure 6 Illustrating the six cases outlined in Remark 2 for when y follows x in an RCL traversal. The final three cases hold when
the traversal sequence is considered to be cyclic (i.e., x comes last and y comes first). In these images, ℓi and ri refer to the ith left and
right-child of their parent, respectively, and rm refers to the last right-child of its parent. Dashed lines indicate leftmost right-descendants
(red) and rightmost left-descendants (blue).

T is r, and it is assigned an arbitrary change index c.3 The label of a non-root node γ depends on the label of its parent
α = a1a2 · · · an, which can be written as β1xβ2 where (xβ2β1, yβ2β1) is the conjugate pair joining α and γ in T. If α is
aperiodic, there is only one possible index i for x; however, if it is periodic, there will be multiple such indices possible. If
α = (a1 · · · ap)q has period p with change index c where jp < c ≤ jp + p for some integer 0 ≤ j < n/p, then we say the
acceptable range of α is {jp+1, . . . , jp+p}. Note, if α is aperiodic, its acceptable range is {1, 2, . . . , n}. Now, α = β1xβ2
can be written uniquely such that x is found at an index i in α’s acceptable range. The label of γ is defined to be β1yβ2 with
change index i.

Example 3 Let x = 001001001 be the parent of y = 001002001 in a PCR-based cycle-joining tree T joined via the conjugate
pair (100100100, 200100100). Let α and γ denote the corresponding nodes in the concatenation tree T . Suppose α = 100100100 (a
rotation of x) with change index 8. Since α has period p = 3, its acceptable range is {7, 8, 9}. Thus, β1 = 100100, x = 1, β2 = 00,
α = β1xβ2, and γ = 100100200 (a rotation of y) with change index 7.

To complete the definition of T , we must specify how the children of a node with change index c are partitioned into
ordered left-children and right-children: The left-children are those with change index less than c, and the right-children are
those with change index greater than c. Both are ordered by increasing change index. A child with change index c can be
considered to be either a left-child or right-child. We say T is a left concatenation tree if every node that has the same change
index as its parent is considered to be a left-child; T is a right concatenation tree if every node that has the same change index
as its parent is considered to be a right-child. Let concat(T, c, left) denote the left concatenation tree derived from T and let
concat(T, c, right) denote the right concatenation tree derived from T, where in each case the root is assigned change index c.
See Figure 7 for example concatenation trees, where the small gray box on top of each node indicates the node’s change index.

Let RCL(T ) = ap(α1, α2, . . . , αt), where α1, α2, . . . , αt is the sequence of nodes visited in an RCL traversal of the
concatenation tree T. For example, if T is the right concatenation tree in Figure 7, then:

RCL(T ) = 011311 311 011210 011211 411211 211 011114 011111.

000101

010101

010111

1

2

3

It is critical how we defined the acceptable range for periodic nodes, since our goal is to demonstrate that
RCL(T ) produces a universal cycle. For example, consider three necklace class representatives (a) 010111,
(b) 010101, and (c) 000101 where n = 6. They can be joined by flipping the last 0 in (b) and flipping the
second 0 in (c); (a) is the parent of (b) and (b) is the parent of (c). A BOT for this cycle-joining tree is
shown on the right. It is not a concatenation tree since the change index for the bottom node is outside the
acceptable range of its periodic parent. Observe that ap(010101, 000101, 010111) = 01000101010111.

Since the substring 010101 appears twice, it is not a universal cycle.

3 Though the change index of the root is arbitrary, its choice may impact the “niceness” of the upcoming RCL sequence.



11

011111

011211

011311 001121

113113

011114

112114

112112

T

011111

011211

011311 011210

311311

011114

411211

211211

concat(T, 4, right)
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Figure 7 Left and right concatenation trees for a given cycle-joining tree T. The small blue numbers indicate the RCL order.

The concatenation trees for the four cycle-joining trees in Figure 3 are given in Figure 8. The only concatenation tree with
both left-children and right-children is the one corresponding to concat(T4, 6, left). In fact, it was the discovery of this tree
that lead us to the introduction of BOTs and our definition of concatenation trees. We are now ready to state our main result.

▶ Theorem 3. Let T be a PCR-based cycle-joining tree satisfying the Chain Property. Let T1 = concat(T, c, left) and
let T2 = concat(T, c, right). Then

RCL(T1 ) is a universal cycle for ST with successor rule ↑f1, and
RCL(T2 ) is a universal cycle for ST with successor rule ↓f1.

Proof. Let T represent either T1 or T2. We specify whether T is a left-concatenation tree T1 or a right-concatenation tree
T2 only when necessary. Let α1, α2, . . . , αt be the nodes of T as they are visited in RCL order. The proof of Theorem 3 is
by induction on t. In the base case case when t = 1, the result is immediate; T contains a single cycle and in each case the
successor rule simplifies to f(a1a2 · · · an) = a1. Suppose t > 1. Let αj = a1a2 · · · an denote an arbitrary leaf of T with
change index cj . Let β1 = a1 · · · acj−1, y = acj

, and β2 = acj+1 · · · an. Then αj = β1yβ2 and its parent is β1y′β2 for some
y′ ∈ Σ; the corresponding nodes in T are joined via the conjugate pair (yβ1β2, y′β1β2). If T = T1, let x = y′; if T = T2,
let x = first(y′β1β2) with respect to T (recalling the definition of first in Section 2.2.1). Let T ′ denote the concatenation
tree obtained by removing αj from T. Similarly, let T′ denote the cycle-joining tree T with the leaf corresponding to αj

removed. Let U1 = ap(αj+1, . . . , αt, α1, . . . , αj−1) denote a rotation of RCL(T ′). By induction, U1 is a universal cycle for
S′ = ST − [αj ]. Let U2 = ap(αj); it is a universal cycle for [αj ]. Note that U1 contains xβ2β1 and U2 contains yβ2β1. The
following claim will be proved later in Section 4.2.1.

▷ Claim 4. U1 (considered cyclically) has prefix β1 and suffix xβ2.

Let U ′
1 = · · · xβ2β1 and let U ′

2 = · · · yβ2β1 be rotations of U1 and U2, respectively. Then by Theorem 1 and Claim 4, U1 and
U2 can be joined via the conjugate pair (xβ2β1, yβ2β1) to produce universal cycle U ′

1U ′
2, which is a rotation of U1U2, for ST.

Since U1U2 is a rotation of U = RCL(T ), the latter is also a universal cycle for ST.
Clearly ↑f1 = ↓f1 with respect to the single PCR cycle [αj ]; both functions are successor rules for U2. Suppose T = T1.

From the induction hypothesis, ↑f1 (with respect to T′) is a successor rule for U1. Since the two cycles U1 and U2 were joined
via the conjugate pair (xβ2β1, yβ2β1) to obtain U ; the successors of only these two strings are altered. By the joining, the
successor of yβ2β1 becomes the successor of xβ2β1 in U1 which is precisely ↑f1(yβ2β1) with respect to T. The successor of
xβ2β1 is y, which is the same as ↑f1(xβ2β1) with respect to T. Thus, ↑f1 (with respect to T) is a successor rule for U . A
similar argument applies for T = T2. ◀

▶ Remark 5. Consider a cycle-joining tree T where all chains in T have length m = 2. Then T induces a unique universal
cycle with successor rule ↑f1 = ↓f1. Furthermore, if k = 2, f0 = ↑f1 = ↓f1.
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Figure 8 Concatenation trees for n = 6 based on T1, T2, T3, T4. These bifurcated ordered trees (BOTs) provide additional structure to
the unordered cycle-joining trees from Figure 3. This structure provides the missing information for fully understanding the corresponding
concatenation constructions. The gray box above each node indicates its change index.

4.1 Algorithmic details and analysis

A concatenation tree can be traversed to produce a universal cycle in O(1)-amortized time per symbol; but, it requires
exponential space to store the tree. However, if the children of a given node α can be computed without knowledge of the
entire tree, then we can apply Algorithm 1 to traverse a concatenation tree T in a space-efficient manner. The initial call is
RCL(α,c, ℓ) where α = a1a2 · · · an is the root node with change index c. The variable ℓ is set to 1 for left concatenation trees;
ℓ is set to 0 for right concatenation trees. The crux of the algorithm is the function CHILD(α, i) which returns x if there exists
x ∈ Σ such that a1 · · · ai−1xai+1 · · · an is a child of α, or −1 otherwise. Since the underlying cycle-joining tree satisfies the
Chain Property, if such an x exists then it is unique. In practice, the function must consider the acceptable range of α.

Let H denote the height of T. Provided each call to CHILD(α, i) uses at most O(n) space, the overall algorithm will
require O(n + H) space assuming α is passed by reference (or stored globally) and restored appropriately after each recursive
call. The running time of Algorithm 1 depends on how efficiently the function CHILD(α, i) can be computed for each index i.

▶ Theorem 6. Let T be a concatenation rooted at α with change index c. The sequence resulting from a call to RCL(α, c, ℓ)
is generated in O(1)-amortized time per symbol if (i) at each recursive step the work required by all calls to CHILD(α, i)
is O((t + 1)n), where t is the number of α’s children, and (ii) the number of nodes in T that are periodic is less than some
constant times the number of nodes that are aperiodic.
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Algorithm 1 Traversing a concatenation tree T in RCL order rooted at α with change index c

1: procedure RCL(α = a1 · · · an, c, ℓ)
2: for i← c + ℓ to n do ▷ Visit right-children
3: x← CHILD(α, i)
4: if x ̸= −1 then RCL(a1 · · · ai−1xai+1 · · · an, i, ℓ)
5: p← period of α

6: PRINT(a1 · · · ap)
7: for i← 1 to c− 1 + ℓ do ▷ Visit left-children
8: x← CHILD(α, i)
9: if x ̸= −1 then RCL(a1 · · · ai−1xai+1 · · · an, i, ℓ)

Proof. The work done at each recursive step is O(n) plus the cost associated to all calls to CHILD(α, i). If condition (i) is
satisfied, then the work can be amortized over the t children if t ≥ 1, or onto the node itself if there are no children. Thus,
each recursive node is the result of O(n) work. By condition (ii), the total number of symbols output will be proportional to n

times the number of nodes. Thus, each symbol is output in O(1)-amortized time. ◀

4.2 Properties of concatenation trees

Let α1, α2, . . . , αt be the nodes of a concatenation tree T as they are visited in RCL order. Our proof of Claim 4 relies on
properties exhibited between successive nodes in an RCL traversal of T . The operations of the indices are taken modulo t,
i.e., α0 = αt and αt+1 = α1. Recall that ci denotes the change index of αi. For the rest of this section, consider a node
αj = a1a2 · · · an, for some 1 ≤ j ≤ t, with change index cj . Let β1 = a1a2 · · · acj−1, y = acj

and let β2 = acj+1 · · · an;
αj = β1yβ2.

▶ Lemma 7. If αj is not an ancestor of αj+1, then αj+1 has prefix β1.

Proof. Let x = αj and y = αj+1. Following the notation from Figure 6, consider the four possible cases (b)(c)(e)(f) from
Remark 2. If t = 1, the results are immediate. Suppose t > 1.

(b) rm clearly has prefix β1. Since the change index of rm is less than or equal to cj , and rm only differs from its parent y at
its change index, y must also have the prefix β1.

(c) ℓi clearly has prefix β1. The change index of ℓi is strictly less than the change index of ℓi+1 and the two nodes differ only
at those two indices. Thus, β1 is a prefix of ℓi+1. Since y can only differ from ℓi+1 in indices between the change index of
ℓi+1 and cj+1, it must also have the prefix β1.

(e) Trivial.
(f) All the nodes on the path from x up to the root and down to y must have change index greater than or equal to cj . Thus

each node, including y will have prefix β1.

◀

▶ Lemma 8. If αj is not an ancestor of αj+1, and αj+1 has period p < n with acceptable range kp + 1, . . . , kp + p, then
cj ≤ kp + p.

Proof. Let x = αj and y = αj+1. Following the notation from Figure 6, consider the four possible cases (b)(c)(e)(f) from
Remark 2. If t = 1, the results are immediate. Suppose t > 1.

(b) The change index for rm must be less than or equal to kp + p, and because αj is a left descendant of rm, cj must be less
than or equal to the change index of rm. Thus, cj ≤ kp + p.

(c) cj is less than or equal to the change index of ℓi, which is less than the change index of ℓi+1, which is less than or equal
to cj+1. Thus, cj < cj+1 ≤ kp + p.

(e) αj is a left-descendant of αj+1 so clearly cj < cj+1 ≤ kp + p.
(f) cj is less than or equal to the change index of the root, which is less than or equal to cj+1. Thus, cj < cj+1 ≤ kp + p.

◀



14 Concatenation Trees

If αj is not an ancestor of αj−1, then from Remark 2, αj is not the root node and thus has a parent β1y′β2 for some y′ ∈ Σ.
Recalling the definition of first in Section 2.2.1 with respect to the underlying cycle-joining tree T, let x = first(y′β1β2).

▶ Lemma 9. If αj is not an ancestor of αj−1, then

1. if T is a left concatenation tree then αj−1 has suffix y′β2, and
2. if T is a right concatenation tree then αj−1 has suffix xβ2.

Proof. Let x = αj−1 and y = αj . Following notation from Figure 6, consider the four possible cases (a)(c)(d)(f) from
Remark 2. If t = 1, the results are immediate. Suppose t > 1. Suppose T is a left concatenation tree.

(a) If ℓ1 = y, the result is immediate. Suppose ℓ1 ̸= y. From the definition of y′, ℓ1 has suffix y′β2 and change index strictly
less than cj . Since ℓ1 differs from its parent x only at its change index, x must also have suffix y′β2.

(c) If ℓi+1 = y, then it is already established that its parent a has suffix y′β2. Otherwise, ℓi+1 has suffix y′β2 and change
index less than cj , which means that a again has suffix y′β2. Since the change index of ℓi is less than the change index of
ℓi+1, clearly x also has suffix y′β2.

(d) Follows since T is a left concatenation tree.
(f) Let αr be the root of T. Clearly, αr has suffix y′β2 and cr < cj . Thus, x also will have suffix y′β2.

Suppose T is a right concatenation tree. Let x = first(y′β1β2). This implies that all nodes on the path from β1xβ2 to y = αj

have change index cj and the change index of β1xβ2 is not equal to cj .

(a) If ℓ1 = y, then the change index of ℓ1 is strictly less than the change index of x and the result follows as x = y′. Suppose
ℓ1 ̸= y. If the change index of ℓ1 is strictly less than cj , then by the definition of x, ℓ1 has suffix xβ2. Thus, clearly x also
has suffix xβ2. Otherwise, the change index of ℓ1 must be equal to cj , and since it is a left-child of x, the change index of
x is not equal to cj . Thus, by the definition of x, x will be precisely β1xβ2.

(c) Recall this covers two cases where the children of a can be either be both left-children or both right-children. In either
case, the change index of a can not be the same as the change index for ℓi + 1. Thus, following the same argument from
(a), the node a will have suffix xβ2. Since the change index of ℓi is less than the change index of ℓi+1, clearly x also has
suffix xβ2.

(d) Follows since T is a right concatenation tree.
(f) Let αr be the root of T . Clearly, αr has suffix xβ2 and cr ≤ cj . Since all left descendants of the root will have change

index strictly less than cr, it follows that x also will have suffix xβ2.

◀

▶ Lemma 10. If αj is not an ancestor of αj−1, and αj−1 has period p < n with acceptable range kp + 1, . . . , kp + p, then
cj > kp.

Proof. Let x = αj−1 and y = αj . Following notation from Figure 6, consider the four possible cases (a)(c)(d)(f) from
Remark 2. If t = 1, the results are immediate. Suppose t > 1.

(a) By the acceptable range, the change index for ℓ1 must be greater than kp. Because αj is a right descendant of ℓ1, cj must
be greater than or equal to the change index of ℓ1. Thus, cj > kp.

(c) cj−1 is less than or equal to the change index of ℓi, which is less than the change index of ℓi+1, which is less than or
equal to cj . Thus, kp < cj−1 < cj .

(d) αj is a right-descendant of αj−1 so clearly kp < cj−1 < cj .
(f) cj−1 is less than or equal to the change index of the root, which is less than cj . Thus, kp < cj−1 < cj .

◀

▶ Lemma 11. If αj is periodic with period p and acceptable range kp + 1, . . . , kp + p, then ap(αj)k is a prefix of αj+1.
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Proof. If αj is not an ancestor of αj+1, the inequality kp < cj and Lemma 7 together imply ap(αj)k is a prefix of αj+1. It
remains to consider cases (a) and (d) from Remark 2 where x = αj is an ancestor of y = αj+1. For case (a), y is the leftmost
right-descendent of x’s first left-child ℓ1. Since x is periodic, the change index of ℓ1 is in αj’s acceptable range; it is greater
than kp. y is a right descendant of ℓ1 and thus cj+1 > kp, which means y differs from ℓ1 only in indices greater than kp. For
(d) clearly y differs only in indices greater than or equal to cj , which means cj+1 > kp. Thus, for each case, ap(αj)k is a
prefix of αj+1. ◀

▶ Lemma 12. If αj is periodic with period p and acceptable range kp + 1, . . . , kp + p, then ap(αj)k+1 is a prefix of
ap(αj , . . . , αt, α1, . . . , αj−1), which is a rotation of RCL(T ), considered cyclically.

Proof. Note that | ap(αj)k+1| ≤ n. The proof is by induction on the number of nodes t. If t = 1, the result is trivial.
Suppose the claim holds for any tree with less than t > 1 nodes. Let T have t nodes and let αj be a leaf node of T . If there
are no periodic nodes, we are done. Otherwise, we first consider αj , then all other periodic nodes in T .

Suppose αj is periodic with period p and acceptable range kp + 1, . . . , kp + p. From Lemma 11, ap(αj)k is a prefix
of αj+1. If αj+1 is aperiodic, then we are done. Suppose, then, that αj+1 is periodic with period p′ and acceptable range
k′p′ + 1, . . . , k′p′ + p′. Let T ′ be the tree resulting from T when αj is removed. It follows from (i) that kp < cj ≤ k′p′ + p′,
which implies ap(αj)k is a prefix of ap(αj+1)k′+1. Additionally, since T ′ has less than t nodes and αj+1 is periodic,
ap(αj+1)k′+1 is a prefix of ap(αj+1, . . . , αt, α1, . . . , αj−1) by our inductive assumption. Therefore, ap(αj)k+1 is a prefix
of ap(αj , αj+1, . . . αt, α1, . . . , αj−1).

Now consider αj−1. If it is aperiodic, then by induction, the claim clearly holds for all periodic nodes in T ′. Thus,
assume αj−1 is periodic. By showing that ap(αj−1, αj), . . . , αt, α1, . . . , αj−2) has the desired prefix, then repeating the
same arguments will prove the claim holds for every other periodic node in T ′. Let αj−1 have period p′′ and acceptable range
k′′p′′ + 1, . . . , k′′p′′ + p′′. If αj is aperiodic, Lemma 11 implies that ap(αj−1)k′′

is a prefix of αj = ap(αj) and thus the
claim holds for αj−1. If αj is periodic with period p and acceptable range kp + 1, . . . , kp + p, we already demonstrated
that ap(αj)k+1 is a prefix of ap(αj , . . . , αt, α1, . . . , alphaj−1). From Lemma 11, ap(αj−1)k′′

is a prefix of αj . Note that
(i) and its proof handles cases (b)(c)(e)(f) from Remark 2 implying that cj−1 < kp + p for these cases. Since αj−1 is not
necessarily a leaf, we must also consider (a) and (d). In both cases, clearly k′′p′′ < cj . Either way, k′′p′′ < kp + p, which
means ap(αj−1)k′′

is a prefix of ap(αj)k+1. Thus, ap(αj−1)k′′+1 is a prefix of ap(αj−1, αj , . . . , αt, α1, . . . , αj−2). ◀

▶ Lemma 13. If αj is periodic with period p and acceptable range kp + 1, . . . , kp + p, then ap(αj)n/p−k−1 is a suffix of
αj−1.

Proof. If αj is not an ancestor of αj−1, the inequality cj ≤ kp + p and Lemma 9 together imply ap(αj)n/p−k−1 is a suffix
of αj−1. It remains to consider cases (b) and (e) from Remark 2 where y = αj is an ancestor of x = αj−1. For case (b), x

is the rightmost left-descendent of y’s last right-child rm. Since y is periodic, the change index of rm is in αj’s acceptable
range; it is less than or equal to kp + p. x is a left descendant of rm and thus cj−1 ≤ kp + p, which means x differs from rm

only in indices less than or equal to kp + p. For (e) clearly x differs only in indices less than or equal to cj , which means
cj−1 ≤ kp + p. Thus, for each case, ap(αj)n/p−k−1 is a suffix of αj−1. ◀

▶ Lemma 14. If αj is periodic with period p and acceptable range kp + 1, . . . , kp + p, then ap(αj)n/p−k is a suffix of
ap(αj+1, . . . , αt, α1, . . . , αj), which is a rotation of RCL(T ), considered cyclically.

Proof. Let q = n/p. Note that |ap(αj)q−k| ≤ n. The proof is by induction on t. If t = 1, the result is trivial. Suppose the
claim holds for any tree with less than t > 1 nodes. Let T have t nodes and let αj be a leaf node of T . If there are no periodic
nodes, we are done. Otherwise, we first consider αj , then all other periodic nodes in T .

Suppose αj is periodic with period p and acceptable range kp + 1, . . . , kp + p. From Lemma 13, ap(αj)q−k−1 is a suffix
of αj−1. If αj−1 is aperiodic, then we are done. Suppose, then, that αj−1 is periodic with period p′ and acceptable range
k′p′ + 1, . . . , k′p′ + p′. Let T ′ be the tree resulting from T when αj is removed. It follows from (i) that k′p′ < cj ≤ kp + p,
or n − kp − p < n − k′p′, which implies ap(αj)q−k−1 is a suffix of ap(αj−1)q′−k′

, where q′ = n/p′. Additionally, since
T ′ has less than t nodes and αj−1 is periodic, ap(αj−1)q′−k′

is a suffix of ap(αj+1, . . . , αt, α1, . . . , αj−1) by our inductive
assumption. Therefore, ap(αj)q−k is a suffix of ap(αj+1, . . . , αt, α1, . . . , αj−1, αj).

Now consider αj+1. If it is aperiodic, then by induction the claim clearly holds for all periodic nodes in T ′. Thus,
assume αj+1 is periodic. By showing ap(αj+2, . . . , αt, α1, . . . , alphaj , αj+1) has the desired suffix, then repeating the same
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arguments will prove the claim holds for every other periodic node in T ′. Let αj+1 have period p′′ and acceptable range
k′′p′′ +1, . . . , k′′p′′ +p′′. If αj is aperiodic, Lemma 13 implies that ap(αj+1)q′′−k′′−1 is a suffix of αj = ap(αj) and thus the
claim holds for αj+1. If αj is periodic with period p and acceptable range kp + 1, . . . , kp + p, we already demonstrated that
ap(αj)q−k is a suffix of ap(αj+1, . . . , αt, α1, . . . , αj). From Lemma 13, ap(αj+1)q′′−k′′−1 is a suffix of αj . Note that (i)
and its proof handles cases (a)(c)(d)(f) from Remark 2 implying that cj+1 > kp for these cases. Since αj+1 is not necessarily
a leaf, we must also consider (b) and (e). In both cases, clearly cj ≤ k′′p′′ + p′′. Either way, kp < k′′p′′ + p′′, which means
ap(αj+1)q′′−k′′−1 is a suffix of ap(αj)q−p. Thus, ap(αj+1)q′′−k′′

is a suffix of ap(αj+2, . . . , αt, α1, . . . , αj , αj+1). ◀

4.2.1 Proof of Claim 4

Recall that U1 = ap(αj+1, . . . , αt, α1, . . . , αj−1) and αj = β1yβ2. Recall that αj is assumed to be a leaf with parent β1y′β2.
Also, if T = T1, then x = y′; if T = T2, x = first(y′β1β2). Thus, from Lemma 7, αj+1 has prefix β1 and from Lemma 9,
αj−1 has suffix xβ2. If αj−1 and αj+1 are aperiodic, then U1 has prefix β1 and suffix xβ2 as required. If t = 2, then we are
also done since U1 is considered cyclically. It remains to consider the cases where αj−1 or αj+1 is periodic and t > 2. These
cases apply the “acceptable range”.

Suppose αj+1 has period p < n and acceptable range kp + 1, . . . , kp + p. Since αj is a leaf, cj ≤ kp + p by Lemma 8.
Thus, β1 is a prefix of ap(αj+1)k+1 since β1 is a prefix of αj+1 from Lemma 7. From Lemma 12, ap(αj+1)k+1 is a prefix of
U1. Thus, β1 is a prefix of U1.

Suppose αj−1 has period p < n and acceptable range kp + 1, . . . , kp + p. Since αj is a leaf, cj > kp by Lemma 10.
Thus, xβ2 is a suffix of ap(αj−1)n/p−k since xβ2 is a suffix of αj−1 from Lemma 9. From Lemma 14, ap(αj−1)n/p−k is a
suffix of U1. Thus, xβ2 is a suffix of U1.

5 Applications

In this section we highlight how our concatenation tree framework can be applied to a variety of interesting objects including
permutations, weak orders, orientable sequences, and DB sequences with related universal cycles. For each object, we
define a PCR-based cycle-joining tree T that satisfies the Chain Property, where each node is a necklace (the lex smallest
representative). Then we apply the concatenation tree framework and Algorithm 1 to construct the corresponding universal
cycles in O(1)-amortized time per symbol.

5.1 De Bruijn sequences and relatives

Recall that pcr1, pcr2, pcr3, and pcr4 are stated generally for subtrees of the corresponding cycle-joining trees T1,T2,T3,T4;
they focus on binary strings, and thus satisfy the Chain Property. Though we focus on the binary case, these trees can be
generalized to larger alphabets following the theory in [24]. For instance, the parent rule used to create T1 can be generalized
to “increment the last non-(k−1)” where the alphabet is Σ = {0, 1, . . . , k − 1}.

▶ Theorem 15. Let T1, T2, T3, T4 be subtrees of T1,T2,T3,T4, respectively. For any 1 ≤ c ≤ n and ℓ ∈ {left, right}:

U1 = RCL(concat(T1, c, ℓ)) is a universal cycle for ST1 with successor rule pcr1.
U2 = RCL(concat(T2, c, ℓ)) is a universal cycle for ST2 with successor rule pcr2.
U3 = RCL(concat(T3, c, ℓ)) is a universal cycle for ST3 with successor rule pcr3.
U4 = RCL(concat(T4, c, ℓ)) is a universal cycle for ST4 with successor rule pcr4.

Proof. The results follow immediately from Remark 5 and Theorem 3. ◀

Interesting subtrees applied to the above theorem include nodes with: (i) a lower bound on weight (T1 and T4), (ii) an upper
bound on weight (T2 and T3), (iii) forbidden 0s substring (T1 and T4), (iv) forbidden 1s substring (T2 and T3). Universal
cycles for strings with bounded weight (based on T1 and T2) [40, 42, 43] and universal cycles with forbidden 0s (based on
T1) [20, 44] have been previously studied; the latter has found recent application in quantum key distribution schemes [7].
Theorem 15 generalizes these result and provides a connection between the concatenation constructions and corresponding
successor rules.

If the subtrees in Theorem 15 are T1,T2,T3, and T4, respectively, the universal cycles are DB sequences. Specifically, let
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T1 = concat(T1, 1, right),
T2 = concat(T2, n, left),
T3 = concat(T3, 1, right), and
T4 = concat(T4, n, left).

Recall that the Granddaddy DB sequence can be constructed by concatenating the aperiodic prefixes of necklaces as they appear
in lexicographic order; it is known to have the successor rule pcr1, and the sequence can be generated in O(1)-amortized time
per bit.

▶ Corollary 16. RCL(T1) is the Granddaddy DB sequence with successor rule pcr1.

Proof. T1 is based on the “last 0” cycle-joining tree rooted at 1n, the change index of the root is 1, and the tree is right-
concatenation tree. Thus, the representatives of each node are necklaces (flipping the last 0 of a necklace yields a necklace),
where the change index of each child is after the last 0. This means each child is a right-child that is lexicographically smaller
than its parent, and the children are ordered lexicographically left to right. Therefore, RCL order is a post-order traversal of T1
that visits the necklaces N2(n) in lexicographic order. Thus, RCL(T1) is the Granddaddy DB sequence, and by Theorem 15
it has successor rule pcr1. ◀

The Grandmama DB sequence can be constructed by concatenating the aperiodic prefixes of necklaces as they appear in
co-lexicographic order; it is known to have the successor rule pcr2, and the sequence can be generated in O(1) amortized
time per bit.

▶ Corollary 17. RCL(T2) is the Grandmama DB sequence with successor rule pcr2.

Proof. T2 is based on the “first 1” cycle-joining tree rooted at 0n, the change index of the root is n, and the tree is left-
concatenation tree. Thus, the representatives of each node are necklaces (flipping the first 1 of a necklace yields a necklace),
where the change index of each child is before the first 1. This means each child is a left-child that is lexicographically larger
than its parent and the children are ordered co-lexicographically. Therefore, RCL order is a pre-order traversal of T2 that visits
the necklaces N2(n) in co-lexicographic order. Thus, RCL(T2) is the Grandmama DB sequence, and by Theorem 15 it has
successor rule pcr2. ◀

Though the concatenation-tree framework is not necessary to obtain a more efficient DB sequence construction for the
Granddaddy and Grandmama, there is a significant improvement in the simplicity of verifying both the correctness and the
equivalence of the concatenation and successor rule constructions.

We now answer an unproved claim about the correspondence between the DB sequence generated by pcr3 and a
concatenation construction from [20]. In particular, let the representative of each necklace class be the necklace with the initial
prefix of 0s rotated to the suffix, so each representative (except 0n) begins with 1. The construction from [20] concatenates
the aperiodic prefixes of these representatives as they appear in reverse lexicographic order; here we name it the Granny
DB sequence. As an example, see the sequence generated by pcr3 in Table 1. This sequence can also be generated in
O(1)-amortized time per bit [45].

▶ Corollary 18. RCL(T3) is the Granny DB sequence with successor rule pcr3.

Proof. T3 is based on the “last 1” cycle-joining tree rooted at 0n, the change index of the root is 1, and the tree is right-
concatenation tree. Thus, it is not difficult to observe recursively that the representative of each non-root node is a necklace
with the initial prefix of 0s is rotated to the suffix, so it begins with a 1. Furthermore, the change index of each child is in the
rotated suffix of 0s. This means each child is a right-child that is lexicographically smaller than its parent and the children are
ordered in reverse lexicographic order. Therefore, RCL order is a post-order traversal of T3 that visits the representatives in
reverse-lexicographic order. Thus, RCL(T3) is the Granny DB sequence, and by Theorem 15 it has successor rule pcr3. ◀

Recall that the question of whether or not there existed a “simple” concatenation construction for pcr4 was the motivating
question that lead to the discovery of concatenation trees. Unfortunately, it appears as the though the resulting RCL traversal
is not so simple; each node representative appears to require recursive information about its parent (and hence the tree
structure). Here, we name the sequence constructed by RCL(T4) the Grandpa DB sequence. Experimental evidence indicates
an algorithm that runs in O(1)-amortized time per bit may exist using the concatenation tree framework; however, the analysis
appears non-trivial.
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▶ Corollary 19. RCL(T4) is the Grandpa DB sequence with successor rule pcr4.

5.2 Universal cycles for shorthand permutations

A shorthand permutation is a length n−1 prefix of some permutation p1p2 · · · pn. Let SP(n) denote the set of shorthand
permutations of order n. For example, SP(3) = {12, 13, 21, 23, 31, 32}. Note that SP(n) is closed under rotation. The
necklace classes of SP(n) can be joined into a PCR-based cycle-joining tree via the following parent rule [24], where each
cycle representative is a necklace.

Parent rule for cycle-joining the necklaces in SP(n): Let r denote the root 12 · · · (n− 1). Let σ denote a non-root node where z
is the missing symbol. If z = n, let j > 1 denote the smallest index such that pj < pj−1, otherwise let j denote the index of z + 1.
Then

par(σ) = p1 · · · pj−1zpj+1 · · · pn−1.

Let Tperm be the cycle-joining tree derived from the above parent rule; it satisfies the Chain Property. Observe that a node
σ = p1p2 · · · pn−1 in T will have at most two children. In particular, if z is the missing symbol, p1 · · · pjzpj+1 · · · pn−1 is a
child of σ if and only if (i) pj = z−1, or (ii) pj = n, p1 · · · pj−1 is increasing, and z < pj−1. Figure 9 illustrates Tperm and
Tperm = concat(Tperm, n−1, left) for n = 4. Let Uperm = RCL(Tperm), when n is understood. Then, for n = 4:

Uperm = 123 124 132 143 243 142 134 234.

A unique successor rule fperm for the universal cycle derived from Tperm can be computed in O(n) time [24].
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Figure 9 A cycle joining tree Tperm of shorthand permutation necklaces for n = 4, and the corresponding concatenation tree Tperm

illustrating the RCL order.

▶ Theorem 20. Uperm is a universal cycle for SP(n) with successor rule fperm. Moreover, Uperm can be constructed in
O(1)-amortized time per symbol using O(n2) space.

Proof. Since each chain in Tperm has length at most 2, fperm is unique and fperm = ↑f1 = ↓f1 (see Remark 5). Thus, by
Theorem 3, Uperm is a universal cycle for SP(n) with successor rule fperm. As noted earlier, each node σ in Tperm has at
most two nodes; they can easily be determined in linear time with a single scan of σ and the values can be stored using a
constant amount of space. Thus, by Theorem 6, Uperm can be constructed in O(1)-amortized time per symbol. The space
required by the algorithm is proportional to the height of Tperm; each recursive call requires a constant amount of space.
Consider a node σ = p1p2 · · · pn−1 in Tperm, where j is the smallest index such that pj < pj−1. By applying at most n

applications of the parent rule, σ has an ancestor whose length-j prefix is increasing and the j-th symbol is n. Thus, after at
most n2 applications of the parent rule, σ has an ancestor σ′ that is increasing and ends with n. After at most n applications
of the parent rule, σ′ will have the root r as an ancestor. Thus, the height of Tperm is O(n2). ◀
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Efficient concatenation constructions of universal cycles for shorthand permutations are known [27, 38]; however (i) there
is no clear connection between their construction and corresponding successor rule and (ii) they do not have underlying
PCR-based cycle-joining trees.

5.3 Universal cycles for weak orders

Recall that W(n) denotes the set of weak orders of order n; it is closed under rotation. Weak orders of order n are counted
by the ordered Bell or Fubini numbers (OEIS A000670 [2]). The first construction of a universal cycle for W(n) defined
the upcoming PCR-based cycle-joining tree, where the cycle-representatives (nodes) are the lex-smallest representatives
(necklaces) [46]. Let ω = w1w2 · · · wn denote a string in W(n). Let nω(i) denote the number of occurrences of the symbol i

in ω. Let W1(n) denote the set of all weak orders of order n with no repeating symbols other than perhaps 1.

Parent rule for cycle-joining the necklaces in W(n): Let r denote the root 1n. Let ω = w1w2 · · · wn denote a non-root node. If
ω ∈W1(n), let j denote the index of the symbol nω(1) + 1 and let x = 1; otherwise let j be the largest index containing a repeated
(non-1) symbol and let x = wj + nω(wj)− 1. Then

par(ω) = w1 · · · wj−1xwj+1 · · · wn.

Let Tweak be the cycle-joining tree derived from the above parent rule; it clearly satisfies the Chain Property. Figure 2
illustrates both Tweak and Tweak = concat(T, n, left) for n = 4. A successor rule fweak for the universal cycle based on
Tweak can be computed in O(n) time [46].

Our goal is to apply Theorem 6 to construct an universal cycle for weak orders in O(1)-amortized time. Consider a node
ω = w1w2 · · · wn in Tweak. Let c1c2 · · · cn denote a sequence such that ci = x if there exists an x such that the necklace of
w1 · · · wi−1xwi+1 · · · wn is a child of ω in T, or −1 otherwise. Note that x is unique since Tweak satisfies the Chain Property.

▶ Lemma 21. If α = a1a2 · · · an is a necklace then β = aj · · · ana1 · · · ai−1xai+1 · · · aj−1 is not a necklace for any
1 ≤ i < j ≤ n where x < ai.

Proof. Suppose 1 ≤ i < j ≤ n. Since α is a necklace, aj · · · ana1 · · · ai ≥ a1 · · · an−j+i+1. If β is a necklace then the
length i prefix of β must be less than or equal to a1 · · · ai−1x which is less than a1 · · · ai since x < ai. Contradiction. ◀

▶ Lemma 22. Let ω = w1w2 · · · wn be a necklace in W(n) \ W1(n). Given 1 ≤ i ≤ n, if wi > 1 let y be the largest symbol
smaller than wi in ω; otherwise, let y = 1. If w1 · · · wi−1ywi+1 · · · wn is not a necklace then ci = −1.

Proof. From the parent rule, a 1 is never changed to x. Thus, if y = 1 then ci = −1. Suppose y > 1. Let ω′ be the necklace
of w1 · · · wi−1ywi+1 · · · wn. Since ω′ clearly begins with a 1, from Lemma 21, ω′ starts with wj for some j < i. Since ω and
ω′ are both necklaces, w1 · · · wi−j = wj · · · wi−1. Consider all occurrences of x ∈ ω. If x does not appear before index j, then
since w1 · · · wi−j = wj · · · wi−1, it must appear at an index after i. Either way, the y slotted into position i of ω′ is not the right
most repeated symbol in the corresponding necklace representative ω′′, and thus the parent of ω′′ is not ω. Thus, from the
parent rule, ci = −1. ◀

The sequence c1c2 · · · cn can be determined for a necklace ω by considering the following two cases from the parent rule.

1. Suppose ω ∈ W1. For each 1 ≤ j ≤ n, if wj = 1 then cj = nω(1); otherwise, cj = −1
2. Suppose ω /∈ W1. Let i denote the largest index such that wi > 1 and nω(wi) > 1; all symbols in wi+1 · · · wn are unique

within ω. Consider 1 ≤ j ≤ n. If wj = 1, then clearly by the parent rule ci = −1. Otherwise, let x denote the largest
symbol in ω less than wj and let ω′ = w1 · · · wi−1xwi+1 · · · wn. If 1 ≤ j < i, then x is not the rightmost (non-1) repeated
symbol in ω′, and by the parent rule cj = −1. If i = j, then by the parent rule, then ci = −1, since wi is a repeated
symbol. Suppose i + 1 ≤ j ≤ n. If x = 1 or ω′ is not a necklace, then by the parent rule and Lemma 22, respectively,
cj = −1. Otherwise, suppose x > 1 and ω′ is a necklace. Then cj = x if x does not appear in wj+1 · · · wn; otherwise, x
is not the rightmost (non-1) repeated symbol in ω′, and thus cj = −1.
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Algorithm 2 Computing c1c2 · · · cn for given node ω = w1w2 · · · wn.

1: c1c2 · · · cn ← (−1)n

2: if ω ∈W1(n) then ▷ Case 1
3: for i from 1 to n do
4: if wi = 1 then ci ← nω(1)
5: if ω /∈W1(n) then ▷ Case 2
6: v1v2 · · · vn ← 0n ▷ vi is set to 1 if symbol i is visited in the following loop
7: for i from n down to 1 do
8: if wi > 1 and nω(wi) > 1 then break
9: else

10: x← the largest symbol in ω less than wi, or 0 if wi = 1
11: if x > 1 and ISNECKLACE(w1 · · · wi−1xwi+1 · · · wn) and vx = 0 then ci ← x
12: vwi ← 1

Applying the two cases above, Algorithm 2 computes the values c1c2 · · · cn for ω.
If n ≤ 8, there is at most one call to ISNECKLACE on line 11 of Algorithm 2 that returns false, for a given input ω. For n = 9,
there are 10 strings for which the function returns false twice. One of these strings is ω = 147914816, where the highlighted
symbols correspond to the indices i where such a call returns false. The corresponding strings tested by the algorithm (in the
order tested) are 147914814 and 147914616. Neither are necklaces. After the second test, the following lemma demonstrates
that the next non-1 symbol wi considered by the for loop (line 7) must be a repeated symbol in ω.

▶ Lemma 23. There are at most two calls to ISNECKLACE(w1 · · · wi−1xwi+1 · · · wn) in Algorithm 2 (line 11) where
w1 · · · wi−1xwi+1 · · · wn is not a necklace.

Proof. We trace Algorithm 2 and the for loop (line 7) noting that ω = w1w2 · · · wn is a weak order necklace representative
not in W1(n). We demonstrate that if ISNECKLACE returns false twice, then the next iteration of the loop where wi > 1 must
have nω(wi) > 1. Thus, the loop breaks (line 8) and there are no further calls to ISNECKLACE.

Consider two iterations of the for loop (line 7) where the iterator has value i and j, respectively, such that both iterations
make a call to ISNECKLACE (line 11) that returns false. Furthermore, assume j < i are the two largest values such that
this is the case. Let αi = w1 · · · wi−1xiwi+1 · · · wn noting that wi > xi > 1 (lines 10 and 11) and nω(wi) = 1 (line 8).
Since αi is not a necklace, by Lemma 21, there exists some largest index 1 ≤ ti ≤ i such that the rotation of α starting
from index ti is a necklace. Thus, wti

· · · wi−1 ≤ w1 · · · wi−ti
. Since ω is not a necklace, wti

· · · wi−1 ≥ w1 · · · wi−ti
. Thus,

wti
· · · wi−1 = w1 · · · wi−ti

(*). Define αj , xj , and tj similarly, which means wj > xj > 1 and nω(wj) = 1. If ti ≤ j < i,
then nω(wj) > 1 by (*), a contradiction. Thus, tj ≤ j < ti. Since nω(wj) = 1, wj ̸= wi.

◀

Let Uweak = RCL(Tweak).

▶ Theorem 24. Uweak is a universal cycle for W(n) with successor rule fweak. Moreover, Uweak can be constructed in
O(1)-amortized time per symbol using O(n2) space.

Proof. Based on the parent rule for Tweak, every chain in Tweak has length m = 2. From Remark 5, fweak = ↑f1 = ↓f1,
and Theorem 3 implies that Uweak is a universal cycle for W(n) with successor rule fweak.

To generate Uweak, Algorithm 1 can apply Algorithm 2 to determine the children of a node by computing and storing
c1c2 · · · cn; each recursive call requires O(n) space. The height of Tweak is O(n); the path from any leaf to the root requires
less than n applications of par(ω) to break all the non-1 ties, and then less than n applications of par(ω) to convert all the
non-1s to 1s. Thus, the construction requires O(n2) space. The time to generate Uweak depends on how efficiently we can
compute c1c2 · · · cn in Algorithm 2. The values nω(wi) can be computed in O(n) time cumulatively. Applying these values,
the cumulative time to compute x at line 10 is also O(n), since each wi > 1 must be unique by line 8. Thus, excluding the
calls to ISNECKLACE, the algorithm runs in O(n) time. Each call to ISNECKLACE (which requires O(n) time [5]) that
returns true leads to a child (some ci > −1). From Lemma 23, there at most two calls to ISNECKLACE that return false. Thus,
the total work by Algorithm 2 is O((t + 1)n), where t is the number of children of the input node ω. Hence by Theorem 6,
Uweak can be constructed in O(1)-amortized time. ◀
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5.4 Orientable sequences

An orientable sequence is a universal cycle for a set S ⊆ {0, 1}n such that if a1a2 · · · an ∈ S, then its reverse an · · · a2a1 /∈ S.
Thus, S does not contain palindromes. Orientable sequences do not exist for n < 5, and a maximal length orientable
sequence for n = 5 is 001011. Somewhat surprisingly, the maximal length of binary orientable sequences are known only
for n = 5, 6, 7. Orientable sequences were introduced in [11] with applications related to robotic position sensing. They
established upper and lower bounds for their maximal length; the lower bound is based on the existence of a PCR-based
cycle-joining tree, though no construction of such a tree was provided.

A bracelet class is an equivalence class of strings under rotation and reversal; its lexicographically smallest representative
is a bracelet. A bracelet α is symmetric if [α] = [αR]; otherwise it is asymmetric. Let A(n) denote the set of all binary
asymmetric bracelets of length n. For example, A(8) = {00001011, 00010011, 00010111, 00101011, 00101111, 00110111}.

If A(n) = {α1, α2, . . . , αt}, let O(n) = [α1] ∪ [α2] ∪ · · · ∪ [αt].
Motivated by the work in [11], a cycle-joining tree Torient for A(n) was discovered leading to the construction of an

orientable sequence with asymptotically optimal length [21]. The parent rule combines three of the four “simple” parent rules
defined earlier for PCR-based cycle joining trees; it applies the following functions where α = a1a2 · · · an ∈ A(n):

first1(α) be the necklace a1 · · · ai−10ai+1 · · · an, where i is the index of the first 1 in α;
last1(α) be the necklace in [a1a2 · · · an−10];
last0(α) be the necklace a1 · · · aj−11aj+1 · · · an, where j is the index of the last 0 in α.

Parent rule for cycle-joining A(n): Let r denote the root 0n−41011. Let α denote a non-root node in A(n). Then

par(α) = the first asymmetric bracelet in the list: first1(α), last1(α), last0(α).

Let Torient be the cycle-joining tree derived from the above parent rule. Figure 10 illustrates Torient together with Torient =
concat(Torient, n, right) for n = 8; an RCL traversal of Torient produces the following orientable sequence of length 48:

00001011 11001011 10011011 10001001 10001011 00101011.

10001011
5

00101011
6

11001011
2

10011011
3

10001001
4

00001011
1

T Torient

0010101100010111

00101111 00110111 00010011

00001011

Figure 10 A cycle-joining tree for A(8) based on the parent rule par(α) followed by a corresponding right concatenation tree Torient

that illustrates the RCL order.

A successor rule forient based on Torient constructs the corresponding orientable sequence in O(n)-time per symbol [21].
The following result is proved by applying Theorem 3 and Theorem 6, where Uorient = RCL(Torient).

▶ Theorem 25 ([21]). Uorient is a universal cycle for O(n) with successor rule forient. Moreover, Uorient can be
constructed in O(1)-amortized time per symbol using O(n2) space.
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