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Abstract

We consider the problem of listing all spanning trees of a graph G such that successive trees
differ by pivoting a single edge around a vertex. Such a listing is called a “pivot Gray code”, and it
has more stringent conditions than known “revolving-door” Gray codes for spanning trees. Most
revolving-door algorithms employ a standard edge-deletion/edge-contraction recursive approach
which we demonstrate presents natural challenges when requiring the “pivot” property. Our main
result is the discovery of a greedy strategy to list the spanning trees of the fan graph in a pivot
Gray code order. It is the first greedy algorithm for exhaustively generating spanning trees using
such a minimal change operation. The resulting listing is then studied to find a recursive algorithm
that produces the same listing in O(1)-amortized time using O(n) space. Additionally, we present
O(n)-time algorithms for ranking and unranking the spanning trees for our listing. Finally, we
discuss how our listing can be applied to find a pivot Gray code for the wheel graph.

1 Introduction

Applications of efficiently listing all spanning trees of general graphs are ubiquitous in
computer science and also appear in many other scientific disciplines [6]. In fact, one of the
earliest known works on listing all spanning trees of a graph is due to the German physicist
Wilhelm Feussner in 1902 who was motivated by an application to electrical networks [10]. In
the 120 years since Feussner’s work, many new algorithms have been developed, such as those
in the following citations [2, 3, 7, 9, 11, 12, 15, 16, 17, 21, 23, 24, 25, 27, 28, 29, 30, 31, 34].

For any application, it is desirable for spanning tree listing algorithms to have the
asymptotically best possible running time, that is, O(1)-amortized running time. The
algorithms due to Kapoor and Ramesh [17], Matsui [23], Smith [31], Shioura and Tamura
[29] and Shioura et al. [30] all run in O(1)-amortized time. Another desirable property of
such listings is to have the revolving-door property, where successive spanning trees differ by
the addition of one edge and the removal of another. Such listings where successive objects in
a listing differ by a constant number of simple operations are more generally known as Gray
codes. The results on Gray codes for spanning trees of Kamae [16], Kishi and Kajitani [21],
Holzmann and Harary [15], and Cummins [9] are all existential and do not give a method
(efficient or not) of generating the Gray code. Only the algorithm due to Smith [31], and
the recent algorithms due to Merino, Mütze, and Williams [27] and Merino and Mütze [25]
produce Gray code listings of spanning trees for an arbitrary graph. Of these algorithms,
Smith’s is the only one that produces a Gray code listing in O(1)-amortized time.
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Example 1 Consider the fan graph on five vertices illustrated in Figure 1, where the
seven edges are labeled

e1 = v2v3, e2 = v2v∞, e3 = v3v4, e4 = v3v∞, e5 = v4v5, e6 = v4v∞, e7 = v5v∞.

The following is a revolving-door Gray code for the 21 spanning trees of this graph. The
initial spanning tree has edges {e1, e2, e5, e6} and each step of the listing below provides
the edge that is removed from the current tree followed by the new edge that is added
to obtain the next tree in the listing:

1. {e1, e2, e5, e6} 8. −e3 + e4 15. −e4 + e2

2. −e5 + e7 9. −e5 + e7 16. −e7 + e3

3. −e1 + e3 10.−e4 + e3 17. −e2 + e4

4. −e3 + e4 11. −e6 + e5 18. −e1 + e2

5. −e7 + e5 12. −e5 + e2 19. −e4 + e7

6. −e4 + e3 13. −e2 + e4 20. −e3 + e4

7. −e2 + e1 14. −e3 + e5 21. −e5 + e3.

This listing was generated from Knuth’s implementation of Smith’s [31] algorithm
provided at http://combos.org/span. The steps in red are highlighted to show where
the edge moves do not pivot around a vertex. This is further illustrated below:

1. 11. 12. 15. 16. 21.

A stronger notion of a Gray code for spanning trees is where the revolving-door makes
strictly local changes. More specifically, we would like the edges being removed and added at
each step to share a common endpoint. For applications that require an exhaustive listing
of spanning trees, this is perhaps the minimal change we can hope for between successive
spanning trees. We call a listing with this property a pivot Gray code (also known as a strong
revolving-door Gray code [22]). The aforementioned spanning tree Gray codes are not pivot
Gray codes. In particular, the Gray code given by Smith’s algorithm [31] is not a pivot Gray
code as illustrated in our previous example: the highlighted edge moves to obtain spanning
trees 12 and 16 do not have the “pivot” property. This leads to our first research question.

Research Question #1 Given a graph G (perhaps from a specific class), does there exist a
pivot Gray code listing of all spanning trees of G? Furthermore, can the listing be generated
in polynomial time per tree using polynomial space?

A short discussion as to why previous methods do not lead directly to pivot Gray codes is
presented in Section 1.3.

A related question that arises for any listing is how to rank, that is, find the position
of the object in the listing, and unrank, that is, return the object at a specific rank. For
spanning trees, Colbourn, Myrvold and Neufeld [8] give the best-known algorithm for ranking
and unranking a spanning tree of a specific listing for an arbitrary graph; their algorithm
has run-time equal to that of the fastest matrix multiplication algorithm, which is currently
known to be O(n2.371552)-time [33].

http://combos.org/span
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Research Question #2 Given a graph G (perhaps from a specific class), does there exist
a (pivot Gray code) listing of all spanning trees of G that can be ranked and unranked in
O(n2) time?

An algorithmic technique recently found to have success in the discovery of Gray codes is
the greedy approach. An algorithm is said to be greedy if it can prioritize allowable actions
according to some criteria, and then choose the highest priority action that results in a
unique object to obtain the next object in the listing. When applying a greedy algorithm,
there is no backtracking; once none of the valid actions lead to a new object in the set
under consideration, the algorithm halts, even if the listing is not exhaustive. The work by
Williams [32] notes that some very well-known combinatorial listings can be constructed
greedily, including the binary reflected Gray code (BRGC) for binary strings, the plain change
order for permutations, and the lexicographically smallest de Bruijn sequence. Recently, a
very powerful greedy algorithm on permutations (known as Algorithm J, where J stands for
“jump”) generalizes many known combinatorial Gray code listings including many related
to permutation patterns, rectangulations, and elimination trees [13, 14, 26]. However, no
greedy algorithm was previously known to list the spanning trees of an arbitrary graph.

Research Question #3 Given a graph G (perhaps from a specific class), does there exist
a greedy strategy to list all spanning trees of G? Moreover, is the resulting listing a pivot
Gray code?

In most cases, a greedy algorithm requires exponential space to recall which objects have
already been visited in a listing. Thus, answering this third question would satisfy only
the first part of Research Question #1. However, in many cases, an underlying pattern
can be found in a greedy listing which can result in space efficient algorithms [13, 32]. In
fact, the first part of this research question has been successfully addressed in recent work
(following our initial submission) by Moreno, Mütze, and Williams [27]. They prove that
the spanning trees of a graph, no matter the labeling of its edges, can be generated by the
following greedy rule, for any initial spanning tree: Minimize the length of the prefix change
to obtain a new tree. With additional restrictions, this approach yields a “face-pivot” Gray
code for the fan; however, in general, this greedy approach does not yield a pivot Gray code.
The shortest prefix change greedy approach has been extended to a wide variety of interesting
combinatorial objects by Merino and Mütze [25].

To address these three research questions, we applied a variety of greedy approaches to
structured classes of graphs including the fan, wheel, n-cube, and the complete graph. From
this study, we were able to affirmatively answer each of the research questions for the fan
graph. Furthermore, we adapt our pivot Gray code for the fan to obtain a pivot Gray code
for the wheel. It remains an open question to find similar results for other classes of graphs,
including the n-cube and the complete graph. Listing spanning trees for various plane graphs
have also been studied [1, 19, 20], but they do not address the questions raised in this paper.

1.1 New results
The fan graph on n vertices, denoted Fn, is obtained by joining a single vertex (which we
label v∞) to the path on n − 1 vertices (labeled v2, ..., vn) – see Figure 1. Note that we label

Figure 1 The fan F5

the smallest vertex v2 so that the largest non-infinity
labeled vertex equals the total number of vertices. We
discover a greedy strategy to generate the spanning trees
of Fn in a pivot Gray code order. We describe this greedy
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strategy in Section 2. The resulting listing is studied
to find an O(1)-amortized time recursive algorithm that
produces the same listing using only O(n) space, which is
presented in Section 3. We show how to rank and unrank a spanning tree of our listing in
O(n) time in Section 3.2 and Section 3.3, which is a significant improvement over the general
O(n3)-time ranking and unranking that is already known. We conclude with a summary in
Section 4, along with a discussion as to how our pivot Gray code for the fan can be extended
to the wheel.

A complete C implementation of our algorithms is available in the Appendix. A prelimi-
nary version of this paper appeared in COCOON 2021 [5].

1.2 Oriented spanning trees
Although we only consider undirected graphs in this paper, we point out a related open
problem for directed graphs.

Given a directed graph D and a fixed root vertex r, an oriented spanning tree or spanning
arborescence is an oriented subtree T of D with n − 1 arcs such that there is a unique path
from r to every other vertex in D; all the arcs are directed away from r in T . The problem
of finding a revolving-door Gray code for oriented spanning trees remains an open problem
with a difficulty rating of 46/50 as given by Knuth in problem 102 on page 481 of [22]. Knuth
also notes on page 804 that a solution to this problem for a fixed root r implies that a strong
revolving-door (pivot) Gray code exists for the spanning trees of an undirected graph1. The
mapping here is natural: given an undirected graph G, replace all edges (u, v) with two
directed edges, one from u to v and one from v to u. Algorithms to list all oriented spanning
trees with a given root are known [11, 18]; however, neither have the revolving-door property.

1.3 Edge contraction and deletion
A technique applied in the construction of several “revolving-door” Gray codes [28, 31, 34]
is to recursively partition the spanning trees of a graph G into those containing a specific
edge e by applying edge contraction, and those that do not contain the edge e by deleting e.
However, when applying this strategy to construct a pivot Gray code, there are challenges
when it comes to uncontracting an edge. Specifically, even if we have a pivot Gray code for
the spanning trees in G/e (G with the edge e contracted), once we uncontract e, it does not
necessarily result in a pivot Gray code for the original graph G. See, for example Figure 2.
It is interesting to note, however, that if a different Gray code for G/e had been chosen
in Figure 2 (i.e., swap the second and third trees), it would indeed result in a pivot Gray
code for the spanning trees G that contain e. An interesting problem that remains open
is if there are graphs for which there is no pivot Gray code that can be “lifted” from their
deletion-contraction Gray codes.

2 A greedy approach

In this section, we discuss greedy approaches that can be applied to discover pivot Gray
codes. The graphs we consider are the complete graph Kn, the fan Fn, the wheel Wn, and
the n-cube. Note that every unicyclic graph, that is, a graph with exactly one cycle, has a

1 The author’s thank Torsten Mütze for pointing out this comment.
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G/e

G

e

pivot Gray code for G/e

corresponding spanning trees for G do not satisfy the pivot property

Figure 2 Illustrating how a pivot Gray code in graph G/e does not necessarily correspond to a pivot
Gray code for the spanning trees of G that include e.

cyclic pivot Gray code: start with any initial spanning tree then pivot the edges around the
cycle one at time. There are two important issues when considering a greedy approach to
list spanning trees: (1) the labels on the vertices (or edges) and (2) the starting tree. For
each of our approaches, we prioritized our operations by first considering which vertex u to
pivot on, followed by an ordering of the endpoints considered in the addition/removal. We
call the vertex u the pivot.

Our initial attempts focused only on pivots that were leaves of the current spanning tree.
As a specific example, we ordered the leaves (pivots) from smallest to largest. Since each
leaf u is attached to a unique vertex v in the current spanning tree, we then considered the
neighbours of u in increasing order of label. We restricted the labeling of the vertices to the
most natural ones, such as the one presented in Section 1.1 for the fan. For each strategy
we tried all possible starting trees. For each starting tree, we iterate the greedy rule until
no new tree can be found via a pivot of the last tree; if all trees have been visited, then a
pivot Gray code has been discovered. Unfortunately, none of our attempts lead to exhaustive
listings for Kn, Fn, Wn, or the n-cube.

By allowing the pivot to be any arbitrary vertex, we ultimately discovered several
exhaustive listing for the spanning trees of Fn; however, rather interestingly, we found no
such listing for any other class. The listings we found for the fan were generated up to n = 12.
Starting from every starting tree for n = 12 took about 8 hours on a single processor. One
listing stood out as having an easily defined starting tree as well as a nice pattern which we
could study to construct the listing more efficiently. It applied the labeling of the vertices as
described in Section 1.1 with the following prioritization of pivots and their incident edges:

Prioritize the pivots u from smallest to largest and then for each pivot, prioritize the
edges uv that can be removed from the current tree in increasing order of the label
on v, and for each such v, prioritize the edges uw that can be added to the current
tree in increasing order of the label on w.

Since this is a greedy strategy, if an edge pivot results in a spanning tree that has already
been generated or a graph that is not a spanning tree, then the next highest priority edge
pivot is attempted. Let Greedy(T ) denote the listing that results from applying this greedy
approach starting with the spanning tree T . The starting tree that produced a nice exhaustive
listing was the path v∞, v2, v3, . . . , vn, denoted Pn throughout the paper. Figure 3 shows the
listings Greedy(Pn) for n = 2, 3, 4, 5. The listing Greedy(P6) is illustrated in Figure 4. It
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is worth noting that starting with the path v∞, vn, vn−1, . . . , v2 or the star (all edges incident
to v∞) did not lead to an exhaustive listing for the spanning trees of Fn in our study.

Example 2 Consider the listing Greedy(P5) in Figure 3. When the current tree T is
the 16th one in the listing (the one with edges {v2v∞, v2v3, v3v4, v5v∞}), the first pivot
considered is v2. Since both v2v3 and v2v∞ are present in the tree, no valid move is
available by pivoting on v2. The next pivot considered is v3. Both edges v3v2 and v3v4
are incident with v3. First, we attempt to remove v3v2 and add v3v∞, which results in
a tree previously generated. Next, we attempt to remove v3v4 and add v3v∞, which
results in a cycle. So, the next pivot, v4, is considered. The only edge incident to v4 is
v4v3. By removing v4v3 and adding v4v5 we obtain a new spanning tree, the next tree
in the greedy listing.

To prove that Greedy(Pn) does in fact contain all the spanning trees of Fn, the next
section demonstrates it is equivalent to a recursively constructed listing obtained by studying
the greedy listings. Before we describe this recursive construction we mention one rather
remarkable property of Greedy(Pn) that we prove later in Section 3.1.1.
▶ Remark 1. Let Xn be last tree in the listing Greedy(Pn). Then Greedy(Xn) is precisely
Greedy(Pn) in reverse order.

3 A pivot Gray code for the spanning trees of Fn via recursion

In this section we develop an efficient recursive algorithm to construct the listing Greedy(Pn).
The construction generates some sub-lists in reverse order, similar to the recursive construction
of the BRGC. The recursive properties allow us to provide efficient ranking and unranking
algorithms for the listing based on counting the number of trees at each stage of the
construction. Let tn denote the number of spanning trees of Fn. It is known that

tn = f2(n−1) = 2((3 −
√

5)/2)n − ((3 +
√

5)/2)n−2

5 − 3
√

5
,

where fn is the nth number of the Fibonacci sequence with f1 = f2 = 1 [4].

3.1 Pivot Gray code construction
By studying the order of the spanning trees in Greedy(Pn), we identified four distinct
stages S1, S2, S3, S4 that are highlighted for Greedy(P6) in Figure 4. From this figure, and
referring back to Figure 3 to see the recursive properties, observe that:

The trees in S1 are equivalent to Greedy(P5) with the added edge v6v5.
The trees in S2 are equivalent to the reversal of the trees in Greedy(P5) with the added
edge v6v∞.

The trees in S3 and S4 have both edges v6v5 and v6v∞ present.

In S3, focusing only on the vertices v4, v3, v2, v∞, the induced subgraphs correspond to
Greedy(P4), except whenever v4v∞ is present, it is replaced with v4v5 (the last five
trees).
In S4, focusing only on the vertices v4, v3, v2, v∞, the induced subgraphs correspond to
the trees in Greedy(P4) where v4v∞ is present, in reverse order.
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Figure 3 Greedy(Pn) for n = 2, 3, 4, 5. Read left to right, top to bottom.
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Figure 4 Greedy(P6) read from left to right, top to bottom. Observe that S1 is Greedy(P5) with
v6v5 added, S2 is the reverse of Greedy(P5) with v6v∞ added, S3 is Greedy(P4) with v6v5 and v6v∞
added, except the edge v4v∞ is replaced by v4v5, and S4 is the last five trees of Greedy(P4) in reverse
order (v4v∞ is now present) with v6v5 and v6v∞ added.
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Algorithm 1 Generate the spanning trees of the fan Fn in pivot Gray code order. T is initialized to Pn

and printed before the call Gen(n, 1, 0).

1: procedure Gen(k, s1, varEdge)
2: if k = 2 then ▷ F2 base case
3: if varEdge then T ← T − v2v∞ + v2v3; Print(T )
4: else if k = 3 then ▷ F3 base case
5: if s1 then
6: if varEdge then T ← T − v3v2 + v3v4; Print(T )
7: else T ← T − v3v2 + v3v∞; Print(T )
8: T ← T − v2v∞ + v2v3; Print(T )
9: else

10: if s1 then
11: Gen(k − 1, 1, 0) ▷ S1
12: if varEdge then T ← T − vkvk−1 + vkvk+1; Print(T )
13: else T ← T − vkvk−1 + vkv∞; Print(T )
14: RevGen(k − 1, 1, 0) ▷ S2
15: T ← T − vk−1vk−2 + vk−1vk; Print(T )
16: Gen(k − 2, 1, 1) ▷ S3
17: if k > 4 then T ← T − vk−2vk−1 + vk−2v∞; Print(T )
18: RevGen(k − 2, 0, 0) ▷ S4

Generalizing these observations for all n ≥ 2 leads to the recursive procedure given in
Algorithm 1, called Gen(k, s1, varEdge). It uses a global variable T to store the current
spanning tree with n vertices. The parameter k indicates the number of vertices under
consideration; the parameter s1 indicates whether or not to generate the trees in stage S1, as
required by the trees for S4; and the parameter varEdge indicates whether or not a variable
edge needs to be added as required by the trees for S3. The base cases correspond to the
edge moves in the listings Greedy(P2) and Greedy(P3).

Let Gn denote the listing obtained by initializing T to Pn, printing T , and calling
Gen(n, 1, 0).

Before discussing RevGen, we first provide a formal description of the last tree in the
listing Gn, which we denote Ln. Define the tree Lastn as follows for n ≥ 2: for n = 2, 3, 4 let
Lastn be the last trees in the listings for n = 2, 3, 4 given in Figure 3, and for n > 4 let

Lastn = Lastn−3 + vnvn−1 + vnv∞ + vn−2v∞.

Applying this definition, the trees Lastn for 2 ≤ n ≤ 7 are given in Figure 5.

▶ Lemma 2. For n ≥ 2, Ln = Lastn.

Proof. The proof is by induction on n, tracing the routines Gen and RevGen. By definition
of Lastn, the result holds for n = 2, 3, 4. Assume that Lj = Lastj for 2 ≤ j < n. Recall
that Ln is the last tree generated by a call to Gen(n, 1, 0) when starting with the tree Pn.
Tracing this routine following the proof of Lemma 6, the current spanning tree when calling
RevGen(n − 2, 0, 0) (on line 18) is Ln−2 + vnvn−1 + vnv∞. Thus from the definition of
Lastn, we must show that the last tree of RevGen(n − 2, 0, 0) when starting with Ln−2 is
Lastn−3 + vn−2v∞.

Since RevGen(k, 1, 0) starting with Lk is the reversal of Gen(k, 1, 0) starting with Pk,
then the last tree of S2 of RevGen(k, 1, 0) must be the first tree of S2 of Gen(k, 1, 0). The
last tree of the recursive call S1 of Gen(k, 1, 0) when starting with Pk is Lastk−1 + vkvk−1
because, by the inductive hypothesis, Lk−1 = Lastk−1, and vkvk−1 ∈ Pk. Then, the edge
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Figure 5 From left to right. {Last2, Last3, Last4} (top), {Last5, Last6, Last7} (bottom). Shaded
vertices and blue edges highlight the additional vertices and edges added to the trees in the top row to
obtain the trees in the bottom row.

Algorithm 2 Generate the spanning trees of the fan Fn in pivot Gray code order. T is initialized to Ln

and printed before the call RevGen(n, 1, 0).

1: procedure RevGen(k, s1, varEdge)
2: if k = 2 then ▷ F2 base case
3: if varEdge then T ← T − v2v3 + v2v∞; Print(T )
4: else if k = 3 then ▷ F3 base case
5: T ← T − v2v3 + v2v∞; Print(T )
6: if s1 then
7: if varEdge then T ← T − v3v4 + v3v2; Print(T )
8: else T ← T − v3v∞ + v3v2; Print(T )
9: else

10: Gen(k − 2, 0, 0) ▷ S4
11: if k > 4 then T ← T − vk−2v∞ + vk−2vk−1; Print(T )
12: RevGen(k − 2, 1, 1) ▷ S3
13: T ← T − vk−1vk + vk−1vk−2; Print(T )
14: Gen(k − 1, 1, 0) ▷ S2
15: if s1 then
16: if varEdge then T ← T − vkvk+1 + vkvk−1; Print(T )
17: else T ← T − vkv∞ + vkvk−1; Print(T )
18: RevGen(k − 1, 1, 0) ▷ S1

move made by line 13 of Gen(k, 1, 0) removes vkvk−1 and adds vkv∞. It follows that the
first tree of S2 of Gen(k, 1, 0), and equivalently the last tree of S2 of RevGen(k, 1, 0), which
is also the last tree of RevGen(k, 0, 0) when starting with Lk, is Lastk−1 + vkv∞. Thus, the
last tree of RevGen(n − 2, 0, 0) starting with Ln−2 is Lastn−3 + vn−2v∞, as desired. ◀

The procedure RevGen(k, s1, varEdge), performs the operations of Gen(k, s1, varEdge)
in reverse order, thus producing the reversal of the listing generated by Gen(k, s1, varEdge)
when starting with the last tree from the latter listing. The base cases correspond to the
edge moves in the reversals of the listings Greedy(P2) and Greedy(P3).

Let Rn denote the listing obtained by initializing T to Ln, printing T , and calling
RevGen(n, 1, 0).

▶ Remark 3. Rn is the listing Gn in reverse order.
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▶ Theorem 4. For n ≥ 2, Gn and Rn are pivot Gray codes for the spanning trees of the
fan Fn and they can be generated in O(1)-amortized time using O(n) space. Moreover,
Greedy(Pn) = Gn and Greedy(Ln) = Rn.

3.1.1 Proof of Theorem 4
We start by proving that the number of trees generated by Gn is tn. Then we show that Gn

= Greedy(Pn) and Rn = Greedy(Ln). Combining these results with the fact that the
trees generated by the greedy approaches are unique and successive trees differ by the “pivot”
of a single edge, we have that Gn Rn are pivot Gray codes for the spanning trees of the fan
graph Fn. Finally, we verify the running time of the recursive algorithm to generate Gn.

Before proving these results, we introduce some notation. Let T − vi denote the tree
obtained from T by deleting the vertex vi along with all edges that have vi as an endpoint.
Let T + vivj (resp. T − vivj) denote the tree obtained from T by adding (resp. deleting) the
edge vivj . For the remainder of this section, we will let Tn denote the tree T specified as a
global variable for Gen and RevGen, and we let Tn−1 = T − vn and Tn−2 = T − vn − vn−1.

▶ Lemma 5. For n ≥ 2, |Gn| = |Rn| = tn.

Proof. We first note that since Gen and RevGen are exact reversals of each other,
Gen(n, s1, varEdge) starting with T = Pn and RevGen(n, s1, varEdge) starting with
T = Ln produce the same number of trees. The proof now proceeds by induction on n. It
is easy to verify the result holds for n = 2, 3, 4. Now assume n > 4, and that |Gj | = tj ,
for 2 ≤ j < n. We consider the number of trees generated by each of the four stages of
Gen(n − 1, 1, 0) when starting with Pn.

S1: Since n > 4 and s1 = 1, Gen(n − 1, 1, 0) is executed. Since Tn = Pn, we have that
Tn−1 = Pn−1. So, by our inductive hypothesis, tn−1 trees are printed. By definition of Ln,
Tn−1 = Ln−1 after Gen(n − 1, 1, 0). It follows that Tn = Ln−1 + vnvn−1. Line 12 removes
vnvn−1 and adds vnv∞. Since vnvn−1 ∈ T and vnv∞ ̸∈ T , this results in one more tree
printed. At this point, Tn = Ln−1 + vnv∞.

S2: Next, line 14 executes RevGen(n−1, 1, 0). We have that Tn−1 = Ln−1. So, by the induc-
tive hypothesis, tn−1 trees are printed. We know that Tn−1 = Pn−1 after RevGen(n−1, 1, 0)
starting with Tn−1 = Ln−1, so it follows that Tn = Pn−1 + vnv∞. Line 15 removes vn−2vn−1
and adds vn−1vn. Since vn−2vn−1 ∈ T (because vn−2vn−1 ∈ Pn−1) and vn−1vn ̸∈ T , this
results in one more tree printed. At this point, Tn = Pn−2 + vnv∞ + vn−1vn.

S3: Line 16 then executes Gen(n−2, 1, 1) with Tn−2 = Pn−2 since Tn = Pn−2+vnv∞+vn−1vn.
Note that the only difference between Gen(n − 2, 1, 1) and Gen(n − 2, 1, 0) is that vjvj+1 is
added instead of vjv∞ since n−2 > 2. Also, vn−2v(n−2)+1 ̸∈ Tn so it can be added. It follows
that Gen(n − 2, 1, 1) and Gen(n − 2, 1, 0) will output the same number of trees starting
with Tn−2 = Pn−2. So, line 16 results in tn−2 trees printed, again by the inductive hypothe-
sis. After line 16 is executed, we have Tn−2 = Ln−2 − vn−2v∞ + vn−2vn−1 since varEdge

was equal to 1. Line 17 removes vn−2vn−1 and adds vn−2v∞. Since vn−2vn−1 ∈ T and
vn−2v∞ ̸∈ T , this results in one more tree printed. At this point, Tn = Ln−2 +vnvn−1 +vnv∞.

S4: By our inductive hypothesis, |Rn−2| = tn−2. However, s1 = 0 for line 18 (RevGen(n −
2, 0, 0)). So, for RevGen(n − 2, 0, 0), line 17 (one tree) and line 18 (tn−3 trees) are not
executed. This results in a total of tn−2 − tn−3 trees being printed by line 18 of Gen(n, 1, 0).
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In total, 2tn−1 + 2tn−2 − tn−3 trees are printed. By a straightforward Fibonacci identity
which we leave to the reader, we have that tn = 2tn−1 + 2tn−2 − tn−3. Therefore, |Gn| =
|Rn| = tn. ◀

To prove the next result, we first detail some required terminology. If T is a spanning
tree of Fn, then we say that the operation of deleting an edge vivj and adding an edge vivk

is a valid edge move of T if the result is a spanning tree that has not been generated yet.
Conversely, if the result is not a spanning tree, or the result is a tree that has already been
generated, then it is not a valid edge move of T . We say an edge vivj is smaller than edge
vivk if j < k. An edge move Tn − vivj + vivk is said to be smaller than another edge move
Tn − vxvy + vxvz if i < x, if i = x and j < y, or if i = x, j = y, and k < z.

▶ Lemma 6. For n ≥ 2, Gn = Greedy(Pn) and Rn = Greedy(Ln).

Proof. By induction on n. It is straightforward to verify that the result holds for n = 2, 3, 4
by iterating through the algorithms. Assume n > 4, and that Gj = Greedy(Pj) and
Rj = Greedy(Lj) for 2 ≤ j < n. We begin by showing Gn = Greedy(Pn), breaking the
proof into each of the four stages of a call to Gen(n − 1, 1, 0) starting with Pn.

S1: Since n > 4 and s1 = 1, Gen(n − 1, 1, 0) is executed. By our inductive hypothesis,
Gn−1 = Greedy(Pn−1). These must be the first trees for Greedy(Pn), as any edge move
involving vnvn−1 or vnv∞ is larger than any edge move made by Greedy(Pn−1). Since
Greedy(Pn−1) halts, it must be that no edge move of Tn−1 is possible. So Greedy(Pn)
must make the next smallest edge move, which is Tn −vnvn−1 +vnv∞. Since Tn is a spanning
tree, it follows that Tn − vnvn−1 + vnv∞ is also a spanning tree (and has not been generated
yet), and therefore the edge move is valid. At this point, Gen(n, 1, 0) also makes this edge
move, by line 13.

S2: RevGen(n − 1, 1, 0) (Tn−1 = Ln−1) is then executed. By our inductive hypothesis,
Rn = Greedy(Ln−1). Since Greedy(Ln−1) halts, it must be that no edge moves of
Tn−1 are possible. At this point, Tn−1 = Pn−1 because RevGen(n − 1, 1, 0) was executed.
The smallest edge move now remaining is Tn − vn−2vn−1 + vnvn−1. This results in
Tn = Pn−2 + vnvn−1 + vnv∞, which is a spanning tree that has not been generated. So,
Greedy(Pn) must make this move. Gen(n, 1, 0) also makes this move, by line 15. So, Gn

must equal Greedy(Pn) up to the end of S2.

S3: Next, Gen(n − 2, 1, 1) starting with Tn−2 = Pn−2 is executed. Since varEdge = 1,
vn−2vn−1 is added instead of vn−2v∞. Greedy(Pn) also adds vn−2vn−1 instead of
vn−2v∞ since vn−2vn−1 is smaller than vn−2v∞ and this edge move results in a tree
not yet generated. Other than the difference in this one edge move, which occurs
outside the scope of Tn−2, Gen(n − 2, 1, 0) and Gen(n − 2, 1, 1) (both starting with
Tn−2 = Pn−2) make the same edge moves. Since we also know that Gn−2 = Greedy(Pn−2)
by the inductive hypothesis, it follows that Gn continues to equal Greedy(Pn) after
line 16 of Gen(n, 1, 0) is executed. We know that Tn−2 = Ln−2 after Gen(n − 2, 1, 0).
However, Tn−2 = Ln−2 − vn−2v∞ + vn−2vn−1 instead because Gen(n − 2, 1, 1) was
executed (varEdge = 1). It must be that no edge moves of Tn−2 are possible because
Greedy(Pn−2) (and Gen(n − 2, 1, 1)) halted. The smallest edge move now remaining is
Tn − vn−2vn−1 + vn−2v∞. This results in Tn−2 = Ln−2. Also, Tn = Tn−2 + vnvn−1 + vnv∞
is a spanning tree since Tn−2 is a spanning tree of Fn−2. So Greedy(Pn) makes this move.
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Gen(n, 1, 0) also makes this move, by line 17, and thus Gn = Greedy(Pn) up to the end of S3.

S4: Finally, RevGen(n − 2, 0, 0) starting with Tn−2 = Ln−2 is executed. By our in-
ductive hypothesis, Rn−2 = Greedy(Ln−2). From lines 15-18 of Algorithm 2, it is
clear that RevGen(n − 2, 0, 0) and RevGen(n − 2, 1, 0) make the same edge moves until
RevGen(n−2, 0, 0) finishes executing. So, by the inductive hypothesis, the listings produced
by RevGen(n − 2, 0, 0) and Greedy(Ln−2) are the same until this point, which is where
Gen(n, 1, 0) finishes execution. By Lemma 5 we have that |Gn| = tn. Therefore, Greedy(Pn)
has also produced this many trees, and each tree is unique. Thus, it must be that all tn trees
of Fn have been generated. Thus, Greedy(Pn) also halts.

Since Gn and Greedy(Pn) start with the same tree, produce the same trees in the
same order, and halt at the same place, it follows that Gn = Greedy(Pn). We now
prove that Rn = Greedy(Ln). By using our inductive hypothesis and the same argu-
ments as previously, we see that this results hold within the four stages of RevGen(n, 1, 0)
when starting with Ln(namely, Gen(Tn−2, 0, 0), RevGen(Tn−2, 1, 1), Gen(Tn−1, 1, 0), and
RevGen(Tn−1, 1, 0)). However, we must still prove that Rn matches Greedy(Ln) as we
move between stages.

After S4: After Gen(n − 2, 0, 0), Tn = Ln−2 + vnvn−1 + vnv∞. Since vn−2v∞ ∈ Tn and no
edge moves of Tn−2 are possible (because Greedy(Ln−2) halted), Greedy makes the next
smallest edge move which is Tn − vn−2v∞ + vn−2vn−1. RevGen(n, 1, 0) also makes this
move here, by line 11.

After S3: After RevGen(n − 2, 1, 1), Tn = Pn−2 + vnvn−1 + vnv∞. No edge moves of Tn−2
are possible at this point. Therefore, since vnvn−1 ∈ Tn and vn−2vn−1 ̸∈ Tn, Greedy makes
the smallest possible edge move which is Tn − vnvn−1 + vn−2vn−1. RevGen(n, 1, 0) also
makes this move here, by line 13.

After S2: Finally, after Gen(n − 1, 1, 0), Tn = Ln−1 + vnv∞. No edge moves of Tn−1 are
possible at this point. Therefore, Greedy must make the only remaining edge move, which
is Tn − vnv∞ + vnvn−1. RevGen(n, 1, 0) also makes this move here, by line 17.

Since Greedy(Ln) and RevGen(n, 1, 0) start with the same tree, produce the same
trees in the same order, and halt at the same place, it follows that Rn = Greedy(Ln). ◀

Because Greedy(Pn) generates unique spanning trees of Fn, Lemma 5 together with
Lemma 6 implies the following.

▶ Lemma 7. For n ≥ 2, Gn = Greedy(Pn) is a pivot Gray code listing for the spanning
trees of Fn.

It remains to prove how efficiently our pivot Gray codes can be generated. To store the
global tree T , the algorithms Gen and RevGen can employ an adjacency list model where
each edge uv is associated only with the smallest labeled vertex u or v. This means v∞ will
never have any edges associated with it, and every other vertex will have at most 3 edges
in its list. Thus the tree T requires at most O(n) space to store, and edge additions and
deletions can be done in constant time. The next result completes the proof of Theorem 4.

▶ Lemma 8. For n ≥ 2, Gn and Rn can be generated in O(1)-amortized time using O(n)
space.
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Proof. For each call to Gen(n, s1, varEdge) where n > 3, there are at most four recursive
function calls, and at least two new spanning trees generated. Thus, the total number of
recursive calls made is at most twice the number of spanning trees generated. Each edge
addition and deletion can be done in constant time as noted earlier. Thus each recursive
call requires a constant amount of work, and hence the overall algorithm will run in O(1)-
amortized time. There is a constant amount of memory used at each recursive call and the
recursive stack goes at most n − 3 levels deep; this requires O(n) space. As mentioned earlier,
the global variable T stored as adjacency lists also requires O(n) space. ◀

3.2 Ranking
Given a spanning tree T in Gn, we calculate its rank by recursively determining which
stage (recursive call) T is generated. We can determine the stage by focusing on the
presence/absence of the edges vnvn−1, vnv∞, vn−2v∞, and vn−2vn−1. Based on the discussion
of the recursive algorithm, there are tn−1 trees generated in S1, tn−1 trees generated in S2,
tn−2 trees generated in S3, and tn−2 − tn−3 trees generated in S4. S3 is partitioned into two
cases based on whether vn−2vn−1 (varEdge) is present. For the remainder of this section we
will let Tn−1 = T − vn and Tn−2 = T − vn − vn−1.

If vnvn−1, vnv∞, vn−2v∞ ∈ T , then T is a tree in S4 of Gn. The trees of S4 are the trees
of Gn−2 without S1, listed in reverse order. So, the rank can be calculated by subtracting
the rank of Tn−2 in Gn−2 from 2tn−1 + 2tn−2 + 1 (the rank of the last tree of S3 plus tn−2).
Note that we do not use 2tn−1 + 2tn−2 − tn−3 because the recursive rank calculated already
takes into account the trees of S1 that are missing.

If vnvn−1, vnv∞ ∈ T and vn−2v∞ ̸∈ T , then T is a tree in S3 of Gn. The trees of S3 are
the trees of Gn−2 where vn−2v∞ has been replaced by vn−2vn−1. So, if vn−2vn−1 ∈ T , then
in order to recursively calculate the rank of Tn−2 in Gn−2, we need to replace vn−2vn−1 with
vn−2v∞. If vn−2vn−1 ̸∈ T , then no edge replacements are needed. We can then determine
the rank of T in Gn by adding the rank of Tn−2 in Gn−2 to 2tn−1 (the rank of the last tree
of S2).

The other two cases are fairly trivial. If vnvn−1 ∈ T and vnv∞ ̸∈ T , then T is in S1.
Since S1 is the trees of Gn−1 with vnvn−1 added, we simply return the ranking of Tn−1 in
Gn−1. If vnv∞ ∈ T and vnvn−1 ̸∈ T , then T is in S2. Since S2 is the trees of Gn−1 in reverse
order with vnv∞ added, we return 2tn−1 + 1 (the rank of the first tree of S3) minus the rank
of Tn−1 in Gn−1.

For n > 1, let Rn(T ) denote the rank of T in the listing Gn. If n = 2, 3, 4, then Rn(T )
can easily be derived from Figure 3. Based on the above discussion, for n ≥ 5:

Rn(T ) =



2tn−1 + 2tn−2 −Rn−2(Tn−2) + 1 if e1, e2, e3 ∈ T

2tn−1 + Rn−2(Tn−2 + e3) if e1, e2, e4 ∈ T , e3 ̸∈ T

2tn−1 + Rn−2(Tn−2) if e1, e2 ∈ T , e3, e4 ̸∈ T

2tn−1 −Rn−1(Tn−1) + 1 if e2 ∈ T , e1 ̸∈ T

Rn−1(Tn−1) if e1 ∈ T , e2 ̸∈ T

(1)

where e1 = vnvn−1, e2 = vnv∞, e3 = vn−2v∞, and e4 = vn−2vn−1.

Example 3 Consider the spanning trees T7, T6, T5, and T3 for F7, F6, F5 and F3
respectively.



XX:15

Observe that T6 = T7 − v7, T5 = T6 − v6, and T3 = T5 − v5 − v4 + v3v∞. Consider R7(T )
where T = T7. Applying the formula in (1) we have

R7(T ) = R6(T6)
= 2t5 − R5(T5) + 1
= 43 − (2t4 + R3(T3 + v3v∞))
= 43 − (16 + 3)
= 24.

Since each application of (1) requires constant time, and the recursion goes O(n) levels
deep, we arrive at the following result provided the first 2(n−2) Fibonacci numbers are
precomputed. We note that the calculations are on numbers up to size tn−1.

▶ Theorem 9. The listing Gn can be ranked in O(n) time using O(n) space under the unit
cost RAM model.

3.3 Unranking

Determining the tree T at rank r, where 0 < r ≤ tn, in the listing Gn follows similar ideas by
constructing T starting from a set of n isolated vertices and adding one edge at a time. If
0 < r ≤ tn−1 then T must be a tree in S1 of Gn. So, we can add vnvn−1 to T and consider
the rank r tree in Gn−1. If tn−1 < r ≤ 2tn−1, then T is a tree in S2 of Gn. Since S2 of Gn is
simply Rn−1 + vnv∞, we can add vnv∞ to T and then consider the rank 2tn−1 + 1 − r (rank
of the first tree of S3 minus r) tree in Gn−1. If 2tn−1 < r ≤ 2tn−1 + tn−2, then T must be a
tree in S3 of Gn. Since all trees in S3 have the edges vnvn−1 and vnv∞, we can add these
edges to T . Then, we can consider the rank r − 2tn−1 (r minus the rank of the last tree of
S2) tree of Gn−2. Also note that since T is in S3, vn−2vn−1 will replace vn−2v∞ for the trees
of Gn−2. Otherwise, if r > 2tn−1 + tn−2, then T must be in S4 of Gn−2. Similar to S3, we
can add vnvn−1 and vnv∞ to T as all trees in S4 have these edges. Then, we consider the
2tn−1 + 2tn−2 − r + 1 (rank of the last tree of S3 plus the rank of the last tree of Gn−2 minus
r) tree of Gn−2.

Let Un(r, replaceEdge) return the edges that form the tree T at rank r for the listing
Gn. The parameter replaceEdge indicates whether or not the edge vnvn+1 should be added
instead of vnv∞. Initially, r is the specified rank, and replaceEdge = 0. In the base cases
where n = 2, 3, 4, then T is derived from Figure 3. For these cases, if the edge vnv∞ is
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present and replaceEdge = 1, then it is replaced by the edge vnvn+1. Based on the above
discussion, we arrive at the following recursive construction for Un(r, replaceEdge).

Un(r, replaceEdge) =


Un−1(r, 0) + vnvn−1 if 0 < r ≤ tn−1,
Un−1(2tn−1−r+1, 0) + e if tn−1 < r ≤ 2tn−1,
Un−2(r−2tn−1, 1) + vnvn−1 + e if 2tn−1 < r ≤ 2tn−1+tn−2,
Un−2(2tn−1+2tn−2−r + 1, 0) + vnvn−1 + e otherwise,

(2)

where e = vnvn+1 if replaceEdge = 1 and e = vnv∞ otherwise.

Example 4 To find the 24th tree T in the listing G7, we consider U7(24, 0). Repeated
application of (2) yields the following

U7(24, 0) = U6(24, 0) + v7v6 ▷ since 0 < 24 ≤ t6

= U5(19, 0) + v7v6 + v6v∞ ▷ since t5 < 24 ≤ 2t5

= U3(3, 1) + v7v6 + v6v∞ + v5v4 + v5v∞ ▷ since 2t4 < 19 ≤ 2t4 + t3

= v7v6 + v6v∞ + v5v4 + v5v∞ + v3v3 + v3v2

Reaching a base case, the 3rd tree of G3 is {v3v2, v3v∞}. Since replaceEdge = 1, the edge v3v∞

is replaced with v3v4 and we end up with the spanning tree T containing the edges from the
last line of the equation. These four steps to construct T are illustrated below.

Since each application of (2) requires constant time, and the recursion goes O(n) levels
deep, we arrive at the following result provided the first 2(n−2) Fibonacci numbers are
precomputed. We note that the calculations are on numbers up to size tn−1.

▶ Theorem 10. The listing Gn can be unranked in O(n) time using O(n) space under the
unit cost RAM model.

4 Conclusion

We answer each of the three Research Questions outlined in Section 1 in the affirmative
for the fan graph, Fn. First, we discovered a greedy algorithm that exhaustively listed all
spanning trees of Fn experimentally for small n with an easy to define starting tree. We then
studied this listings which led to a recursive construction producing the same listing that
runs in O(1)-amortized time using O(n) space. We also proved that the greedy algorithm
does in fact exhaustively list all spanning trees of Fn for all n ≥ 2, by demonstrating the
listing is equivalent to the aforementioned recursive algorithm. It is the first greedy algorithm
known to exhaustively list all spanning trees for a non-trivial class of graphs, in a pivot Gray
code order. Though, subsequently, a greedy approach for arbitrary graphs can be modified
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to also produce a pivot Gray code for the fan [27]. Finally, we provided O(n)-time ranking
and unranking algorithms for our listings, assuming the unit cost RAM model. Some notable
open problems that remain:

1. Can other (not necessarily pivot) Gray codes for spanning trees (for interesting classes of
graphs) be ranked/unranked in polynomial time?

2. Can a stronger version of Research Question #1 be answered in the affirmative (even
for fan graphs) where we further insist that the pivot Gray code be cyclic, that is, the
first and last spanning tree in the listing also differ by the addition of and deletion of a
single edge with a common endpoint?

3. Can Research Question #1 be solved for all graphs (even just the existential part of
the question)?

It is expected that in solving the last open question listed above, progress will start
with generating pivot Gray codes for other specific families of graphs. To this end, in the
upcoming Section 4.1, we adapt our pivot Gray code for the fan to obtain a pivot Gray code
for the wheel. It remains an interesting open problem to answer the research questions for
other classes of graphs including the n-cube, and complete graph.

4.1 Final comment: The wheel
The wheel Wn is obtained by adding the single edge v2vn to Fn. With the addition of this
single edge, we were unable to find a greedy algorithm to list all the spanning trees of Wn

in a pivot Gray code order. However, we were able to adapt the recursive algorithm for
the spanning trees of Fn to obtain a pivot Gray code for Wn by appropriately inserting the
spanning trees of Wn that contain the wheel edge v2vn.

Figure 6 provides an example of a pivot Gray code listing for the spanning trees of W5
obtained by inserting the trees containing the edge v5v2 into the listing for G5. Note that all
the trees containing the wheel edge v5v2 contain subgraphs corresponding to the spanning
trees of F4, F3, or F2. For example, the second tree in the first row contains the first spanning
tree of G4 as a subgraph (highlighted in red) on the vertices v4, v3, v2, and v∞. The third
tree of the second row also contains the first tree of G4, except this time it appears as a
subgraph (highlighted in blue) on the vertices v5, v4, v3, and v∞. We now introduce some
terminology to differentiate between these two cases. A tree, T , with the wheel edge contains
a right subgraph if v2 is connected to v∞ when the edge vnv2 is removed from T . Similarly,
T contains a left subgraph if vn is connected to v∞ when the edge vnv2 is removed from T .
As a further example of trees that contain right subgraphs, see the third and fourth tree on
the first row, which contain the first tree of G3 and the first tree of G2, respectively.

When inserting the trees with the wheel edge, it is straightforward to fit in the trees
that contain right subgraphs due to the recursive nature of Gen. Since the trees of S1 of
Gen(n, 1, 0) are all of the trees of Gen(n − 1, 1, 0) with the edge vnvn−1 added, we can add
trees containing the wheel edge and these right subgraphs as intermediate trees in between
the trees of S1 of Gn by removing the edge vnvn−1 and adding vnv2. We can further insert
the trees containing smaller subgraphs (like the third and fourth tree on the first row) by
rotating edges along the path, as seen in between f1 and f2 of Figure 6. Note that in between
the fourth and fifth tree of the first row, we make the original edge move between f1 and f2,
and then rotate edges back along the path to obtain f2.
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Figure 6 A pivot Gray code listing for the W5 obtained by inserting the spanning trees with the edge
v2v5 in between the trees of G5 (colored with grey vertices). The label fj denotes the jth tree of G5. Blue
and red are used to highlight the edges of a left or right subgraph, respectively.
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Unfortunately, the trees containing left subgraphs do not follow a nice recursive pattern.
However, we are still able to insert them appropriately by considering two cases. First, when
v2 is the pivot vertex, we can insert a single tree containing a left subgraph as an intermediate
edge move. As an example of this, see the tree in between f2 and f3 of Figure 6. The other
case is when v2v∞ is present and v2 is not the pivot vertex, in which case we can insert two
trees. For example, in between the trees labeled f6 and f7 in Figure 6. Note that we require
v2v∞ to be present so that we can remove it and add vnv2 as an intermediate move. If we
instead replaced either v2v∞ or v2v3 with vnv2, then we could end up with duplicate trees.
Also note that generating right subgraphs takes precedence over generating left subgraphs.
For example, even though our first case is satisfied in between f7 and f8, there are still trees
with right subgraphs that can be generated, so we do not generate a tree with a left subgraph.
Finally, note that inserting trees in the ways we have described does not change the relative
order that the trees of Gn appear.
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A C Code

#include <stdio.h>
#include <stdlib.h>
#define MAX_N 30

int n;
int tree[MAX_N+2][MAX_N+2]; // Adjacency matrix of a spanning tree
long long int fib[2*MAX_N+1]; // Stores the Fibonacci numbers
long long int numTrees = 1; // Number of trees generated

void ReverseGen(int k, int S1, int varEdge);

//-------------------------------------------------
void PrintMove(int v, int old, int new) {

printf("Move #%lld: -(%d, %d) +(%d, %d)\n", numTrees, v-1, old-1, v-1, new-1);
}
//-------------------------------------------------
void PrintTree() { // Prints edge list of tree

for (int i = 2; i < n+1; i++) {
for (int j = i+1; j < n+2; j++) {

if (tree[i][j] == 1) {
printf("%d %d\n", i-1, j-1);

}
}

} printf("\n");

}
//-------------------------------------------------
int tF(int k) { return fib[2*k - 2]; } // Calculates t(F_k)

//-------------------------------------------------
void CreateStartTree() { // Creates adjacency matrix of P_n

tree[2][n+1] = tree[n+1][2] = 1;
for (int i = 3; i < n+1; i++) {

tree[i][i-1] = tree[i-1][i] = 1;
}

}
//-------------------------------------------------
void CreateLastTree(int k) { // Creates adjacency matrix of L_n

if (k == 2) {
tree[2][n+1] = tree[n+1][2] = 1;

} else if (k == 3) {
tree[2][3] = tree[3][2] = 1;
tree[3][n+1] = tree[n+1][3] = 1;

} else if (k == 4) {
tree[2][3] = tree[3][2] = 1;
tree[3][4] = tree[4][3] = 1;
tree[4][n+1] = tree[n+1][4] = 1;

} else if (k > 4){
tree[k][k-1] = tree[k-1][k] = 1;
tree[k][n+1] = tree[n+1][k] = 1;
tree[k-2][n+1] = tree[n+1][k-2] = 1;
CreateLastTree(k-3);

}
}
//-------------------------------------------------
void CreateFib() { // Populates the Fibonacci array

fib[1] = fib[2] = 1;
for (int i = 3; i <= 2*(MAX_N-1); i++) fib[i] = fib[i-1] + fib[i-2];

}
//-------------------------------------------------
int Rank(int k) {

// Base cases
if (k == 3) { // F_3

if (tree[k][k-1] == 1 && tree[k][n+1] == 1) return 3;
else if (tree[k][n+1] == 1) return 2;
else if (tree[k][k-1] == 1) return 1;

}
else if (k == 2) { // F_2

if (tree[k][n+1] == 1) return 1;
}

if (tree[k][k-1] == 1 && tree[k][n+1] == 1) { // Both edges present
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if (tree[k-2][n+1] == 1) return 2*tF(k-1) + 2*tF(k-2) - Rank(k-2) + 1*(k!=4); // S4
else if (tree[k-2][k-1] == 1) {

// Delete e_4, Add e_3 and continue as normal
tree[k-2][k-1] = tree[k-1][k-2] = 0;
tree[k-2][n+1] = tree[n+1][k-2] = 1;

}
return 2*tF(k-1) + Rank(k-2) + 1*(k==4); // S3

}
else if (tree[k][k-1] == 1) return Rank(k-1); // S1
else if (tree[k][n+1] == 1) return 2*tF(k-1) - Rank(k-1) + 1; // S2
return 0;

}
//-------------------------------------------------
void Unrank(int k, int rank, int replaceEdge) {

// Base cases
if (k == 2) { // F_2

if (replaceEdge == 1) tree[3][2] = tree[2][3] = 1;
else tree[n+1][2] = tree[2][n+1] = 1;
return;

}
else if (k == 3) { // F_3

if (rank == 1) {
tree[n+1][2] = tree[2][n+1] = 1; tree[2][3] = tree[3][2] = 1;

}
else if (rank == 2) {

tree[2][n+1] = tree[n+1][2] = 1;
if (replaceEdge == 1) tree[3][4] = tree[4][3] = 1;
else tree[n+1][3] = tree[3][n+1] = 1;

}
else if (rank == 3) {

tree[3][2] = tree[2][3] = 1;
if (replaceEdge == 1) tree[3][4] = tree[4][3] = 1;
else tree[3][n+1] = tree[n+1][3] = 1;

}
return;

}
if (rank <= tF(k-1)) { // S1 - Add e_1

tree[k][k-1] = tree[k-1][k] = 1;
Unrank(k-1, rank, 0);

}
else if (rank <= 2*tF(k-1)) { // S2 - Add e_2

if (replaceEdge == 1) tree[k][k+1] = tree[k+1][k] = 1;
else tree[k][n+1] = tree[n+1][k] = 1;
Unrank(k-1, 2*tF(k-1) - rank + 1, 0);

}
else if (rank <= 2*tF(k-1) + tF(k-2)) { // S3 - Add both edges

tree[k][k-1] = tree[k-1][k] = 1;
if (replaceEdge == 1) tree[k][k+1] = tree[k+1][k] = 1;
else tree[k][n+1] = tree[n+1][k] = 1;
Unrank(k-2, rank - 2*tF(k-1), 1*(k!=4));

}
else if (rank <= 3*tF(k-1) - tF(k-2)) { // S4 - Add both edges

tree[k][k-1] = tree[k-1][k] = 1;
if (replaceEdge == 1) tree[k][k+1] = tree[k+1][k] = 1;
else tree[k][n+1] = tree[n+1][k] = 1;
Unrank(k-2, 2*tF(k-1) + 2*tF(k-2) - rank + 1, 1*(k==4));

}
}
//-------------------------------------------------
void Replace(int v, int old, int new) { // Delete (v, old), Add (v, new)

PrintMove(v, old, new);
tree[v][old] = tree[old][v] = 0;
tree[v][new] = tree[new][v] = 1; numTrees++;

}
//-------------------------------------------------
void Gen(int k, int S1, int varEdge) {

if (k == 2) { // F_2 base case
if (varEdge == 1) Replace(2, n+1, 3);

}
else if (k == 3) { // F_3 base case

if (S1 == 1) {
if (varEdge == 0) Replace(3, 2, n+1);
else Replace(3, 2, 4); // S3

}
Replace(2, n+1, 3);
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}
else {

if (S1 == 1) {
Gen(k-1, 1, 0);
if (varEdge == 0) Replace(k, k-1, n+1);
else Replace(k, k-1, k+1); // S3

}
ReverseGen(k-1, 1, 0);
Replace(k-1, k-2, k);
Gen(k-2, 1, 1);
if (k > 4) Replace(k-2, k-1, n+1);
ReverseGen(k-2, 0, 0);

}
}
//-------------------------------------------------
void ReverseGen(int k, int S1, int varEdge) {

if (k == 2) {
if (varEdge == 1) Replace(2, 3, n+1);

}
else if (k == 3) {

Replace(2, 3, n+1);
if (S1 == 1) {

if (varEdge == 0) Replace(3, n+1, 2);
else Replace(3, 4, 2);

}
}
else {

Gen(k-2, 0, 0);
if (k > 4) Replace(k-2, n+1, k-1);
ReverseGen(k-2, 1, 1);
Replace(k-1, k, k-2);
Gen(k-1, 1, 0);
if (S1 == 1) {

if (varEdge == 0) Replace(k, n+1, k-1);
else Replace(k, k+1, k-1);
ReverseGen(k-1, 1, 0);

}
}

}
//-------------------------------------------------
int main() {

int choice, rank, v1, v2;

// User input and error checking
printf(" ###################################################################################");
printf("####################################################################################\n\n");
printf(" This program provides functionality to list the spanning trees of the Fan graph");
printf(" in a pivot Gray code order, rank a tree in the listing, or unrank a tree in the listing.\n");
printf(" The vertices on the path are labeled 1 to n-1, and the universal vertex is labeled n.\n\n");
printf(" ###################################################################################");
printf("####################################################################################\n\n");

printf(" 1. Pivot Gray code generation (GEN)\n");
printf(" 2. Pivot Gray code generation in reverse order of option 1 (REVGEN)\n");
printf(" 3. Rank a tree in the listing generated by option 1\n");
printf(" 4. Unrank a tree in the listing generated by option 1\n");
printf(" Enter selection: "); scanf("%d", &choice);

if (choice < 1 || choice > 4) {
printf("Error: Invalid choice.\n");
exit(0);

}
printf("Input n: "); scanf("%d", &n);
if (n > MAX_N) {

printf("Error: n is too big. Please try n <= 30.\n");
}
CreateFib();

if (choice == 1) { // GEN

CreateStartTree();
printf("\n##### GEN ####\n");
Gen(n, 1, 0);
printf("Number of spanning trees of F_%d: %lld\n", n, numTrees);

} else if (choice == 2) {
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CreateLastTree(n);
printf("\n#### REVGEN ####\n");
ReverseGen(n, 1, 0);
printf("Number of spanning trees of F_%d: %lld\n", n, numTrees);

} else if (choice == 3) { // RANK

printf("Enter the edges of the spanning tree in format ’v1 v2’. ");
printf("If you input edge (v1, v2), do not input edge (v2, v1). ");
printf("Use labels 1 to n-1 for the vertices on the path (from right to left)");
printf(", and label n for the universal vertex. ");
printf("Warning: no error checking is done.\n");
for (int i = 1; i <= n-1; i++) {

printf("Edge %d: ", i);
scanf("%d %d", &v1, &v2);
tree[v1+1][v2+1] = tree[v2+1][v1+1] = 1;

}
printf("Rank of inputted tree in listing for GEN is #%d.\n", Rank(n));

} else if (choice == 4){ // UNRANK

printf("Enter rank (between 1 and %lld): ", fib[2*(n-1)]);
scanf("%d", &rank);
if (rank < 1 || rank > tF(n)) {

printf("Error: Invalid input.\n"); exit(0);
}
Unrank(n, rank, 0);
printf("\nTree #%d of GEN for F_%d is: \n\n", rank, n);
PrintTree();

}

return 0;
}
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