
Finding the Largest Fixed-Density Necklace and Lyndon word

Joe Sawada Patrick Hartman

April 18, 2017

Abstract

We present anO(n) time algorithm for finding the lexicographically largest fixed-density necklace of
length n. Then we determine whether or not a given string can be extended to a fixed-density necklace of
length n in O(n2) time. Finally, we give an O(n3) algorithm that finds the largest fixed-density necklace
of length n that is less than or equal to a given string. The efficiency of the latter algorithm is a key
component to allow fixed-density necklaces to be ranked efficiently. The results are extended to find the
largest fixed-density Lyndon word of length n (that is less than or equal to a given string) in O(n3) time.

1 Introduction

A necklace is the lexicographically smallest string in an equivalence class of strings under rotation. A Lyndon
word is a primitive (aperiodic) necklace. The density of a binary string is the number of 1s it contains. Let
N(n, d) denote the set of all binary necklaces with length n and density d. In this paper we present efficient
algorithms for the following three problems:

1. finding the largest necklace in N(n, d),

2. determining if an arbitrary string is a prefix of some necklace in N(n, d), and

3. finding the largest necklace in N(n, d) that is less than or equal to a given binary string of length n.

The first problem can be answered in O(n) time, which is applied to answer the second problem in O(n2)
time, which in turn is applied to answer the third problem in O(n3) time. The third problem can also be
solved for fixed-density Lyndon words in O(n3) time, which can immediately be used to find the largest
fixed-density Lyndon word of a given length. Solving the third problem efficiently for both necklaces and
Lyndon words is a key step in the first efficient algorithms to rank and unrank fixed-density necklaces and
Lyndon words [2]. When there is no density constraint, the third problem is known to be solvable in O(n2)-
time; one such implementation is outlined in [10]. This problem was encountered in the first efficient algo-
rithms to rank and unrank necklaces and Lyndon words discovered independently by Kopparty, Kumar, and
Saks [5] and Kociumaka, Radoszewski and Rytter [4].

To illustrate these problems, consider the lexicographic listing of N(8, 3):

00000111, 00001011, 00001101, 00010011, 00010101, 00011001, 00100101.

The largest necklace in this set is 00100101. The string 0010 is a prefix of a necklace in this set, however,
010 is not. Given an arbitrary string α = 00011000, the largest necklace in this set that is less than or equal
to α is 00010101.

Fixed-density necklaces were first studied by Savage and Wang when they provided the first Gray code
listing in [11]. Since then, an algorithm to efficiently list fixed-density necklaces was given by Ruskey and
Sawada [8] and another efficient algorithm to list them in cool-lex Gray code order was given by Sawada and

1



Williams [9]. The latter algorithm leads to an efficient algorithm to construct a fixed-density de Bruijn se-
quence by Ruskey, Sawada, and Williams [7]. When equivalence is further considered under string reversal,
an algorithm for listing fixed-density bracelets is given by Karim, Alamgir and Husnine [3].

The remainder of this paper is presented as follows. In Section 2, we present some preliminary results on
necklaces and related objects. In Section 3, we present an O(n)-time algorithm to find the largest necklace
in N(n, d). In Section 4, we present an O(n2)-time algorithm to determine whether or not a given string is
a prefix of a necklace in N(n, d). In Section 5, we present an O(n3)-time algorithm to finding the largest
necklace in N(n, d) that is less than or equal to a given string. These results on necklaces are extended to
Lyndon words in Section 6.

2 Preliminaries

Let α be a binary string and let lyn(α) denote the length of the longest prefix of α that is a Lyndon word.
A prenecklace is a prefix of some necklace. The following theorem by Cattell et al. [1] has been called The
Fundamental Theorem of Necklaces:

Theorem 2.1 Let α = a1a2 · · · an−1 be a prenecklace over the alphabet Σ = {0, 1, . . . , k − 1} and let
p = lyn(α). Given b ∈ Σ, the string αb is a prenecklace if and only if an−p ≤ b. Furthermore,

lyn(αb) =

{
p if b = an−p
n if b > an−p (i.e., αb is a Lyndon word).

Corollary 2.2 If αb is a prenecklace then α(b+1) is a Lyndon word.

Corollary 2.3 If α = a1a2 · · · an is a necklace then αa1 is a prenecklace and αb is a Lyndon word for all
b > a1.

The following is well-known property of Lyndon words by Reutenauer [6].

Lemma 2.4 If α and β are Lyndon words such that α < β then αβ is a Lyndon word.

Corollary 2.5 If α is a Lyndon word and β is a necklace such that α ≤ β then αβt is a necklace for t ≥ 1.

Proof. If α = β then clearly αβt is a (periodic) necklace. If β is a Lyndon word, then the result follows from
repeated application of Lemma 2.4. Otherwise β = δi for some Lyndon word δ and i > 1. Note that α ≤ δ
because otherwise α > β. If α < δ, then repeated application of Lemma 2.4 implies that αδj is a Lyndon
word for all j ≥ 0. If α = δ, then clearly αδj is a (periodic) necklace for all j ≥ 1. In both cases, αβt will
be a necklace for all t ≥ 1. 2

Lemma 2.6 A k-ary string α = a1a2 · · · an over alphabet {0, 1, . . . , k−1} is a necklace if and only if
0t−a110t−a21 · · · 0t−an1 is a necklace for all t ≥ k − 1.

Proof. (⇒) Assume α is a necklace. Let β = 0t−a110t−a21 · · · 0t−an1 for some t ≥ k − 1. If β is not
a necklace then there exists some 2 ≤ i ≤ n such that 0t−ai10t−ai+11 · · · 0t−an10t−a11 · · · 0t−ai−11 < β.
But this implies aiai+1 · · · ana1 · · · ai−1 < α, contradicting the assumption that α is a necklace. Thus β
is a necklace. (⇐) Assume β = 0t−a110t−a21 · · · 0t−an1 is a necklace for all t ≥ k − 1. If α is not a
necklace then there exists some 2 ≤ i ≤ n such that aiai+1 · · · ana1 · · · ai−1 < α. But this implies that
0t−ai10t−ai+11 · · · 0t−an10t−a11 · · · 0t−ai−11 < β, contradicting the assumption that β is a necklace. Thus
α is a necklace. 2

2



Lemma 2.7 A k-ary string α = a1a2 · · · an over alphabet {0, 1, . . . , k−1} is a necklace if and only if
01t+a101t+a2 · · · 01t+an is a necklace for all t ≥ 0.

Proof. (⇒) Assume α is a necklace. Let β = 01t+a101t+a2 · · · 01t+an for some t ≥ 0. If β is not
a necklace there exists some 2 ≤ i ≤ n such that 01t+ai01t+ai+1 · · · 01t+an01t+a1 · · · 01t+ai−1 < β.
But this implies aiai+1 · · · ana1 · · · ai−1 < α, contradicting the assumption that α is a necklace. Thus
β is a necklace. (⇐) Assume β = 01t+a101t+a2 · · · 01t+an is a necklace for all t ≥ 0. If α is not
a necklace there exists some 2 ≤ i ≤ n such that aiai+1 · · · ana1 · · · ai−1 < α. But this implies that
01t+ai01t+ai+1 · · · 01t+an01t+a1 · · · 01t+ai−1 < β, contradicting the assumption that β is a necklace. Thus
α is a necklace. 2

3 Finding the largest necklace with a given density

Let LARGESTNECK(n, d) denote the lexicographically largest binary necklace in N(n, d).

Lemma 3.1 Let 0 < d ≤ n and t = bnd c. Then

LARGESTNECK(n, d) = 0t−b110t−b21 · · · 0t−bd1,

where b1b2 · · · bd = LARGESTNECK(d, d− (n mod d)).

Proof. Since d > 0, α = LARGESTNECK(n, d) can be written as 0c110c21 · · · 0cd1 where each ci ≥ 0. Let
x = d− (n mod d). Observe that α ≥ (0t1)d−x(0t−11)x ∈ N(n, d) (it is a simple calculation to verify the
length). Thus, c1 ≤ t, and moreover each ci ≤ t since α is a necklace. Therefore α can be expressed as
0t−b110t−b21 · · · 0t−bd1 for some string β = b1b2 · · · bd over the alphabet {0, 1, . . . , t}. By Lemma 2.6, β is
a necklace. Suppose there is some largest 1 ≤ i ≤ d such that bi > 1. Thus, each element of bi+1 · · · bd must
be in {0, 1}. Since β is a necklace, each of its rotations bj · · · bdb1 · · · bj−1 ≥ β. Thus, we can deduce that
if j > i then bj · · · bdb1 · · · bj−1 > b1b2 · · · bi−1. This implies that bj · · · bdb1 · · · bi−1 > b1b2 · · · bi−1. Now
consider γ = b1b2 · · · bi−2(bi−1+1)bi+1 · · · bd. Since b1b2 · · · bi−1 is a prenecklace, b1b2 · · · bi−2(bi−1+1) is
a Lyndon word by Corollary 2.2. Thus any proper rotation of γ starting before bi+1 will be strictly greater
than γ. Now consider a rotation of γ starting from bj for i+1 ≤ j ≤ d. Observe that a rotation starting from
bj has prefix bj · · · bdb1 · · · bi−2(bi−1 + 1). We have already noted that bj · · · bdb1 · · · bi−1 > b1b2 · · · bi−1,
and therefore the complete rotation of γ starting with bj must be greater than γ. Since every proper rotation
of γ is strictly greater than γ, γ is a necklace. However, this means that γ(bi − 1) is also a necklace by
Corollary 2.3 and hence by Lemma 2.6, 0b110b21 · · · 0bi−210bi−1+110bi+11 · · · 0bd10bi−11 is also a necklace.
But this contradicts α = LARGESTNECK(n, d). Therefore there is no bi > 1 and hence β is a binary
string. Now, since the necklace β is binary it must have density x. For any b′1b

′
2 · · · b′d ∈ N(d, x) we have

α′ = 0t−b
′
110t−b

′
21 · · · 0t−b′d1 ∈ N(n, d) by Lemma 2.6. Clearly, α′ will be largest when b′1b

′
2 · · · b′d =

LARGESTNECK(d, x). Thus, β = LARGESTNECK(d, x). 2

Lemma 3.2 Let 0 ≤ d < n and t = b n
n−dc. Then

LARGESTNECK(n, d) = 01t−1+b101t−1+b2 · · · 01t−1+bn−d ,

where b1b2 · · · bn−d = LARGESTNECK(n− d, n mod (n− d)).

Proof. Since d < n, α = LARGESTNECK(n, d) can be written as 01c101c2 · · · 01cn−d where each ci ≥ 0.
Let x = n mod (n−d). Observe that α ≥ (01t−1)n−d−x(01t)x ∈ N(n, d). Thus, c1 ≥ t−1, and moreover

3



each ci ≥ t − 1 since α is a necklace. Therefore α can be expressed as 01t−1+b101t−1+b2 · · · 01t−1+bn−d

for some string β = b1b2 · · · bn−d over the alphabet {0, 1, . . . , d}. By Lemma 2.7, β is a necklace. Suppose
there is some largest 1 ≤ i ≤ n− d such that bi > 1. Thus, each element of bi+1 · · · bn−d must be in {0, 1}.
Since β is a necklace, each of its rotations bj · · · bn−db1 · · · bj−1 ≥ β. Thus, we can deduce that if j > i then
bj · · · bn−db1 · · · bj−1 > b1b2 · · · bi−1. This implies that bj · · · bn−db1 · · · bi−1 > b1b2 · · · bi−1. Now consider
γ = b1b2 · · · bi−2(bi−1+1)bi+1 · · · bn−d. Since b1b2 · · · bi−1 is a prenecklace, b1b2 · · · bi−2(bi−1+1) is a
Lyndon word by Corollary 2.2. Thus any proper rotation of γ starting before bi+1 will be strictly greater than
γ. Now consider a rotation of γ starting from bj for i+1 ≤ j ≤ n−d. Observe that a rotation starting from bj
has prefix bj · · · bn−db1 · · · bi−2(bi−1 + 1). We have already noted that bj · · · bn−db1 · · · bi−1 > b1b2 · · · bi−1,
and therefore the complete rotation of γ starting with bj must be greater than γ. Since every proper rotation
of γ is strictly greater than γ, γ is a necklace. However, this means that γ(bi − 1) is also a necklace
by Corollary 2.3 and hence by Lemma 2.7, 01b101b2 · · · 01bi−201bi−1+101bi+1 · · · 01bn−d01bi−1 is also a
necklace. But this contradicts α = LARGESTNECK(n, d). Therefore there is no bi > 1 and hence β is a
binary string. Now, since the necklace β is binary it must have density x. For any b′1b

′
2 · · · b′n−d ∈ N(n−d, x)

we have α′ = 01t−1+b′101t−1+b′2 · · · 01t−1+b′n−d ∈ N(n, d) by Lemma 2.7. Clearly, α′ will be largest when
b′1b
′
2 · · · b′n−d = LARGESTNECK(n− d, x). Thus, β = LARGESTNECK(n− d, x). 2

By combining the previous two lemmas, the following equation can be used to recursively compute
LARGESTNECK(n, d) letting t = bnd c and s = b n

n−dc:

LARGESTNECK(n, d) =


0n if d = 0
0t−b110t−b21 · · · 0t−bd1 if 0 < d ≤ n

2
01s−1+c101s−1+c2 · · · 01s−1+cn−d if n

2 < d < n
1n if d = n,

where b1b2 · · · bd = LARGESTNECK(d, d− (n mod d)) and c1c2 · · · cn−d = LARGESTNECK(n−d, n mod
(n − d)). Note that the strings returned in each recursive application have length less than or equal to n

2 .
Given these strings, obtaining the largest necklace can easily be constructed in O(n) time. Thus we arrive at
the following theorem.

Theorem 3.3 LARGESTNECK(n, d) can be computed in O(n) time for 0 ≤ d ≤ n.

We conclude this section with two interesting properties of LARGESTNECK(n, d).

Lemma 3.4 Let 0 ≤ d ≤ n. If LARGESTNECK(n, d) = a1a2 · · · an then LARGESTNECK(n, n − d) =
an · · · a2a1.

Proof. The proof is by induction on n. For any n ≥ 1, LARGESTNECK(n, 0) = 0n and LARGESTNECK(n, n) =
1n. Thus the base case when n = 1 clearly holds, along with the cases when d = 0 and d = n. Consider
0 < d < n and let LARGESTNECK(n, d) = a1a2 · · · an. By Lemma 3.1, α = 0t−b110t−b21 · · · 0t−bd1 where
b1b2 · · · bd = LARGESTNECK(d, d − (n mod d)) and t = bnd c. By induction, LARGESTNECK(d, n mod
d) = bd · · · b2b1. Now by applying Lemma 3.2,

LARGESTNECK(n, n− d) = 01t−1+bd · · · 01t−1+b2 · · · 01t−1+b1

= 01t−bd · · · 01t−b2 · · · 01t−b1

= an · · · a2a1.
2

4



Lemma 3.5 Let 0 ≤ d ≤ n. LARGESTNECK(n, d) = δj where j = gcd(n, d) and δ is some binary string
of length n

j .

Proof. The proof is by induction on n. Since gcd(n, 0) = gcd(n, n) = n, LARGESTNECK(n, 0) = 0n and
LARGESTNECK(n, n) = 1n, the result clearly holds for all d = 0 and d = n, and for n = 1. Suppose
0 < d < n and consider α = LARGESTNECK(n, d) for n ≥ 2. By Lemma 3.1, α = 0t−b110t−b21 · · · 0t−bd1
where t = bnd c and β = b1b2 · · · bd = LARGESTNECK(d, d − n mod d). By induction, β = γj where
j = gcd(d, d− n mod d). Thus, α = δj for some δ of length n

j . Finally, by applying Euclid’s algorithm we
have gcd(n, d) = gcd(d, n mod d) = gcd(d, d− n mod d) = j. 2

This final lemma implies that LARGESTNECK(n, d) is a Lyndon word if and only if gcd(n, d) = 1.

4 Testing if a string is a prefix of some necklace in N(n, d)

Let the boolean function ISPREFIX(α, n, d) return True if and only if α = a1a2 · · · at is a prefix of some
necklace in N(n, d). In this section we present an O(n2) implementation for this function using results from
the previous section. There are two trivial conditions for the function to return true: the density constraint
must be attainable and α must be a prenecklace. Let den(α) denote the density of α. Then for the density to
be attainable we must have 0 ≤ d− den(α) ≤ n− t.

Let α = a1a2 · · · at be a prenecklace where 1 ≤ t ≤ n. Let EXTEND(α, n) = a1a2 · · · an be the
lexicographically smallest prenecklace of length n with prefix α.

Lemma 4.1 Let 0 ≤ d ≤ n and let 1 ≤ t ≤ n. Suppose α = a1a2 · · · at is a prenecklace and a1a2 · · · an =
EXTEND(α, n). Then α is a prefix of some necklace in N(n, d) if and only if a1a2 · · · an ∈ N(n, d) or there

exists t < j ≤ n such that aj = 0 and d′ = d− den(a1a2 · · · aj−11) ≥ 0 and either:

(1) j = n and d′ = 0 or

(2) j < n and there exists β ∈ N(n− j, d′) such that a1a2 · · · aj−11 ≤ β.

Proof. (⇒) Suppose α is a prefix of b1b2 · · · bn ∈ N(n, d) and suppose a1a2 · · · an is not in N(n, d). By
applying Theorem 2.1, there must be some smallest j > t such that a1a2 · · · aj−1 = b1b2 · · · bj−1 with
aj = 0 and bj = 1 which implies a1a2 · · · aj−11 is a Lyndon word. Clearly bj+1bj+2 · · · bn has length
n − j and density d′ = d − den(a1a2 · · · aj−11). If j = n then d′ = 0. Otherwise, j < n and since
b1b2 · · · bn is a necklace and b1b2 · · · bj is a Lyndon word, it must be that b1b2 · · · bj ≤ bj+1bj+2 · · · bn.
Thus, if bj+1bj+2 · · · bn (= β) is a necklace we are done. Otherwise let bj+1bj+2 · · · bn = δγ such that its
rotation γδ (= β) is a necklace. Again, since b1b2 · · · bn is a necklace and b1b2 · · · bj is a Lyndon word,
b1b2 · · · bj ≤ γ. It follows that a1a2 · · · aj−11 = b1b2 · · · bj ≤ γδ.

(⇐) If a1a2 · · · an ∈ N(n, d) then clearly α is a prefix of some necklace in N(n, d). Otherwise, suppose
there exists t < j ≤ n such that aj=0 and d′ = d−den(a1a2 · · · aj−11) ≥ 0 and either (1) j = n and d′ = 0
or (2) j < n and there exists β ∈ N(n− j, d′) such that a1a2 · · · aj−11 ≤ β. For either case a1a2 · · · aj−11
is a Lyndon word since a1a2 · · · aj is a prenecklace. Thus, if j = n and d′ = 0, then a1a2 · · · an−11 is
a necklace with density d. Otherwise, a1a2 · · · aj−11β is a binary string of length n and density d. By
Corollary 2.5 a1a2 · · · aj−11β is a necklace. Thus α is a prefix of some necklace in N(n, d). 2

Assuming the density constraints are attainable, and α = a1a2 · · · at is a prenecklace, we can directly
apply Lemma 4.1 to determine ISPREFIX(α, n, d). To apply this lemma, note that it suffices only to compare
β = LARGESTNECK(n− j, d− den(a1a2 · · · aj−11)) to a1a2 · · · aj1, for a given j. Repeated applications

5



Algorithm 1 Testing if α = a1a2 · · · at is a prefix of a necklace in N(n, d).

1: function ISPREFIX(α, n, d) returns boolean
2: if (d < den(α) or d− den(α) > n− t) then return False
3: if α is not a prenecklace then return False
4: a1a2 · · · an ← EXTEND(α)
5: if a1a2 · · · an ∈ N(n, d) then return True
6: for j ← t+ 1 to n do
7: d′ = d− den(a1a2 · · · aj−11)
8: if aj = 0 and d′ ≥ 0 then
9: if j = n and d′ = 0 then return True

10: if j < n and a1a2 · · · aj−11 ≤ LARGESTNECK(n− j, d′) then return True
11: return False

of Theorem 2.1 can be used to test if α is a prenecklace and to compute EXTEND(α, n) in O(n) time.
Pseudocode for ISPREFIX(α, n, d) is given in Algorithm 1.

Since LARGESTNECK(n, d) can be computed in O(n) time, we obtain the following theorem.

Theorem 4.2 ISPREFIX(α, n, d) can be computed in O(n2) time for 0 ≤ d ≤ n.

5 The largest necklace that is less than or equal to a given string

Let LN(α, n, d) be a function that returns the largest necklace in N(n, d) that is less than or equal to a given
binary string α = a1a2 · · · an, or ε (the empty string) if no such necklace exists. In this section we present
an O(n3) implementation of this function by applying the results from the previous section.

Let β = LN(α, n, d). If α ∈ N(n, d) then clearly β = α. Otherwise, let t > 0 be the largest index such
that at = 1 and a1a2 · · · at−10 is a prefix of some necklace in N(n, d). If no such index t exists, then there
is no necklace in N(n, d) that is less than α and thus β = ε. If t exists, then since it was chosen to be the
largest index satisfying the conditions, a1a2 · · · at−10 will be the first t characters of β = b1b2 · · · bn. The
next character bt+1 will be the largest element so b1b2 · · · bt+1 is a prefix of some necklace in N(n, d). This
can be determined by calling ISPREFIX(b1b2 · · · bt1, n, d); if it returns true, then bt+1 = 1 and otherwise
bt+1 = 0. The remaining characters bt+2, bt+3, . . . , bn can be computed in the same way. Pseudocode for
LN(a1a2 · · · an, n, d) is given in Algorithm 2.

Algorithm 2 Computing the largest necklace less than or equal to a given string.
1: function LN(α, n, d) returns necklace
2: if α ∈ N(n, d) then return α
3: t← n
4: while t > 0 and not (at = 1 and ISPREFIX(a1a2 · · · at−10, n, d)) do t← t− 1

5: if t = 0 then return ε
6: b1b2 · · · bt ← a1a2 · · · at−10
7: for j ← t+ 1 to n do
8: if ISPREFIX(b1b2 · · · bj−11, n, d) then bj ← 1
9: else bj ← 0

10: return b1b2 · · · bn

Since ISPREFIX(α, n, d) can be computed in O(n2) time, we obtain the following theorem.

Theorem 5.1 LN(α, n, d) can be computed in O(n3) time for 0 ≤ d ≤ n.

6



6 Lyndon words

In this final section, we extend the results for necklaces to Lyndon words.

Lemma 6.1 Let α, β be two consecutive necklaces in the lexicographic ordering of N(n, d). Then at least
one of α and β is a Lyndon word.

Proof. Suppose α < β. If α is a Lyndon word we are done. Otherwise, α = γi for some Lyndon word
γ = a1a2 · · · an

i
with density d

i where i ≥ 2. Let δ = LARGESTNECK(ni ,
d
i ). Suppose γ = δ. By

Lemma 3.5, LARGESTNECK(n, d) = σj where j = gcd(n, d) and σ has length n
j . Since i divides both n

and d, i also divides j. By the definitions of δ and σ, δ = σ
j
i , and thus α = LARGESTNECK(n, d). But this

contradicts that α < β. Thus, γ 6= δ. Repeated application of Lemma 2.4 implies that γi−1δ is a Lyndon
word that is greater than α. Thus the necklace β must have prefix γi−1 and hence clearly is a Lyndon word.

2

The following two-step algorithm will return the largest Lyndon word with length n and density d > 0
that is less than or equal to α, or ε if no such Lyndon word exists. Let β = LN(α, n, d). If β is a Lyndon word
or ε, then return β. Otherwise β = b1b2 · · · bn is a necklace where bn = 1 since d > 0. Thus, b1b2 · · · bn−10
is the largest string less than β and hence γ = LN(b1b2 · · · bn−10, n, d) will give the second largest necklace
that is less than or equal to α or ε if no such necklace exists. Thus the algorithm returns γ as either γ = ε
(no such Lyndon word exists), or by Lemma 6.1, γ is a Lyndon word.

Since testing whether or not a string is a Lyndon word can easily be tested in O(n) time by applying
Theorem 2.1, the running time of this algorithm will be O(n3).

Lemma 6.2 The largest Lyndon word of length n and density d that is less than or equal to α = a1a2 · · · an
can be computed in O(n3) time for 0 < d < n.

Setting α = 1n, the previous lemma immediately implies the following result.

Corollary 6.3 The largest Lyndon word of length n and density d can be computed in O(n3) time for 0 <
d < n.

Finally, the following conjecture has been verified to be true for all n < 600 by applying the algorithm
just described.

Conjecture 6.4 Let α = a1a2 · · · an = LARGESTNECK(n, d) where p = lyn(α) for 0 < d < n. If p = n,
then the largest Lyndon word of length n and density d isα; otherwise it is a1a2 · · · ap−101a2 · · · ap(a1a2 · · · ap)

n
p
−2.

A proof of this conjecture implies that the largest Lyndon word of length n and density d can be computed
in O(n) time for 0 < d < n.

7 Acknowledgement

The research of Joe Sawada is supported by the Natural Sciences and Engineering Research Council of
Canada (NSERC) grant RGPIN 400673-2012.

7



References
[1] K. Cattell, F. Ruskey, J. Sawada, M. Serra, and C. R. Miers. Fast algorithms to generate necklaces, unlabeled

necklaces, and irreducible polynomials over GF(2), 2000.

[2] P. Hartman and J. Sawada. Ranking fixed-density necklaces and Lyndon words. manuscript, 2016.

[3] S. Karim, Z. Alamgir, and S. M. Husnine. Generating fixed density bracelets of arbitrary base. International
Journal of Computer Mathematics, 91(3):434–446, 2014.

[4] T. Kociumaka, J. Radoszewski, and W. Rytter. Efficient ranking of Lyndon words and decoding lexicographically
minimal de Bruijn sequence. SIAM Journal on Discrete Mathematics, 30(4):2027–2046, 2016.

[5] S. Kopparty, M. Kumar, and M. Saks. Efficient indexing of necklaces and irreducible polynomials over finite
fields. Theory of Computing, 12(7):1–27, 2016.

[6] C. Reutenauer. Free Lie algebras. London Mathematical Society monographs. Clarendon Press New York,
Oxford, 1993.

[7] F. Ruskey, J. Sawada, and A. Williams. De Bruijn sequences for fixed-weight binary strings. SIAM Journal on
Discrete Mathematics, 26(2):605–617, 2012.

[8] J. Sawada and F. Ruskey. An efficient algorithm for generating necklaces with fixed density. SIAM J. Comput,
29:671–684, 1999.

[9] J. Sawada and A. Williams. A Gray code for fixed-density necklaces and Lyndon words in constant amortized
time. Theoretical Computer Science, 502:46 – 54, 2013. Generation of Combinatorial Structures.

[10] J. Sawada and A. Williams. Practical algorithms to rank necklaces, Lyndon words, and de Bruijn sequences.
Journal of Discrete Algorithms (in press, available online), 2017.

[11] T. M. Wang and C. D. Savage. A Gray code for necklaces of fixed density. SIAM J. Discrete Math, 9:654–673,
1997.

8


