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Abstract

Fredricksen, Kessler and Maiorana discovered a simple but elegant construction of a universal cycle
for binary strings of length n: Concatenate the aperiodic prefixes of length n binary necklaces in
lexicographic order. We generalize their construction to binary strings of length n whose weights
are in the range c, c + 1, . . . , n by simply omitting the necklaces with weight less than c. We also
provide an efficient algorithm that generates the universal cycles in constant amortized time per bit
using O(n) space. Our universal cycles have the property of being the lexicographically smallest
universal cycle for the set of binary strings of length n.

1. Introduction

Let B(n) denote the set of all binary strings of length n. A universal cycle for a set S is a
cyclic sequence u1u2 . . . u|S| where each substring of length n corresponds to a unique object in
S. When S = B(n), these sequences are commonly known as de Bruijn sequences since they
were proven exist and counted by de Bruijn [5] (also see [6]). For example, the cyclic sequence
0000100110101111 is a universal cycle (de Bruijn sequence) for B(4); the 16 unique substrings of
length 4 when considered cyclicly are:

0000, 0001, 0010, 0100, 1001, 0011, 0110, 1101, 1010, 0101, 1011, 0111, 1111, 1110, 1100, 1000.

When considering universal cycles for a specific set S, there are several important questions: Does
a universal cycle exist for S? What is the number of universal cycles for S? How can a specific
universal cycle for S be constructed? Is there an efficient algorithm that constructs a universal cycle
for S? The last two questions can also be asked for the lexicographically smallest universal cycle
for S. By lexicographically smallest, we mean that the linear representation is the smallest possible
in lexicographic order. For instance, the universal cycle from our example is the lexicographically
smallest for B(4). (The term minimal is also used in the literature [18, 19] for the same concept.)
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The lexicographically smallest universal cycle for B(n) was first constructed by Martin in the
1930s [17]. They showed that the lexicographically smallest universal cycle for B(n) can be con-
structed by a greedy algorithm that uses exponential space. Later, Fredricksen, Kessler and Maiorana
provided a more direct method in [8] for constructing this universal cycle, and this method is now
referred to as the FKM construction. Ruskey, Savage, and Wang [20] provided an algorithm for
generating the FKM construction and analyzed its efficiency. Due to its importance and interesting
history, Knuth refers to the lexicographically smallest universal cycle for B(n) as the grand-daddy
of de Bruijn sequences [15].

Universal cycles have been studied for a variety of combinatorial objects including permutations,
partitions, subsets, multisets, labeled graphs, various functions, and passwords [1, 2, 4, 11, 12,
13, 14, 15, 16, 23, 26]. Fredricksen, Kessler and Maiorana generalize their results to construct
the lexicographically smallest universal cycle for k-ary strings of length n [9]. Many papers have
focused on finding constructions and efficient algorithms to generate universal cycles for interesting
subsets of k-ary strings of length n [7, 10, 16, 22, 24, 25, 27].

Let Bd
c(n) denote the set of length n binary strings whose weights (number of 1s) are in the range

c, c + 1, . . . , d. A universal cycle for binary strings with a minimum specified weight is a cyclic
sequence of length

(
n
c

)
+
(

n
c+1

)
+ · · · +

(
n
n

)
that contains each string in Bn

c (n) exactly once as a
substring. We refer to these universal cycles as minimum-weight universal cycles for simplicity. For
example, the circular sequence 00110101111 is a minimum-weight universal cycle for B4

2(4) since
its 11 substrings of length 4 include each element in

B4
2(4) = {0011, 0101, 0110, 1001, 1010, 1100, 0111, 1011, 1101, 1110, 1111}

exactly once. Similarly, a universal cycle for binary strings with a maximum specified weight, or
simply a maximum-weight universal cycle, is a cyclic sequence of length

(
n
0

)
+
(
n
1

)
+ · · · +

(
n
d

)
that contains each string in Bd

0(n) exactly once as a substring. A maximum-weight universal cycle
for Bd

0(n) can be obtained by complementing each bit of a minimum-weight universal cycle for
Bn

n−d(n) [24].
In this paper, a universal cycle has an efficient algorithm if each successive symbol of the sequence

can be generated in constant amortized time (CAT) while using a polynomial amount of space with
respect to n. A universal cycle for Bd

d−1(n) is known as a dual-weight universal cycle, and more
generally a universal cycle for Bd

c(n) is known as a weight-range universal cycle. Algorithms to
generate universal cycles with various weight-ranges have previously been studied in the sequence
of the following articles:

• an efficient algorithm for dual-weight universal cycles is given in [22],

• an efficient algorithm for minimum-weight and maximum-weight universal cycles is given
in [24],

• an efficient algorithm for weight-range universal cycles is given in [25].

Although efficient algorithms for generating minimum-weight and maximum-weight universal cy-
cles are given in [24] (and generalized in [25]), there are several advantages to our new results.
Firstly, our new universal cycles are the lexicographically smallest, whereas the constructions in [22,
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Figure 1: The de Bruijn graph G(B4
2(4)).

24, 25] are not. Secondly, the constructions in [24, 25] are based on cutting and pasting dual-weight
universal cycles from [22], whereas our new construction is much simpler. Thirdly, our new con-
structions are based on lexicographic order, whereas the constructions in [24, 25] are complicated
by their use of ‘cool-lex’ order. (The construction in [24] was simplified by a generalized version of
cool-lex order found in [27], although that article did not include an efficient algorithm.)

The de Bruijn graph G(S) for a set of length n strings S is a directed edge-labeled graph whose
vertex set consists of the length n−1 strings that are a prefix or a suffix of the strings in S. For each
string b1b2 . . . bn ∈ S there is an edge labeled bn that is directed from the vertex b1b2 . . . bn−1 to the
vertex b2b3 . . . bn. Thus, the graph has |S| edges. As an example, the de Bruijn graph G(B4

2(4)) is
illustrated in Figure 1. It is well known that S admits a universal cycle if and only ifG(S) is directed
Eulerian. The de Bruijn graph G(Bd

c(n)) is directed Eulerian for all 0 ≤ c < d ≤ n [24, 25].
The problem of finding a directed Euler cycle of lexicographically minimal labels of an edge-

labeled directed graph has been applied to find the optimal encoding in a DRAM address bus [18].
The problem is proven to be NP-complete with respect to the number of edges for general directed
graphs [18]. For the de Bruijn graph G(B(n)), the Euler cycle of lexicographically minimal labels
can be constructed inO(E) time whereE denotes the number of edges inG(B(n)) [20]. Before this
paper, it was not known if the lexicographically minimal Euler cycle can be constructed similarly in
O(E) time for G(Bn

c (n)).
The main results of this paper are as follows:

1. a surprisingly simple generalization of the FKM construction that generates a minimum-
weight universal cycle,

2. a proof that demonstrates our construction generates the lexicographically smallest universal
cycle for Bn

c (n), and

3. an efficient algorithm that generates a minimum-weight universal cycle in constant amortized
time per bit using O(n) space.

The rest of this paper is presented as follows. In Section 2 we introduce the FKM construction and
some definitions and notations . In Section 3 we present a generalization of the FKM construction
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to generate a minimum-weight universal cycle. We prove that our new universal cycles are the
lexicographically smallest in Section 4. In Section 5 we prove that each successive bit in our new
universal cycles can be generated in constant amortized time using O(n) space. This results in an
O(E) algorithm to find the Euler cycle in G(Bn

c (n)) with lexicographically minimal labels.

2. The FKM construction

Fredricksen, Kessler and Maiorana [8, 9] developed a construction for the lexicographically small-
est universal cycle for k-ary strings of length n. Before we describe the construction for k = 2 in
detail, we require some definitions and notations.

A necklace is the lexicographically smallest string in an equivalence class of strings under ro-
tation. The aperiodic prefix of a string α, denoted as ap(α), is its shortest prefix whose repeated
concatenation yields α. That is, the aperiodic prefix of α = a1a2 . . . an is the shortest prefix
ap(α) = a1a2 . . . ap such that (ap(α))

n
p = α, where exponentiation denotes repeated concatena-

tion and n
p

is an integer. For example, when α = 001001001, ap(α) = 001. A string α is aperiodic
if ap(α) = α, otherwise it is periodic. Aperiodic necklaces are also known as Lyndon words. A
string is a prenecklace if it is the prefix of some necklace. Let the set of length n binary preneck-
laces, necklaces and Lyndon words with weight w be denoted by P(n,w), N(n,w) and L(n,w)
respectively. For example:

• P(6, 4) = {001111, 010111, 011011, 011101, 011110},

• N(6, 4) = {001111, 010111, 011011},

• L(6, 4) = {001111, 010111}.

Observe that the strings 011101 and 011110 are prefixes of the necklaces 01110111 and 0111101111
respectively so they are in P(6, 4).

Let α = a1a2 . . . am and β = b1b2 . . . bn be k-ary strings of length m and n respectively, α is said
to be lexicographically smaller than β, denoted by α < β, if one of the following holds:

1. m < n and a1a2 . . . am = b1b2 . . . bm, or

2. there exists 1 ≤ i ≤ m,n such that a1a2 . . . ai = b1b2 . . . bi and ai+1 < bi+1.

The operations > and ≤ are defined similarly to be the relations lexicographically larger and lexi-
cographically smaller or equal to respectively.

Let the set of length n binary necklaces be denoted by N(n). The FKM construction generates
a universal cycle for B(n) by concatenating the aperiodic prefixes of N(n) in lexicographic order.
Their results can be summarized by the following formula, where LEX is a function to list the input
set of strings in lexicographic order.

FKM(n) = ap(α1) · ap(α2) . . . ap(αm) where LEX (N(n)) = α1, α2, . . . , αm.

Figure 2 illustrates this FKM construction of a universal cycle for B(6).
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Necklaces
Aperiodic
Prefixes

000000 0
000001 000001
000011 000011
000101 000101
000111 000111
001001 001
001011 001011
001101 001101
001111 001111
010101 01
010111 010111
011011 011
011111 011111
111111 1

0 ·000001 ·000011 ·000101·000111·001·001011·001101·0

01
11

1·
01
· 0

10
11

1
· 0

11
· 011111 · 1 ·

Figure 2: The FKM construction for n = 6.

3. The weighted FKM construction

Let the set of length n necklaces with weight in the range c, c+1, . . . , d be denoted by Nd
c(n). In

this section we study the lexicographic ordering of necklaces in Nn
c (n) and propose a surprisingly

simple construction to generate minimum-weight universal cycles. The construction follows a sim-
ilar approach to the FKM construction by ordering aperiodic prefixes of the necklaces in Nn

c (n) in
lexicographic order. As an example, to construct a universal cycle for B6

3(6), consider the lexico-
graphic ordering of necklaces in N(6) with those that do not satisfy the weight constraint crossed
out:

000000, 000001, 000011, 000101, 000111, 001001, 001011,
001101, 001111, 010101, 010111, 011011, 011111, 111111.

The strings that remain are the necklaces in N6
3(6). Figure 3 illustrates this weighted FKM construc-

tion of a universal cycle for B6
3(6). The construction can be expressed by the following formula:

FKMd
c(n) = ap(α1) · ap(α2) · · · ap(αm) where LEX

(
Nd

c(n)
)
= α1, α2, . . . , αm.

To prove that the construction is correct for d = n, we need to consider the necklaces immedi-
ately before and after each necklace α in the ordering LEX (Nn

c (n)). We denote these necklaces by
prev(α) and next(α) respectively.

Lemma 1. If α = a1a2 . . . an−j−101
j ∈ Nn

c (n), then next(α) has the prefix a1a2 . . . an−j−11.

Proof. We need to prove that α is not the last necklace in LEX (Nn
c (n)), and that next(α) has the

stated prefix. Notice that β = a1a2 . . . an−j−11
j+1 ∈ Nn

c (n) and β > α. Therefore, α is not the last
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Necklaces
Aperiodic
Prefixes

000111 000111
001011 001011
001101 001101
001111 001111
010101 01
010111 010111
011011 011
011111 011111
111111 1

000111 ·001011 ·001101·001111·01·0

101
11
·0

11
· 0

11

111 · 1
·

Figure 3: The weighted FKM construction for n = 6 and minimum weight c = 3.

necklace in LEX (Nn
c (n)). Furthermore, if there is another necklace γ ∈ Nn

c (n) with α < γ ≤ β,
then γ must also have prefix a1a2 . . . an−j−11. Therefore, next(α) has the stated prefix.

The following corollary follows immediately from the previous lemma.

Corollary 2. Suppose α ∈ Nn
c (n) is a periodic necklace with |ap(α)| = a1a2 . . . ap−j−101

j where
p < n and n

p
is an integer. Then next(α) has the prefix ap(α)

n
p
−1a1a2 . . . ap−j−11.

Lemma 3. Let α ∈ Nn
c (n) where 0 < c < n. If α is periodic and ap(α) = a1a2 . . . ap−11 , then

prev(α) has the suffix 1n−p.

Proof. Since α is periodic, it is the lexicographically smallest necklace with the prefix ap(α) =
a1a2 . . . ap−11. Thus, prev(α) must have a prefix β of length p that is lexicographically smaller than
ap(α). Since prev(α) must be the lexicographically largest necklace with prefix β, it must have
suffix 1n−p.

In fact, if α is as described in the previous lemma then prev(α) = a1a2 . . . ap−101
n−p; however a

proof of that result is not as simple and it is not required for our main result.

Corollary 4. In LEX (Nn
c (n)), there are no consecutive periodic necklaces when n > 1.

Proof. Consider a periodic necklace α ∈ Nn
c (n) where ap(α) = a1a2 . . . ap−11. By Lemma 3

prev(α) has the suffix 1n−p. Clearly prev(α) cannot be 1n. Thus, in order for prev(α) to be periodic
it must contain at least two disjoint substrings of the form 1n−p. However, this is not possible since
p ≤ n

2
because α is periodic. Thus, no two consecutive necklaces in LEX (Nn

c (n)) are periodic.

Lemma 5. Let α ∈ Nn
c (n) where 0 < c < n and α 6= 1n. Then α is a prefix of ap(α) · ap(next(α)).

Proof. If α is aperiodic, then the result is obvious. Otherwise if α is periodic, next(α) contains the
prefix ap(α)

n
p
−1 by Corollary 2 and it is aperiodic by Corollary 4. Thus ap(α) · ap(next(α)) has the

prefix ap(α) · ap(α)
n
p
−1 = α.
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Let Neck(α) denote the set of strings rotationally equivalent to the binary string α. Observe that
the length of the aperiodic prefix ap(α) is equal to the number of strings in Neck(α). As an example,
the aperiodic prefixes of the necklaces 000111 and 010101 have length 6 and 2 which are equal to
the number of strings in Neck(000111) = {000111, 001110, 011100, 111000, 110001, 100011} and
Neck(010101) = {010101, 101010} respectively. Since each string α ∈ Bn

c (n) belongs to exactly
one necklace class Neck(α), the following remark is easily observed.

Remark 1. |FKMn
c (n)| = |Bn

c (n)|.

We now prove that FKMn
c (n) is a universal cycle for Bn

c (n).

Theorem 1. FKMn
c (n) is a universal cycle for Bn

c (n).

Proof. From Remark 1, it suffices to show that if each string s ∈ Bn
c (n) appears in FKMn

c (n) as
a substring, then FKMn

c (n) is a universal cycle for Bn
c (n). Let α = a1a2 . . . an ∈ Nn

c (n) be the
necklace representative of the equivalence class Neck(s).

• Case 1: s is periodic.
The last two necklaces in LEX (Nn

c (n)) are 01n−1 and 1n. The concatenation of ap(01n−1)
and ap(1n) is 01n. Thus, when s = 1n, it occurs as a substring in FKMn

c (n). Otherwise,
assume s 6= 1n. Thus, ap(α) must be of the form a1a2 . . . ap−j−101

j for some 1 ≤ j < p.
Also, s will be some rotation of α of the form s = atat+1 . . . ana1a2 . . . at−1 where 1 ≤ t ≤ p.
From Lemma 3 and Corollary 2, we know that prev(α) has the suffix 1n−p and next(α) has
prefix (ap(α))

n
p
−1 · a1a2 . . . ap−j−11. The necklaces prev(α) and next(α) are aperiodic by

Corollary 4. Thus, the concatenation of prev(α), ap(α), next(α), which is a substring of
FKMn

c (n), contains the substring 1n−p · ap(α) · (ap(α))
n
p
−1 · a1a2 . . . ap−j−11 which can be

expressed more simply as 1n−pαa1a2 . . . ap−j−11. If t ≤ p− j then s appears in the substring
αa1a2 . . . ap−j−1; otherwise s appears in the substring 1n−pα since j < p ≤ n− p.

• Case 2: s is aperiodic.
Since s is aperiodic it must contain at least one 0 and one 1. Thus, we can assume that α has
the suffix 01j for some 1 ≤ j < n. If s = α, then clearly it is in FKMn

c (n) since α = ap(α).
Otherwise, since s is a rotation of α, let s = atat+1 . . . ana1a2 . . . at−1 where 2 ≤ t ≤ n. We
consider two cases depending on t.

First, suppose t ≤ n−j. Since s 6= α, α is not one of the last two necklaces in LEX (Nn
c (n)) as

they are 01n−1 and 1n. From Lemma 1, β = next(α) has the prefix a1a2 . . . an−j−11. Observe
that s appears as a substring in αβ. From Lemma 5, β occurs as a prefix of ap(β)·ap(next(β)).
Thus, since α is aperiodic, ap(α) · ap(β) · ap(next(β)), which is a substring of FKMn

c (n), has
the prefix αβ, which contains s.

If t > n − j, then s = 1ia1a2 . . . an−j−101
j−i where i = n − t + 1. First, we consider two

special cases where s appears in the “wrap-around” of the universal cycle: those where s is of
the form: 1i0n−c1c−i or 1i0n−i. The last two necklaces in LEX (Nn

c (n)) are 01n−1 and 1n, and
that the first necklace is 0n−c1c. Thus, when FKMn

c (n) is considered cyclicly, it contains the
substring 01n−1 · 1 · 0n−c1c which in turn has s as a substring in these cases.
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For all other possible strings s, let γ ∈ Nn
c (n) be the lexicographically smallest necklace that

starts with the prenecklace a1a2 . . . an−j−101j−i. Note that γ will not be 0c1n−c because we
handled this special case already; hence prev(γ) is well-defined. Observe that prev(γ) will
be the lexicographically largest necklace satisfying the weight constraint with its length n− i
prefix lexicographically smaller than a1a2 . . . an−j−101j−i. This necklace will have the suffix
1i because it is the lexicographically maximal with respect to this prefix. The concatenation
of ap(prev(γ)), ap(γ) and ap(next(γ)), which is a substring of FKMn

c (n), contains 1iγ as a
substring by Lemma 5. Thus, s, which is prefix of 1i · γ, is a substring of FKMn

c (n) .

One might hope that the same strategy works for the construction of universal cycles for Bd
c(n) for

all values of c and d where 0 ≤ c < d ≤ n. Unfortunately, it only works when d ∈ {0, 1, n−1, n}.
To illustrate this fact, consider the attempted construction of a maximum-weight universal cycle for
B4

0(6). The necklaces in N(6) are given in lexicographic order below, with those that do not satisfy
the weight constraint crossed out.

000000, 000001, 000011, 000101, 000111, 001001, 001011,
001101, 001111, 010101, 010111, 011011, 011111, 111111.

Observe that concatenating the aperiodic prefixes of these remaining necklaces in lexicographic
order:

0 · 000001 · 000011 · 000101 · 000111 · 001 · 001011 · 001101 · 001111 · 01 · 010111 · 011,

does not create a universal cycle for B4
0(6) because 111101 is a substring of the sequence but

111101 /∈ B4
0(6).

Corollary 6. FKMd
c(n) is a universal cycle for Bd

c(n) if and only if d ∈ {0, 1, n−1, n}.

Proof. First we prove the positive result for d ∈ {0, 1, n − 1, n}. If d = 0, then c = 0 and
FKM0

0(n) = ap(0n) = 0 is trivially a universal cycle for this case. If d = 1, then c = 0 or c = 1. In
the first case FKM1

0(n) = ap(0n) · ap(0n−11) = 0n1 is a universal cycle for B1
0(n). In the second

case FKM1
1(n) = ap(1n) = 1 is a universal cycle for B1

1(n). If d = n, then the result follows from
Theorem 1. If d = n − 1, then FKMn−1

c (n) is precisely FKMn
c (n) with the final bit ap(1n) = 1

removed. The inclusion of this extra 1 accounts for the one extra string 1n in FKMn
c (n) so the result

immediately follows.
Now we prove the negative result for d ∈ {2, 3, · · · , n − 2}. Consider the aperiodic necklace

0n−d1d ∈ Nd
c(n). The next necklace in LEX

(
Nd

c(n)
)

has prefix 0n−d−11 by Lemma 1. Also, since
d ≤ n − 2 we have n − d − 1 ≥ 1. Thus, 0n−d1d · 0n−d−11 appears as a substring in FKMd

c(n).
However this string contains the length n substring 1d0n−d−11 /∈ Bd

c(n). Therefore, FKMd
c(n) is not

a universal cycle for Bd
c(n) for d ∈ {2, 3, · · · , n− 2}.
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4. The lexicographically smallest universal cycle for Bn
c (n)

In this section, we prove that the universal cycle FKMn
c (n) has the property of being the lexico-

graphically smallest universal cycle for Bn
c (n). Thus, FKMn

c (n) corresponds to the Euler cycle in
G(Bn

c (n)) with lexicographically minimal labels.

Theorem 2. FKMn
c (n) is the lexicographically smallest universal cycle among all universal cycles

for Bn
c (n).

Proof. Suppose there is a universal cycle U = u1u2 . . . um for Bn
c (n) that is lexicographically

smaller than FKMn
c (n) = a1a2 . . . am. Let q be the smallest index such that uq = 0 and aq = 1.

Notice that FKMn
c (n) begins with 0n−c1c and no other universal cycle for Bn

c (n) can have a lexico-
graphically smaller prefix. Thus q > n. If q = m then U clearly misses the string 1n, a contradiction.
Thus, we can also assume that q < m. Now, consider the length n strings s = aq−n+1 · · · aq−11 and
s′ = uq−n+1 · · ·uq−10. Since we just showed that q < m we know that s 6= 1n.

To complete the proof, we demonstrate that s′ appears before s in FKMn
c (n), which implies that

s′ appears more than once as a substring in U – a contradiction to U being a universal cycle. Let α
denote the necklace representative of s and let β denote the necklace representative of s′. Clearly
β < α. Stepping through the cases in the proof of Theorem 1, observe s will be found starting
within one of the following two substrings:

1iap(α) or 1iap(γ),

where γ is the lexicographically smallest necklace that starts with some prefix of α and suffix of s.
Thus γ ≤ α. Similarly s′ will be found starting within one of the substrings 1iap(β) or 1iap(γ′),
where γ′ is the lexicographically smallest necklace that starts with some prefix of β and suffix of s′.
Hence, γ′ ≤ β. Thus, since β < α and uq < aq, we have γ′ ≤ β < γ ≤ α. Therefore the only way
that s′ does not appear before s as a substring in FKMn

c (n) is if:
(1) β appears immediately before γ in LEX

(
Nd

c(n)
)
,

(2) both s and s′ start within the prefix 1i of 1iap(γ) and
(3) s starts before s′.

However, since s and s′ have the same length n − 1 prefix, the only possible string s can be is 1n.
But we have already ruled this case out, and hence s′ must appear before s in FKMn

c (n).

5. An efficient algorithm to construct minimum-weight universal cycles

In [3], Cattell et al. present a recursive necklace generation framework to generate prenecklaces,
Lyndon words, or necklaces of length n. The basic idea is to recursively extend a prenecklace α =
a1a2 . . . at−1 to a length t prenecklace in all possible ways. This is done efficiently by maintaining
a variable p which is the length of the longest prefix of α that is a Lyndon word. This algorithm can
easily be adapted to satisfy a minimum weight constraint c by maintaining an additional variable
w to store the current weight of α. If c − w = n − t + 1, then the only way α can be extended
to satisfy the weight constraint is by appending a 1. Pseudocode for this algorithm Gen(t, p, w) is
given in Algorithm 1. The necklaces are precisely the prenecklaces where n mod p = 0. To generate
FKMn

c (n), the aperiodic prefix a1a2 . . . ap is outputted for each necklace generated. The initial call
is Gen(1, 1, 0) with a0 initialized to 0.
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Algorithm 1 Algorithm to generate FKMn
c (n).

1: procedure GEN(t, p, w)
2: if t > n then
3: if n mod p = 0 then PRINT(a1a2 . . . ap)

4: else
5: at ← 0 . Append 0
6: if (at−p = 0 and c− w < n− t+ 1) then GEN(t+ 1, p, w)

7: at ← 1 . Append 1
8: if at−p = 1 then GEN(t+ 1, p, w + 1)
9: else GEN(t+ 1, t, w + 1)

To illustrate the algorithm, Figure 4 shows the recursive computation tree to generate the preneck-
laces in B5

2(5); the necklaces are highlighted in bold. A complete C implementation is given in the
Appendix.

0 1

11

111

1111

11111

00 01

000

0001

00011

001

0010

00101

0011

00110 00111

010 011

0101

01010 01011

0110 0111

01101 01110 01111

Figure 4: Computation tree of Gen(t, p, w) to generate the prenecklaces in B5
2(5).

5.1. Analysis:
In the analysis we assume that n > 0 and 0 ≤ w ≤ n. Ignoring the time required to output the bits

of the universal cycle FKMn
c (n), each recursive call of Gen(t, p, w) requires a constant amount of

work. Thus, the overall running time to generate and output FKMn
c (n) is proportional to the number

of nodes in the recursive computation tree, denoted by CompTree(n). We show that CompTree(n)
is bounded by some constant times |FKMn

c (n)|.
Let N(n,w), L(n,w) and P (n,w) denote the cardinality of N(n,w), L(n,w) and P(n,w) re-
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spectively. Let P0(n,w) and P1(n,w) denote the cardinality of the set of length n binary preneck-
laces with weight w that ends with 0 and 1 respectively. By partitioning the prenecklaces in P(n,w)
that end with 1 into necklaces and non-necklaces, the following upper bound was given in [21]:

Lemma 7. P1(n,w) ≤ N(n,w) + L(n,w).

Lemma 8. P0(n,w) ≤ N(n,w + 1).

Proof. Consider a prenecklace in P(n,w) that ends with 0. It is easy to verify that replacing the last
0 with a 1 yields a string in N(n,w + 1). Such a mapping is clearly 1-1.

Upper bounds for N(n,w) and L(n,w) in terms of
(
n
w

)
have also been given in [21]:

L(n,w) ≤ 1

n

(
n

w

)
,

N(n,w) ≤ 2L(n,w) ≤ 2

n

(
n

w

)
.

Lemma 9. CompTree(n) ≤ 5 · |FKMn
c (n)|.

Proof. Since there is no dead end in the computation tree (each branch ends with a length n pre-
necklace), CompTree(n) is bounded by n times the number of leaves (prenecklaces generated).
Thus:

CompTree(n) ≤ n ·
n∑

i=c

P (n, i)

= n ·

(
n∑

i=c

P0(n, i) +
n∑

i=c

P1(n, i)

)

= n ·

(
n−1∑
i=c

P0(n, i) + P0(n, n) +

n∑
i=c

P1(n, i)

)

= n ·

(
n−1∑
i=c

P0(n, i) + 0 +
n∑

i=c

P1(n, i)

)

≤ n ·

(
n−1∑
i=c

N(n, i+ 1) +
n∑

i=c

(N(n, i) + L(n, i))

)

≤ n ·

(
n−1∑
i=c

2

n

(
n

i+ 1

)
+

n∑
i=c

(
2

n

(
n

i

)
+

1

n

(
n

i

)))

= n ·

(
n∑

i=c+1

2

n

(
n

i

)
+

n∑
i=c

3

n

(
n

i

))

≤ 5 ·
n∑

i=c

(
n

i

)
= 5 · |Bn

c (n)| = 5 · |FKMn
c (n)|.

11



This immediately gives us the following result.

Theorem 3. FKMn
c (n) can be constructed in constant amortized time per bit using O(n) space.

From Theorem 2, the universal cycle FKMn
c (n) corresponds to the Euler cycle with lexicographi-

cally minimal labels for G(Bn
c (n)). The following corollary follows immediately.

Corollary 10. An Euler cycle of lexicographically minimal labels for G(Bn
c (n)) can be constructed

in O(m) time using O(n) space, where m is the number of edges in G(Bn
c (n)) .
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6. Appendix – C code

#include <stdio.h>
int n,c,a[100];

//--------------------------------------------------------------------
// Generate the lexicographically smallest universal cycle (de Bruijn
// sequence) for binary strings of length "n" with minimum weight "c"
//--------------------------------------------------------------------
void Gen(int t, int p, int w) {
int i;

if (t > n) {
if (n%p == 0) {

for (i=1; i <= p; i++) printf("%d", a[i]);
printf(" ");

}
}
else {

// Append 0
a[t] = 0;
if (a[t-p] == 0 && c-w < n-t+1) Gen(t+1, p, w);

// Append 1
a[t] = 1;
if (a[t-p] == 1) Gen(t+1, p, w+1);
else Gen(t+1, t, w+1);

}
}
//--------------------------------------------------------------------
int main() {

printf("Enter n c: ");
scanf("%d %d", &n, &c);

a[0] = 0;
if (n >= c) Gen(1, 1, 0);
printf("\n");

}
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