
Necklaces and Lyndon words in colexicographic and binary reflected
Gray code order

Joe Sawada Aaron Williams Dennis Wong

September 25, 2017

Abstract

We present the first efficient algorithm to list necklaces, Lyndon words, or pseudo-necklaces of length n
in colexicographic order. The algorithm has two interesting properties. First, it can be applied to construct
a de Bruijn sequence of order n in O(1)-time per bit. Second, it can easily be modified to efficiently list
necklaces, Lyndon words, or pseudo-necklaces of length n in binary reflected Gray code order.

1 Introduction

Two fundamental pursuits in the area of discrete algorithms are (1) to discover efficient algorithms to exhaus-
tively generate basic combinatorial objects and (2) to construct single instances of more complex combina-
torial objects. Often, these pursuits are related. For instance, consider the problem of constructing a single
binary de Bruijn sequence of order n, which is a binary sequence of length 2n that when considered cyclicly
contains each binary string of length n as a substring. Perhaps the most well-known construction of such
a sequence requires the exhaustive generation of necklaces [5, 6], where a necklace is the lexicographically
smallest string in equivalence class of strings under rotation. Specifically, by concatenating the longest aperi-
odic (primitive) prefixes of the necklaces of length n in lexicographic order, we obtain a de Bruijn sequence
of order n. For example, the lexicographic ordering of the 14 binary necklaces of length 6, with their longest
aperiodic prefixes in bold, is as follows:

000000, 000001, 000011, 000101, 000111, 001001, 001011,
001101, 001111, 010101, 010111, 011011, 011111, 111111.

The corresponding de Bruijn sequence of order 6 with length 26 = 64 is the concatenation of the bolded
strings above:

0000001000011000101000111001001011001101001111010101110110111111.

Amazingly, it was only recently discovered by Dragon et al. [4] that a de Bruijn sequence (coined as
the “Grandmama”) can also be constructed by applying the same concatenation scheme to necklaces, but
in colexicographic (colex) order. A conjecture as to why this result had not been discovered earlier is also
provided in [4]. However, unlike the lexicographic ordering of necklaces, which can be generated in O(1)-
amortized time [5, 9], there was previously no known efficient algorithm to list necklaces in colex order.
This is stated as an open problem in [4]. We extend this problem to additionally consider Lyndon words and
pseudo-necklaces which are defined in Section 2.1.

Problem #1: Find an efficient algorithm to list necklaces, Lyndon words, or pseudo-necklaces of length
n in colex order.

1

In addition to generating combinatorial objects efficiently, it is often useful for the ordering to have special
properties. For instance, the binary reflected Gray code (BRGC) [7], that lists all binary strings of length n
such that successive strings differ by a single bit, has many known applications [8]. Rather surprisingly,
Vajnovszki [14] proved that when only the necklaces or Lyndon words are considered in this ordering, they
appear as a 2-Gray code: successive strings differ in at most 2 bit positions. Again, no known efficient
algorithm to generate these objects in BRGC order was previously known and it was stated as an open problem
in [14].

Problem #2: Find an efficient algorithm to list necklaces, Lyndon words, or pseudo-necklaces of length
n in BRGC order.

For comparison, we list the necklaces of length 6 in three different orders (formally defined in the next
section) in the following table:

Necklaces of length 6
Lex order Colex Order BRGC order

000000 000000 000000
000001 000001 000011
000011 001001 011011
000101 000101 001011
000111 010101 001111
001001 001101 111111
001011 000011 011111
001101 001011 010111
001111 011011 000111
010101 000111 000101
010111 010111 010101
011011 001111 001101
011111 011111 001001
111111 111111 000001

In addition to these three orderings, other necklace orderings considered include a Gray code by Vajnovszki
and Weston [13, 16], a cool-lex Gray code by Sawada and Williams [12], a fixed-density Gray code by Wang
and Savage [15], and a conjectured Gray code by Degni and Drisko [3]. Savage and Wang [15] also proved
the non-existence of 1-Gray codes (where successive strings differ by a single bit) for necklaces of even length
using a simple counting argument.

In this paper, we solve both open problems, providing algorithms that:

1. Exhaustively generate all necklaces, Lyndon words, or pseudo-necklaces in colex order inO(1)-amortized
time per string.

2. Exhaustively generate all necklaces, Lyndon words, or pseudo-necklaces in BRGC order in O(1)-
amortized time per string.

The first result can be immediately applied to generate the “Grandmama” de Bruijn sequence in O(1)-time
per bit. Pseudo-necklaces were first used in [12] and are formally defined in the next section.

The remainder of this paper is outlined as follows. In Section 2 we present the necessary definitions and
background. In Section 3 we present our algorithms to efficiently list necklaces, Lyndon words and pseudo-
necklaces in either colex or BRGC order. In Section 4 we present the additional minor details required to
construct the “Grandmama” de Bruijn sequence. In Section 5 we prove that pseudo-necklaces of length n,
like necklaces and Lyndon words, form a 2-Gray code when considered in BRGC order.

2

2 Background and Notation

All strings considered in this paper are binary. Our algorithms use a run-length representation for binary
strings using a series of blocks which are maximal substrings of the form 0∗1∗. Each block Bi can be repre-
sented by two integers (si, ti) corresponding to the number of 0s and 1s respectively. For example, the string
α = 000110100011001 can be represented by B4B3B2B1 = (3, 2)(1, 1)(3, 2)(2, 1). Maintaining this block
representation is critical to the efficiency of the algorithms in this paper.

A binary string α = a1a2 · · · am is said to be lexicographically smaller than β = b1b2 · · · bn, written
α < β, if one of the following holds:

(1) m < n and a1a2 · · · am = b1b2 · · · bm or

(2) there exists 1 ≤ i < m such that a1a2 · · · ai = b1b2 · · · bi and ai+1 < bi+1.

To simplify our discussion, we write Bi < Bj if 0si1ti < 0sj1tj in the lexicographic order just defined.

2.1 Necklaces, Lyndon words, and Pseudo-necklaces

We say a string α is periodic if α = βt for some string β and t ≥ 2. If a string is not periodic, it is said to be
aperiodic (or primitive). A necklace is defined to be the lexicographically smallest string in an equivalence
class of strings under rotation. A Lyndon word is an aperiodic necklace. A string α = a1a2 · · · an =
BbBb−1 · · ·B1 is a pseudo-necklace if Bb ≤ Bi for all 1 ≤ i < b. Pseudo-necklaces were first defined
in [12] and they are used as a stepping stone in our algorithms for necklaces and Lyndon words. We will use
the following notation to denote these objects:

• N(n): the set of binary necklaces of length n,

• L(n): the set of binary Lyndon words of length n,

• P(n): the set of binary pseudo-necklaces of length n.

Note that L(n) ⊆ N(n) ⊆ P(n). Enumeration formulae for necklaces and Lyndon words are well known.
For instance, see [2]. However it is an open problem to find a simple enumeration formula for pseudo-
necklaces. The following lemma follows from the definition of a pseudo-necklace.

Lemma 2.1 Let γ = aj+1aj+2 · · · an be the suffix of some length n pseudo-necklace, where 1 ≤ j < n.
Let BbBb−1 · · ·B1 = (sb, tb)(sb−1, tb−1) · · · (s1, t1) be the block representation of γ with a smallest block at
index r. Then 1γ is the suffix of some pseudo-necklace of length n if and only if

• sb = 0 and (j − 1, tb + 1) ≤ Br or

• sb > 0 and (j − 1, 1) ≤ Br.

Moreover if 0j−11γ is not a pseudo-necklace then 0jγ is the unique pseudo-necklace of length n and suffix γ.

Proof. Clearly α = 0j−11γ is the length n string with suffix 1γ that has the smallest first block B′. If α is
a pseudo-necklace, then clearly the bulleted condition holds and vice-versa. If it is not a pseudo-necklace,
then B′ > Br. Clearly, the first block in any other string a1a2 · · · ajγ with at least one 1 in its length j prefix
must greater than B′. Thus any other such string will also not be a pseudo-necklace. Therefore if α is not a
pseudo-necklace, then since γ is the suffix of some length n pseudo-necklace, that necklace must uniquely be
0jγ. 2

3

2.2 Colex and BRGC order

The colex ordering used in this paper is defined only on strings with the same length. Thus, in this special
case, we can define colex order to be lexicographic order on strings when they are read from right to left. A
general definition of colex order can be found in [8].

The following definitions and algorithms may seem a bit tedious; however, it will allow us to simplify our
algorithm discussion later for necklaces and Lyndon words.

Let COLEX(n) denote the listing of binary strings of length n in colex order. Let the notation L · x
denote the listing L with the character x appended to the end of each string. Then COLEX(n) can be
defined recursively as follows:

COLEX(n) =

{
0, 1 if n = 1

COLEX(n− 1) · 0, COLEX(n− 1) · 1 if n > 1.

Let BRGC(n) denote the listing of binary strings of length n in BRGC order. Let BRGC(n) denote the
listing BRGC(n) in reverse order. Then BRGC(n) can be defined recursively as follows:

BRGC(n) =

{
0, 1 if n = 1

BRGC(n− 1) · 0, BRGC(n− 1) · 1 if n > 1.

This definition of BRGC order is the same as the one used by Vajnovszki [14] as elaborated in [11]. When
the strings are read from right-to-left, we obtain the classic definition of the BRGC [7].

These recurrences can easily be turned into the respective recursive algorithms GEN shown in Algorithm 1.
In these functions, α = a1a2 · · · an is the binary string being generated, where γ = aj+1aj+2 · · · an is the
current suffix already generated. BbBb−1 · · ·B1 denotes the block representation of γ recalling that Bi =
(si, ti); this representation is required later for the efficient generation of necklaces and Lyndon words. Each
function GEN makes one call each to the functions ADDZERO and ADDONE, which update the data structures
and make recursive calls to GEN for the ordering being generated. The function VISIT() processes, or outputs,
the current string α. Note, the parameter rev is used only by the BRGC ordering to determine whether or not
the listing should be produced in the reverse order.

Algorithm 1 The function GEN to list binary strings in colex order (left) and BRGC order (right).

1: function GEN(j, b, rev)
2: if j = 0 then VISIT()
3: else
4: ADDZERO(j, b,−)
5: ADDONE(j, b,−)

1: function GEN(j, b, rev)
2: if j = 0 then VISIT()
3: else
4: if rev then
5: ADDONE(j, b, FALSE)
6: ADDZERO(j, b, TRUE)
7: else
8: ADDZERO(j, b, FALSE)
9: ADDONE(j, b, TRUE)

The functions ADDZERO and ADDONE sets aj to 0 and 1 respectively, update the block representation
accordingly, and make the appropriate recursive call. These functions are illustrated in Algorithm 2. If aj ← 1
and sb > 0, then the number of blocks in ajaj+1 · · · an is b + 1 and a new block is created. Otherwise the
number of blocks remains the same. Since the data structures a1a2 · · · an and BbBb−1 · · ·B1 are maintained
globally, the data structures need to be restored after the recursive calls. The initial call for both orderings is
GEN(n, 1, 0).

4

Algorithm 2 Functions to assign a value to aj , update the block representation BbBb−1 · · ·B1 accordingly, and make
the appropriate recursive call.

1: function ADDZERO(j, b, rev)
2: aj ← 0
3: sb ← sb + 1
4: GEN(j−1, b, rev)
5: sb ← sb − 1

1: function ADDONE(j, b, rev)
2: aj ← 1
3: if sb = 0 then
4: tb ← tb + 1
5: GEN(j−1, b, rev)
6: tb ← tb − 1
7: else
8: Bb+1 ← (0, 1)
9: GEN(j−1, b+ 1, rev)

Since each recursive call to GEN (for either colex or BRGC order) requires a constant amount of work
and the number of nodes in the recursive computation tree contains 2n+1 − 1 nodes (it is a complete binary
tree), we obtain the following well-known remark.

Remark 2.2 The algorithms GEN for colex order and BRGC order to list all binary strings of length n run
in O(1)-amortized time per string.

A k-Gray code for a set of strings S is an ordered list for S such that the Hamming distance between any
two consecutive words in the list is at most k (if it exists). Such an ordering is said to be cyclic if the Hamming
distance between the first and last strings is also at most k. In [14], Vajnovszki proved that if necklaces or
Lyndon words of length n are listed as they appear in BRGC(n), then they form a cyclic 2-Gray code.

Theorem 2.3 [14] The BRGC ordering induces a cyclic 2-Gray code on N(n) and L(n).

We extend this result to pseudo-necklaces.

Theorem 2.4 The BRGC ordering induces a cyclic 2-Gray code on P(n).

The proof of this Theorem is presented later in Section 5. The BRGC does not induce a 1-Gray code on
P(n) since the first two pseudo-necklaces in this order are 0n and 0n−211 for n ≥ 2.

3 Necklaces, Lyndon words and pseudo-necklaces in colex and BRGC order

In this section we modify the colex and BRGC algorithms for binary strings to generate necklaces, Lyndon
words and pseudo-necklaces. A naı̈ve approach to generate necklaces in these orders is simply to test if
each string is a necklace. Such a test can be done in O(n) time using standard techniques [1]. Since the
number of length n binary strings is O(n) times the number of necklaces, this will result in an O(n2)-
amortized time algorithm to generate each necklace. A similar analysis can be applied to Lyndon words.
In the following sections we describe details that lead to O(1)-amortized time algorithms. We begin with
modifications required to generate pseudo-necklaces efficiently.

3.1 Pseudo-necklaces

By making three relatively minor changes to the algorithms presented in Section 2.2, we can efficiently gen-
erate pseudo-necklaces in colex and BRGC order.

1. Initialize a1a2 · · · an to 0n and maintain the prefix a1a2 · · · aj = 0j at the start of each recursive call to
GEN.

5

2. Add a new integer parameter r, corresponding to the index of a smallest block in γ = BbBb−1 · · ·B1,
as the last parameter in the previously defined functions: GEN, ADDZERO, and ADDONE.

3. Define a new function EXTEND, based on Lemma 2.1, to test in O(1)-time whether 1γ is the suffix of
some pseudo-necklace of length n.

These modifications can be implemented as follows. (1.) To maintain the prefix 0j at the start of each recursive
call, aj must be restored to 0 at the end of the function ADDONE. Maintenance of this prefix also means we
no longer need to set aj ← 0 in ADDZERO. (2.) The parameter r, initially set to 1, is updated only when
aj is set to 0 and the updated block Bb is less than Br. In this case r gets updated to b. (3.) The function
EXTEND, which requires the new parameter r, is given in Algorithm 3. It follows directly from Lemma 2.1
except for the first two if statements which handle the special cases required for the pseudo-necklaces 0n and
1n, respectively. To apply this function, instead of testing if j = 0 at the start of each function GEN, it tests
whether or not the function EXTEND returns TRUE. If it is FALSE, then the only prefix of γ that will produce a
pseudo-necklace is 0j (from the proof of Lemma 2.1). Since this prefix is already initialized to 0j , the string
can be visited immediately, where the block representation sb must be incremented by j.

Pseudocode that applies these changes is given in Algorithm 4 and Algorithm 5.

Algorithm 3 A function that returns if 1aj+1aj+2 · · · an is the suffix of some length n pseudo-necklace.

1: function EXTEND(j, b, r)
2: if j < n and an = 0 then return FALSE

3: if j > 0 and sr = 0 then return TRUE

4: if sb = 0 and (j − 1, tb + 1) ≤ Br then return TRUE

5: if sb > 0 and (j − 1, 1) ≤ Br then return TRUE

6: return FALSE

Algorithm 4 Updated functions ADDZERO and ADDONE for pseudo-necklaces.

1: function ADDZERO(j, b, rev, r)
2: sb ← sb + 1
3: if Bb < Br then GEN(j−1, b, rev, b)
4: else GEN(j−1, b, rev, r)
5: sb ← sb − 1

1: function ADDONE(j, b, rev, r)
2: aj ← 1
3: if sb = 0 then
4: tb ← tb + 1
5: GEN(j−1, b, rev, r)
6: tb ← tb − 1
7: else
8: Bb+1 ← (0, 1)
9: GEN(j−1, b+ 1, rev, r)

10: aj ← 0

Algorithm 5 The function GEN to list pseudo-necklaces in colex order (left) and BRGC order (right).

1: function GEN(j, b, rev, r)
2: if not EXTEND(j, b, r) then
3: sb ← sb + j
4: VISIT(b, r)
5: sb ← sb − j
6: else
7: ADDZERO(j, b,−, r)
8: ADDONE(j, b,−, r)

1: function GEN(j, b, rev, r)
2: if not EXTEND(j, b, r) then
3: sb ← sb + j
4: VISIT(b, r)
5: sb ← sb − j
6: else
7: if rev then
8: ADDONE(j, b, FALSE, r)
9: ADDZERO(j, b, TRUE, r)

10: else
11: ADDZERO(j, b, FALSE, r)
12: ADDONE(j, b, TRUE, r)

6

The function VISIT(b, r) can be implemented to print out the string a1a2 · · · an and/or the block represen-
tation BbBb−1 · · ·B1. The parameter r is used in the next section when we consider necklaces and Lyndon
words. The initial call is GEN(n, 1, 0, 1) for both orders with B1 = (s1, t1) initialized to (0, 0). Since each
call to GEN either generates a pseudo-necklace or makes two recursive calls, and each recursive call requires
O(1)-time, we obtain the following theorem.

Theorem 3.1 Pseudo-necklaces of length n can be generated in O(1)-amortized time and O(n) space in
either colex order or BRGC order.

3.2 Necklaces and Lyndon words

To efficiently generate necklaces and Lyndon words, we apply similar techniques to the ones used in [12] to
efficiently generate necklaces and Lyndon words with fixed-density (the number of 1s is fixed) in colex and
cool-lex order. The main idea is to strengthen the definition of r that will allow for a more efficient test to
determine whether or not a pseudo-necklace is a necklace or Lyndon word.

Recall for pseudo-necklaces that γ = BbBb−1 · · ·B1 = aj+1aj+2 · · · an and the parameter r denotes an
index such that Br is a lexicographically smallest block in γ. For necklaces and Lyndon words we strengthen
the definition of r to be suf(γ) which is defined as follows:

suf(γ) = the index r such that BrBr−1 · · ·B1 is the lexicographically smallest suffix of γ = BbBb−1 · · ·B1.

Observe that Br is still a lexicographically smallest block of γ. As with pseudo-necklaces, this parameter
will only be updated by the function ADDZERO. After sb is incremented (aj is already set to 0), the value
for r can be updated using the function SUF(b, r) given in Algorithm 6. This function returns suf(0γ) given
the parameter r = suf(γ). The function is straightforward except for one optimization noted in [12] that
is relevant to the analysis1: inside the for loop if b − i = r, then BbBb−1 · · ·B1 is of the form ββδ for
some non-empty strings β and δ. Moreover, from the definition of r, it must be that β < δ and hence
BbBb−1 · · ·B1 < BrBr−1 · · ·B1.

Algorithm 6 Computing suf(BbBb−1 · · ·B1) where 0γ = BbBb−1 · · ·B1 = ajaj+1 · · · an and r = suf(aj+1aj+2 · · · an).

1: function SUF(b, r) returns int
2: for i from 0 to r − 1 do
3: if b− i = r then return b
4: if Bb−i > Br−i then return r
5: if Bb−i < Br−i then return b
6: return r

If α = BbBb−1 · · ·B1 and suf(α) = b then α is a Lyndon word by definition, and hence a necklace.
If suf(α) < b then following lemma is equivalent to [12, Lemma 1] (where they use a slightly different
definition of suf(α)). It can be used to optimize the test to determine if α is a necklace or Lyndon word.

Lemma 3.2 Let α = BbBb−1 · · ·B1 represent a binary string where r = suf(α) and r < b. Then,
. α is a necklace if and only if α ≤ BrBr−1 · · ·B1BbBb−1 · · ·Br+1 and
. α is a Lyndon word if and only if α < BrBr−1 · · ·B1BbBb−1 · · ·Br+1.

The function TESTNECKLACE shown in Algorithm 7 applies this lemma to return the longest Lyndon prefix
of α = BbBb−1 · · ·B1 (when suf(α) < b) if it is a necklace or 0 otherwise. This function is equivalent to the
one presented in [12]. Applying this function, we need only make two modifications to the pseudo-necklace
algorithm presented in the previous subsection:

1The inequalities in the second and third if statement shown in Figure 5 of [12] are incorrect and should be switched.

7

Algorithm 7 If BbBb−1 · · ·B1 is a necklace where r = suf(α) < b, return the length of its longest Lyndon prefix;
otherwise return 0.

1: function TESTNECKLACE(b, r) returns int
2: if b = 1 then return 1
3: p← 0
4: for i from 0 to b− 1 do
5: if r − i ≤ 0 then r ← r + b

6: if Bb−i < Br−i then return 0
7: if Bb−i > Br−i then return n
8: if r < b then p← p+ sr−i + tr−i

9: return p

1. Modify the function ADDZERO from Algorithm 4 to update the parameter r appropriately: replace lines
3-4 with the single call GEN(j−1, b, rev, SUF(b, r)).

2. In the function VISIT, apply TESTNECKLACE when r < b to determine if the pseudo-necklace is a
necklace or Lyndon word. If the function returns a value greater than 0, then it is a necklace; if it
returns n, it is a Lyndon word. If r = b the pseudo-necklace is a Lyndon word (as mentioned earlier).

By applying these changes we can generate only the pseudo-necklaces that are either necklaces or Lyndon
words, while respecting the colex or BRGC ordering. A complete C program to generate necklaces, Lyndon
words, or pseudo-necklaces in either colex order or BRGC order is given in the Appendix.

3.2.1 Analysis

Let the density of a binary string denote the number of occurrences of 1. Let N(n, d) denote the set of
necklaces of length n and density d. Let P(n, d) denote the set of pseudo-necklaces of length n and density
d. The following results are proved in [12, Section 3.4].

1. |P(n, d)| ≤ c|N(n, d)|, for some constant c.

2. The number of comparisons required by TESTNECKLACE over all pseudo-necklaces in P(n, d) is
bounded above by c|N(n, d)|, for some constant c.

3. The number of comparisons required by SUF over all pseudo-necklaces in P(n, d) is bounded above
by c|N(n, d)|, for some constant c.

Taking these results and summing over all 0 ≤ d ≤ n, we obtain the following:

(a) |P(n)| ≤ c|N(n)|, for some constant c.

(b) The amount of computation required by TESTNECKLACE over all pseudo-necklaces in P(n) is bounded
above by c|N(n)|, for some constant c.

(c) The amount of computation required by SUF over all pseudo-necklaces in P(n) is bounded above by
c|N(n)|, for some constant c.

We now apply these new results to analyze the algorithms to generate necklaces in colex order or BRGC
order. As standard for generation algorithms, the time required to output a string is not part of the analysis.
Observe that each call to GEN requires only a constant amount of computation, not including any calls to
SUF or TESTNECKLACE. For the moment, ignore the work required by these two functions. Also, note
that each call to GEN will either spawn two recursive calls or visit a pseudo-necklace of length n. This

8

means every node in the recursive computation tree either has two children, or is a leaf corresponding to a
pseudo-necklace. Thus, the total work done for the recursive algorithm, not counting the calls made to SUF

and TESTNECKLACE, is proportional to |P(n)| which by (a) is bounded by a constant times |N(n)|. Now
consider the work done by all calls to TESTNECKLACE. Since this function is called exactly once for each
pseudo-necklace of length n, from (b) this work will also be bounded by some constant times |N(n)|. Finally,
consider all calls made to SUF. Observe that each call to SUF is applied to a unique binary string β of length up
to n which corresponds to a node in the recursive computation tree. From our earlier discussion, the number
of such calls is bounded by a constant times |N(n)|. If β is not a pseudo-necklace, then the work done by its
call to SUF is constant (one iteration of the for loop). Otherwise from (c), the total amount of work done by
all pseudo-necklaces of length up to n is bounded by some constant times

∑n
j=1 |N(j)|. This expression, in

turn, is bounded by a constant times |N(n)| [9]. Finally, since |N(n)| < c|L(n)| for n > 1 and a constant
c [10], we obtain the following result.

Theorem 3.3 Necklaces and Lyndon words of length n can be generated in O(1)-amortized time and O(n)
space in either colex order or BRGC order.

4 Application: De Bruijn sequence construction

Let DB(n) denote the “Grandmama” de Bruijn sequence (defined in [4]) that can be constructed by con-
catenating the longest aperiodic prefixes of the length n necklaces listed in colex order. For example, by
considering the colex listing of necklaces for n = 6 given in Section 1 we obtain

DB(6) = 0000001001000101010011010000110010110110001110101110011110111111.

To efficiently generate DB(n), we can use our algorithm to generate necklaces in colex order and directly
apply the value returned from TESTNECKLACE to determine the longest aperiodic prefix of a given necklace.
C code to generate DB(n) is given in the Appendix.

Corollary 4.1 The de Bruijn sequence DB(n) can be generated in O(1)-amortized time per bit and O(n)-
space.

5 Proof of Theorem 2.4

Given a binary string α, let w(α) denote the number of 1s in α. The following result for BRGC order is
proved by Vajnovzski in [14]:

Lemma 5.1 Let α = a1a2 · · · an and β = b1b2 · · · bn be binary strings such that α 6= β. Let r be the
rightmost position in which α and β differ. Then α comes before β (denoted by α ≺ β) in BRGC order if and
only if w(arar+1 · · · an) is even.

Let flip(α, i) be the string obtained by complementing the i-th bit in α, and let flip(α, i, j) be the string
obtained by complementing the i-th and j-th bits in α. The following remark follows from the definition of
pseudo-necklace.

Remark 5.2 If α = a1a2 · · · an is a pseudo-necklace, then
. flip(α, i) is a pseudo-necklace if ai is the leftmost 1 in α,
. flip(α, i, j) is a pseudo-necklace if ai is the leftmost 1 in α and aj = 0 with i < j.

9

We now prove Theorem 2.4.

Proof. Let α = a1a2 · · · an be a pseudo-necklace that is not last in BRGC order. Let β = b1b2 · · · bn be the
pseudo-necklace that appears immediately after α BRGC order. Suppose that α and β differ in at least three
positions. Let i be the leftmost position such that ai = 1 or bi = 1, and let r be the rightmost position where
they differ. Thus i+ 1 < r. We consider two cases based on possible values for ai:

Case 1: ai = 1. If w(α) is even, let γ = flip(α, i); otherwise, let γ = flip(α, i, i + 1). Thus by
Remark 5.2, γ is a pseudo-necklace (note that if ai+1 = 1 then flip(α, i, i + 1) = α). Let ` be the
rightmost index such that α and γ = q1q2 · · · qn differ. By the definition of γ, w(a`a`+1 · · · an) is even,
and thus α ≺ γ by Lemma 5.1. Also observe that ` < r and that qrqr+1 · · · qn = arar+1 · · · an. Thus,
r will also be the rightmost bit such that β and γ differ. By Lemma 5.1, since α ≺ β, w(arar+1 · · · an)
is even, and thus also by Lemma 5.1, γ ≺ β. Thus α ≺ γ ≺ β, a contradiction.

Case 2: ai = 0. Ifw(β) is odd, let γ = flip(β, i); otherwise, let γ = flip(β, i, i+1). By the definition
of i, bi is the leftmost 1 in β. Therefore by Remark 5.2, γ is a pseudo-necklace. Let ` be the rightmost
index such that β and γ = q1q2 · · · qn differ. By the definition of γ, w(q`q`+1 · · · qn) is even, and thus
γ ≺ β by Lemma 5.1. Also observe that ` < r and that qrqr+1 · · · qn = brbr+1 · · · bn. Thus, r will also
be the rightmost bit such that α and γ differ. By Lemma 5.1, since α ≺ β, w(arar+1 · · · an) is even,
and thus also by Lemma 5.1, α ≺ γ. Thus α ≺ γ ≺ β, a contradiction.

Since each case results in a contradiction, α and β differ in at most two positions and hence the BRGC
ordering induces a 2-Gray code on P(n). Finally, to show the cyclic property, note that the first and last
strings in BRGC order are 0n and 0n−11 respectively [8]. Since these strings are also pseudo-necklaces, they
are also the first and last pseudo-necklaces in BRGC order and they differ in one bit position. 2

6 Acknowledgement

The authors would like to commend one of the reviewers who provided valuable feedback on the paper. The
research of Joe Sawada is supported by the Natural Sciences and Engineering Research Council of Canada
(NSERC) grant RGPIN 400673-2012. The research of Dennis Wong is supported by the MSIP (Ministry of
Science, ICT and Future Planning), Korea, under the “ICT Consilience Creative Program” (IITP-2015-R0346-
15-1007) supervised by the IITP (Institute for Information & communications Technology Promotion).

References
[1] K. S. Booth. Lexicographically least circular substrings. Inform. Process. Lett., 10(4/5):240–242, 1980.

[2] K. Cattell, F. Ruskey, J. Sawada, M. Serra, and C. Miers. Fast algorithms to generate necklaces, unlabeled neck-
laces, and irreducible polynomials over GF(2). J. Algorithms, 37(2):267–282, 2000.

[3] C. Degni and A. Drisko. Gray-ordered binary necklaces. Electron. J. Combin., 14(1):23 pages, 2007.

[4] P. B. Dragon, O. I. Hernandez, and A. Williams. LATIN 2016: Theoretical Informatics: 12th Latin American
Symposium, Ensenada, Mexico, April 11-15, 2016, Proceedings, chapter The Grandmama de Bruijn Sequence for
Binary Strings, pages 347–361. Springer Berlin Heidelberg, Berlin, Heidelberg, 2016.

[5] H. Fredricksen and I. J. Kessler. An algorithm for generating necklaces of beads in two colors. Discrete Math.,
61(2):181 – 188, 1986.

[6] H. Fredricksen and J. Maiorana. Necklaces of beads in k colors and k-ary de Bruijn sequences. Discrete Math.,
23:207–210, 1978.

10

[7] F. Gray. Pulse code communication. U.S. Patent 2,632,058, 1953.

[8] F. Ruskey. Combinatorial Generation. Working version (1i) edition, 1996.

[9] F. Ruskey, C. Savage, and T. M. Y. Wang. Generating necklaces. J. Algorithms, 13:414–430, 1992.

[10] F. Ruskey and J. Sawada. An efficient algorithm for generating necklaces with fixed density. SIAM J. Comput.,
29(2):671–684, 1999.

[11] A. Sabri and V. Vajnovszki. Two Reflected Gray Code based orders on some restricted growth sequences. ArXiv
e-prints, June 2013.

[12] J. Sawada and A. Williams. A Gray code for fixed-density necklaces and Lyndon words in constant amortized
time. Theor. Comput. Sci., 502:46–54, 2013.

[13] V. Vajnovszki. Gray code order for Lyndon words. Discrete Math. Theor. Comput. Sci., 9(2):145–151, 2007.

[14] V. Vajnovszki. More restrictive Gray codes for necklaces and Lyndon words. Inform. Process. Lett., 106(3):96–99,
2008.

[15] T. M. Wang and C. D. Savage. A Gray code for necklaces of fixed density. SIAM J. Discrete Math, 9:654–673,
1997.

[16] M. Weston and V. Vajnovszki. Gray codes for necklaces and Lyndon words of arbitrary base. Pure Math. Appl.
(PU.M.A.), 17(1-2):175–182, 2006.

11

Appendix - C code

//--
// NECKLACES, LYNDON WORDS, PSEUDO-NECKLACES in COLEX or BRGC ORDER IN O(1)-AMORTIZED TIME
//--
#include <stdio.h>
#define MAX 100

int type,N,total=0;
int a[MAX], S[MAX], T[MAX], NECK=0, LYN=0, DB=0, BRGC=0;

void Gen(int j, int b, int r, int rev);

//---
// RETURNS 0 IF NOT A NECKLACE, OTHERWISE RETURNS THE LENGTH OF THE LONGEST LYNDON PREFIX
//---
int TestNecklace(int b, int r) {

int i, p=0;

if (b == 1) return 1;
for (i=0; i<b; i++) {

if (r-i <= 0) r += b;
if (r < b || b == 1) p += S[r-i] + T[r-i];
if (S[b-i] < S[r-i] || (S[b-i] == S[r-i] && T[b-i] > T[r-i])) return 0;
if (S[b-i] > S[r-i] || (S[b-i] == S[r-i] && T[b-i] < T[r-i])) return N;

}
return(p);

}
//---
// RETURNS b IF CURRENT SUFFIX STARTING AT BLOCK b IS SMALLER THAN
// THE ONE STARTING FROM BLOCK r; OTHERWISE RETURNS r
//---
int Suf(int b, int r) {

for (int i=0; i<r; i++) {
if (b-i == r) return b;
if (S[b-i] < S[r-i] || (S[b-i] == S[r-i] && T[b-i] > T[r-i])) return r;
if (S[b-i] > S[r-i] || (S[b-i] == S[r-i] && T[b-i] < T[r-i])) return b;

}
return r;

}
//--
// VISIT EACH PSEUDO-NECKLACE
//--
void Visit(int b, int r) {

int i,p=N;

// TEST IF PSEUDO-NECKLACE IS A NECKLACE/LYNDON WORD
if (S[b] == S[r] && T[b] == T[r] && b > r) {

p = TestNecklace(b,r);
if (NECK && p == 0) return;
if (LYN && p != N) return;

}
if (LYN && (a[1] == 1 || a[N] == 0)) return;

// OUTPUT THE STRING AND BLOCKS
if (DB) {

if (a[1] == 1 || a[N] == 0) p = 1;
for (i=1; i<=p; i++) printf("%d", a[i]);

}
else {

for (i=1; i<=N; i++) printf("%d", a[i]);
printf(" ");
for (i=b; i>0; i--) printf(" (%d %d)", S[i], T[i]);
printf("\n");
total++;

}
}

12

//---
// RETURN TRUE IF 1a[j+1..n] IS THE SUFFIX OF SOME LENGTH N PSEUDO-NECKLACE
//---
int Extend(int j, int b, int r) {

if (j < N && a[N] == 0) return 0; // Case 0ˆn
if (j > 0 && S[r] == 0) return 1; // Case 1ˆn
if (S[b] == 0 && (j-1 > S[r] || (j-1 == S[r] && T[b]+1 <= T[r]))) return 1;
if (S[b] > 0 && (j-1 > S[r] || (j-1 == S[r] && 1 <= T[r]))) return 1;
return 0;

}
//--
void AddZero(int j, int b, int rev, int r) {

S[b] = S[b]+1;
Gen(j-1, b, rev, Suf(b,r));
S[b] = S[b]-1;

}//--
void AddOne(int j, int b, int rev, int r) {

a[j] = 1;
if (S[b] == 0) {

T[b] = T[b]+1;
Gen(j-1,b,rev,r);
T[b] = T[b]-1;

}
else {

S[b+1] = 0; T[b+1] = 1;
Gen(j-1,b+1,rev,r);

}
a[j] = 0;

}
//---
// LIST NECKLACES (LYNDON WORDS/PSEUDO-NECKLACES) IN COLEX OR BRGC ORDER.
// CURRENT SUFFIX IS a[j+1..n] WITH BLOCK REPRESENTATION B[b..1] = (S[b],T[b]).. (S[1],T[1])
// THE SMALLEST SUFFIX STARTS AT BLOCK r. rev INDICATES WHETHER TO REVERSE LISTING.
//--
void Gen(int j, int b, int rev, int r) {

if (!Extend(j, b, r)) {
S[b] = S[b] + j;
Visit(b,r);
S[b] = S[b] - j;

}
else if (BRGC && rev) {

AddOne(j,b,0,r);
AddZero(j,b,1,r);

}
else {

AddZero(j,b,0,r);
AddOne(j,b,1,r);

}
}
//--
void Input() {

printf("\n Colex Order BRGC Order\n");
printf(" ---------------------- -------------------\n");
printf(" 1. Necklaces 5. Necklaces \n");
printf(" 2. Lyndon words 6. Lyndon words\n");
printf(" 3. Pseudo-necklaces 7. Pseudo-necklaces\n");
printf(" 4. De Bruijn sequence \n");

printf("\nENTER option: "); scanf("%d", &type);

if (type == 1 || type == 5) NECK = 1;
if (type == 2 || type == 6) LYN = 1;
if (type == 4) DB = NECK = 1;

13

if (type >=5) BRGC = 1;

printf("ENTER length n: "); scanf("%d", &N);
printf("\n");

}
//--
int main() {

Input();
S[1] = 0; T[1] = 0;
Gen(N,1,0,1);
if (!DB) printf("Total = %d\n", total);
printf("\n");

}

14

