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Abstract

A stack of n pancakes can be rearranged in all n! ways by a sequence of n!−1 flips, and
a stack of n ‘burnt’ pancakes can be rearranged in all 2nn! ways by a sequence of 2nn!−1
flips. In both cases, a computer program can efficiently generate suitable solutions. We
approach these tasks instead from a human perspective. How can we determine the next
flip directly from the current stack? How can we flip the minimum or maximum number
of (burnt) pancakes overall? What if we are only allowed to flip the top n−2, n−1, or n
(burnt) pancakes? We answer the first question with simple successor rules that take worst-
case O(n)-time and amortized O(1)-time. Then we answer the second question exactly for
minimization, and provide conjectures for maximization. For the third question, we prove
that solutions almost certainly exist for pancakes and burnt pancakes using only these three
flips. More broadly, we discuss how efficiency and optimality can shape iterative solutions
to Hamilton cycle problems in highly symmetric graphs.

Keywords: pancake sorting, greedy algorithm, permutations, signed-permutations,
prefix-reversal, symmetric group, Cayley graph, Hamilton cycle, human problem solving

1. Introduction

1.1. Harried Waiter Problems

Jacob Goodman, writing under the name Harry Dweighter (“harried waiter”), intro-
duced the original pancake problem: Given a stack of n pancakes of distinct sizes, what is
the minimum number of flips required to sort the pancakes from smallest to largest? In
this problem, the individual pancakes are numbered 1, 2, . . . , n by increasing size, and a
stack of pancakes can be represented by a permutation in one-line notation. Each ‘flip’ of
the topmost i pancakes corresponds to a prefix-reversal of length i in the permutation. For
example, the following illustration shows how the stack 536142 can be sorted in 7 flips:

2
→

4
→

5
→

2
→

4
→

6
→

2
→

536142 356142 165342 435612 345612 654312 213456 123456
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A well-studied variation features ‘burnt’ pancakes, which have two distinct sides. In
this problem, a stack is represented by a signed permutation in one-line notation, with i
and ī being used when the burnt side of pancake i is facing down or up, respectively. Each
‘flip’ of the topmost i pancakes corresponds to a sign-complementing prefix-reversal in the
signed permutation. For example, the stack 3̄ 2̄ 1̄ can be sorted in 7 flips as follows:

2
→

1
→

2
→

1
→

3
→

1
→

3
→

1̄ 2̄ 3̄ 2 1 3̄ 2̄ 1 3̄ 1̄ 2 3̄ 1 2 3̄ 3 2̄ 1̄ 3̄ 2̄ 1̄ 1 2 3

Goodman was interested in worst-case stacks (i.e. the largest number of flips required
to sort any stack) and the previous illustrations are examples of such stacks for n = 6
pancakes and n = 3 burnt pancakes. Currently the best-known lower-bounds and upper-
bounds are 15

14n and 18
11n for pancakes (see Heydari and Sudborough [12], and Chitturi et al

[4]), and 2n− 2 and b3n+2
2 c for burnt pancakes (see Cohen and Blum [6], and Cibulka [5]),

respectively. Determining the minimum number of flips for an arbitrary stack was recently
shown to be NP-hard for pancakes (see Bulteau, Fertin, and Rusu [3]) while the complexity
of the burnt variation is unknown. If arbitrary substacks are allowed to be flipped, then
the unburnt sorting problem is APX-hard (see Berman and Karpinski [2]) and the burnt
sorting problem can be solved in polynomial-time (see Hannenhalli and Pevzner [10]).

Research on pancake sorting had humble beginnings — Goodman formulated the prob-
lem while sorting a stack of towels — but has a number of interesting applications including
genomics (see Fertin et al [9]) and in vivo computing (see Haynes [11] for an introduction
to the ‘e.Hop’ restaurant), and has been discussed by the media (see Singh [27]).

1.2. Harassed Waitress Problems

Goodman introduced his problem using an overzealous waiter who sorts his customers’
pancakes to hide the chef’s sloppiness. On the other hand, Zaks [35] solved a problem that
could be posed by a demanding obsessive-compulsive customer at the same restaurant:

Using our algorithms the poor waiter will be able to generate, in n! such steps,
all possible n! stacks (returning to the original one) . . . Moreover, in 1/2 of
these steps he will reverse the top 2 pancakes, in 1/3 of them the top 3, and, in
general, in (k−1)/k! of them he will reverse the top k pancakes, which amounts
to less than 2.8 pancakes reversed on the average.

To differentiate this problem from Goodman’s, we replace the waiter by a waitress, and
name it a harassed waitress problem. For example, Zaks’s solution for n = 3 is as follows:

2
→

3
→

2
→

3
→

2
→

( 3
→

)

123 213 312 132 231 321
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This solution is cyclic since one additional flip transforms the last stack into the first stack.
Cyclic solutions to the analogous ‘burnt’ problem were found by Suzuki, N. Sawada, and
Kaneko [30]. For example, their solution for n = 2 (using HC(s) for s = 1 2 · · · n) is:

1
→

2
→

1
→

2
→

1
→

2
→

1
→

( 2
→

)

1 2 1̄ 2 2̄ 1 2 1 1̄ 2̄ 1 2̄ 2 1̄ 2̄ 1̄

Both solutions can be generated by efficient algorithms that are difficult for humans to
run in practice. In particular, the algorithm in [35] maintains two additional arrays of n
integers, while the algorithm in [30] is recursive. Our goal is to create efficient algorithms
that are practical for humans. We focus on three questions, the first of which is the
following:

How efficiently can we compute the next flip from the current stack?

As the above question indicates, we want a successor rule that determines the next flip
to apply directly from the current stack, without any additional memory or algorithmic
state. This will allow our clever waitress to suspend and resume her task without devoting
any memory to her progress. We also strive for ‘optimal’ solutions by counting the total
number of (burnt) pancakes that are flipped throughout the order:

How can we flip the minimum or maximum (burnt) pancakes in total?

For example, Zaks’s solution flips 2+3+2+3+2 = 12 total pancakes for n = 3. This is the
minimum possible, so we refer to it as a minimum-cardinality solution. On the other hand,
3 + 2 + 3 + 2 + 3 = 13 is the maximum-cardinality solution for n = 3. Similarly, Suzuki,
N. Sawada, and Kaneko’s minimum-cardinality solution flips 1 + 2 + 1 + 2 + 1 + 2 + 1 =
10 burnt pancakes for n = 2, and the corresponding maximum-cardinality solution flips
2+1+2+1+2+1+2 = 11 burnt pancakes. Extremal solutions begin to diverge after this
point, with 60 and 79 providing the range for n = 4 pancakes, and 75 and 115 providing
the range for n = 3 burnt pancakes, respectively. Finally, we consider solutions that are
‘simple’ in the sense that a small set of possible flips are always reused:

What if we always flip the top n−2, n−1, or n (burnt) pancakes?

Previously, Bass and Sudborough [1] proved that the harassed waitress problem can almost
certainly be solved for pancakes using this restriction. In this document we prove the same
result for burnt pancakes. We also consider this restriction in the context of the original
harried waiter problems.

1.3. Greedy Algorithms

To solve our first two questions, we begin with four greedy algorithms from [24, 25].
Each algorithm builds a list of stacks starting from 1 2 · · · n. The next stack is created
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Minimum Strategy

current stack next stack

5
→

4215367 3512467

Maximum Strategy

current stack next stack

4
→

4215367 5124367

Figure 1: Our heroine continues solving the harassed waitress problem directly from p1p2 · · · pn = 4215367.
Using a minimum strategy she flips five pancakes, since the longest prefix that can be rotated into a
substring of 7654321 is 4215, and |4215|+ 1 = 5 (see Lemma 1). Using a maximum strategy she flips four
pancakes, since the smallest three pancakes are not ordered as 123, 231, or 312, and the largest value with
pi 6= i is i = 5, and 5− 1 = 4 (see Lemma 4). Her last question is still open.

by taking the last stack in the list and applying the ‘best’ flip that creates a ‘new’ stack.
In this context ‘new’ means that the stack is not already in the list, and ‘best’ means
minimum or maximum depending on the algorithm. The new stack is appended to the
list, and the algorithm terminates when a new stack cannot be created. For example, let
us illustrate one step of the minimum flip algorithm from the following incomplete list of
n = 4 pancakes:

2
→

3
→

2
→

3
→

2
→

?
→ ?

1234 2134 3124 1324 2314 3214

We cannot flip the top two pancakes of 3214 since 2314 is in the list. We also cannot flip
the top three pancakes of 3214 since 1234 is in the list. However, we can flip the top four
pancakes of 3214, and so the next new stack 4123 is appended to the list.

Surprisingly, this greedy minimum-flip strategy lists all stacks before getting stuck,
and the resulting order equals the one in [35]. Similarly, the greedy minimum-flip strategy
for burnt pancakes creates the order from [30]. Greedily flipping the maximum number
of pancakes and burnt pancakes also creates all possible stacks [24, 25]. Although these
greedy algorithms are simple, they would only be practical for waitresses with photographic
memories! Our goal is to translate the greedy algorithms into efficient successor rules, and
to determine if their local choices lead to globally optimal solutions.
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1.4. New Results

1. A successor rule for the greedy minimum flip order for pancakes runs in worst-case
O(n)-time, and amortized O(1)-time. The order is minimum-cardinality for all n.

2. A successor rule for the greedy minimum flip order for burnt pancakes runs in worst-case
O(n)-time, and amortized O(1)-time. The order is minimum-cardinality for all n.

3. A successor rule for the greedy maximum flip order for pancakes runs in worst-case
O(n)-time, and amortized O(1)-time so long as two flips are performed in succession.

4. A successor rule for the greedy maximum flip order for burnt pancakes runs in worst-case
O(n)-time, and amortized O(1)-time so long as two flips are performed in succession.

The complexities stated above are for determining which flip to apply, and not for per-
forming each flip. Reversing a prefix of length k in a standard array or linked list takes
O(k)-time, although this can be done O(1)-time in other data structures (see Williams [33]).

Section 2 gives our four successor rules and analyzes their computational complexity.
Section 3 considers the scenario in which the harried waiter and harassed waitress are only
allowed to flip n−2, n−1, or n pancakes at each step. Section 4 discusses our optimal-
ity results. Section 5 discusses our results in the larger context of iterative solutions to
Hamilton cycle problems.

A preliminary version of this article appeared at the FUN with Algorithms conference
and was written by two colleagues of Harry Dweighter: Harrah Essed and Wei Therese [8].
This extended version adds Sections 3 and 4. The optimality results discussed in Section
4 also allows us to discuss the bigger picture in Section 5 in more depth. The preliminary
version includes efficient C implementations of our successor rules (see page 337–338 in [8]).

2. Successor Rules For Four Greedy Flip Strategies

In this section we derive successor rules for the four greedy algorithms from Section 1.3.
Each rule is discussed in its own subsection, and all four rules are illustrated in Table 1. We
begin each subsection by recalling the recursive definition for the associated list of stacks
provided in [24]. First, some notation is required. Let P(n) denote the set of permuta-
tions of {1, 2, . . . , n} and let P(n) denote the set of signed permutations of {1, 2, . . . , n}.
For example, P(3) = {123, 132, 213, 231, 312, 321} and P(2) = {12, 21, 1̄2, 21̄, 12̄, 2̄1, 1̄2̄, 2̄1̄}.
Given a (signed) permutation p = p1p2 · · · pn, we will use the following notation:

• flipj(p) = pjpj−1 · · · p1pj+1 · · · pn, a flip (prefix reversal) of length j,

• flipj(p) = p̄j p̄j−1 · · · p̄1pj+1 · · · pn, a signed flip (prefix reversal) of length j,

• p · n denotes the concatenation of the symbol n to the permutation p.

• If L is a list that contains p, then succ(p,L) is the next element in L when L is
viewed circularly. When the context is clear, we shorten this to succ(p).
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Stack flipi Rule

1234 2 12

2134 3 213

3124 2 31

1324 3 132

2314 2 23

3214 4 3214

4123 2 41

1423 3 142

2413 2 24

4213 3 421

1243 2 12

2143 4 2143

3412 2 34

4312 3 431

1342 2 13

3142 3 314

4132 2 41

1432 4 1432

2341 2 23

3241 3 324

4231 2 42

2431 3 243

3421 2 34

4321 4 4321

(i) Minimum flips
n = 4 pancakes.

Stack flipi Rule

1234 4 123

4321 3

2341 4 23 1

1432 3

3412 4 3 12

2143 3

4123 4 123

3214 2 4

2314 4 231

4132 3

3142 4 31 2

2413 3

1423 4 1 23

3241 3

4231 4 231

1324 2 4

3124 4 312

4213 3

1243 4 12 3

3421 3

2431 4 2 31

1342 3

4312 4 312

2134 2 34

(ii) Maximum flips
n = 4 pancakes.

Stack flipi Rule

123 1 1

1̄23 2 1̄2

2̄13 1 2̄

213 2 21

1̄2̄3 1 1̄

12̄3 2 12̄

21̄3 1 2

2̄1̄3 3 2̄1̄3

3̄12 1 3̄

312 2 31

1̄3̄2 1 1̄

13̄2 2 13̄

31̄2 1 3

3̄1̄2 2 3̄1̄

132 1 1

1̄32 3 1̄32

2̄3̄1 1 2̄

23̄1 2 23̄

32̄1 1 3

3̄2̄1 2 3̄2̄

231 1 2

2̄31 2 2̄3

3̄21 1 3̄

321 3 321

1̄2̄3̄ 1 1̄

12̄3̄ 2 12̄

21̄3̄ 1 2

2̄1̄3̄ 2 2̄1̄

123̄ 1 1

1̄23̄ 2 1̄2

2̄13̄ 1 2̄

213̄ 3 213̄

31̄2̄ 1 3

3̄1̄2̄ 2 3̄1̄

132̄ 1 1

1̄32̄ 2 1̄3

3̄12̄ 1 3̄

312̄ 2 31

1̄3̄2̄ 1 1̄

13̄2̄ 3 13̄2̄

231̄ 1 2

2̄31̄ 2 2̄3

3̄21̄ 1 3̄

321̄ 2 32

2̄3̄1̄ 1 2̄

23̄1̄ 2 23̄

32̄1̄ 1 3

3̄2̄1̄ 3 3̄2̄1̄

(iii) Minimum flips
n = 3 burnt pancakes.

Stack flipi Rule

123 3 12

3̄2̄1̄ 2

231̄ 3 2 1̄

13̄2̄ 2

31̄2̄ 3 1̄2̄

213̄ 2

1̄2̄3̄ 3 1̄2̄

321 2

2̄3̄1 3 2̄ 1

1̄32 2

3̄12 3 12

2̄1̄3 1 3

21̄3 3 21̄

3̄12̄ 2

1̄32̄ 3 1̄ 2̄

23̄1 2

32̄1 3 2̄1

1̄23̄ 2

2̄13̄ 3 2̄1

31̄2 2

13̄2 3 1 2

2̄31̄ 2

3̄21̄ 3 21̄

12̄3 1 3

1̄2̄3 3 1̄2̄

3̄21 2

2̄31 3 2̄ 1

1̄3̄2 2

312 3 12

2̄1̄3̄ 2

123̄ 3 12

32̄1̄ 2

23̄1̄ 3 2 1̄

132̄ 2

3̄1̄2̄ 3 1̄2̄

213 1 3

2̄13 3 2̄1

3̄1̄2 2

132 3 1 2

2̄3̄1̄ 2

321̄ 3 21̄

12̄3̄ 2

21̄3̄ 3 21̄

312̄ 2

1̄3̄2̄ 3 1̄ 2̄

231 2

3̄2̄1 3 2̄1

1̄23 1 23

(iv) Maximum flips
n = 3 burnt pancakes.

Table 1: The four greedy algorithms and the corresponding successor rules from (i) Lemma 1, (ii) Lemma
4, (iii) Lemma 2, and (iv) Lemma 5. 6



2.1. Minimum flip for permutations

Given p = p1p2 · · · pn ∈ P(n), let qi = pi+1 · · · pnp1 · · · pi−1 denote a rotation of the
permutation p with the element pi removed. Consider the following definition:

Min(p) = Min(qn) · pn, Min(qn−1) · pn−1, . . . , Min(q1) · p1, (1)

with base case Min(p1) = p1 when n = 1. The list Min(1 2 · · · n) is the result of the greedy
minimum flip algorithm for permutations, where the first and last strings differ by flipn [24].
It is used to prove the correctness of the upcoming successor rule.

A permutation p ∈ P(n) is increasing if it is a rotation of the word 12 · · ·n. It is
decreasing if it is a reversal of an increasing permutation. The sets of all n increasing and
n decreasing permutations are below:

increasing permutations: {12 · · ·n, 23 · · ·n1, 34 · · ·n12, . . . , n12 · · ·n−1}
decreasing permutations: {n · · · 21, 1n · · · 32, 21n · · · 43, . . . , n−1 · · · 21n}.

A k-permutation is any string of length k over the set {1, 2, 3, . . . , n} with no repeating
symbols. A k-permutation is increasing (decreasing) if it is a subsequence of an increasing
(decreasing) permutation. For instance, 5124 is increasing, but 5127 is not.

Remark 1. If p is increasing (decreasing) then both flipn−1(p) and flipn(p) are decreasing
(increasing).

The successor rule given in the following lemma is illustrated in Table 1 (i).

Lemma 1 (Successor Rule for Minimum Pancake Flips). If p′ = p′1p
′
2 · · · p′n is a permuta-

tion, and L = Min(1 2 · · · n) is the greedy minimum flip order for permutations, then

succ(p′,L) = flipj(p
′) (2)

where p′1p
′
2 · · · p′j is the longest prefix of p′ that is decreasing. Note: See the discussion

prior to Remark 1 for the notion of decreasing used here.

Proof. We prove a slightly stronger result: Equation (2) holds when any increasing p =
p1p2 · · · pn is substituted for 1 2 · · · n. To prove this result, we focus on the permutations
whose successor is the result of a flip of size n and then apply induction (the base case
when n = 2 is easily verified). Consider the recursive definition for Min(p) in (1). Given a
permutation p′, its successor will be flipn(p′) if and only if it is the last permutation in one
of the recursive listings of the form Min(qi) · pi. Clearly, at most one permutation in each
recursive listing can be decreasing. By showing that the last permutation in each listing is
the one that is decreasing, we verify the successor rule for flips of size n.

We are given that the initial permutation is increasing. Also, note that the last permu-
tation in Min(qn) · pn is flipn−1(p). Thus, by Remark 1 this last permutation is decreasing.
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By applying the flip of size n to this last permutation, Remark 1 implies that the resulting
permutation, which is the first permutation of Min(qn−1) · pn−1, will be increasing. Re-
peating this argument for i = n−1, n−2, . . . , 1 verifies our claim that the last permutation
in each recursive listing is decreasing; it is true for the final recursive listing since the last
permutation in Min(p) differs from the first by a flip of size n.

Thus, the successor rule is correct for all permutations whose successor is the result
of a flip of size n. For all other permutations whose successor is not a flip of size n, the
successor rule follows from induction.

As an example, consider the permutation 3764512 with respect to the listing Min(12 · · ·n).
The prefix 3764 is the longest one that is decreasing, thus j = 4 and the next permutation
in the listing is flip4(3764512). Determining the value j in this successor rule can easily be
determined in O(n) time by applying the pseudocode given in Algorithm 1.

Algorithm 1 Computing the successor of p in the listing Min(12 · · ·n)

1: function Successor(p)
2: incr ← 0
3: for j ← 1 to n− 1 do
4: if pj < pj+1 then incr ← incr + 1

5: if incr = 2 or (incr = 1 and pj+1 < p1) then return j

6: return n

Theorem 1. Successor(p) returns the size of the flip required to obtain the successor of
p in the (circular) listing Min(12 · · ·n) in O(n) time.

This function runs in expected O(1) time when the permutation is passed by reference
because the average flip size is bounded above by the constant e [24]. Thus, by repeatedly
applying this successor rule, our waitress can iterate through all n! stacks of pancakes in
constant amortized time starting from p = 12 . . . n. She will return to the initial stack
after she completes a flip of size n and the top pancake p1 = 1.

2.2. Minimum Flips for Signed Permutations

A recursive formulation for signed permutations is similar to the unsigned formulation
with a minor change to some notation. Let q = q1q2 · · · q2n = p̄1p̄2 · · · p̄np1p2 · · · pn be a
circular string of length 2n. Let qi denote the length n−1 subword ending with qi−1. For
instance, q3 = p4p5 · · · pnp̄1p̄2. Consider the following recursive definition:

Min(p) = Min(q2n) · q2n, Min(q2n−1) · q2n−1, . . . , Min(q1) · q1, (3)

where Min(p1) = p1, p̄1. This listing corresponds to a greedy minimum flip strategy [24]
for signed permutations, where the first and last strings differ by a flip of size n.
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A signed permutation p ∈ P(n) is increasing if it is a length n subword of the circular
string 1̄2̄ · · · n̄12 · · ·n. It is decreasing if it is a reversal of an increasing permutation. For
example, the sets of all 2n increasing and 2n decreasing signed permutations are below:

increasing signed permutations: {1̄2̄3̄ · · · n̄, 2̄3̄ · · · n̄1, 3̄4̄ · · · n̄12, . . . , n1̄ · · ·n−1}.
decreasing signed permutations: {n̄ · · · 3̄2̄1̄, 1n̄ · · · 3̄2̄, 21n̄ · · · 4̄3̄, . . . , n−1 · · · 1̄n}.

A signed k-permutation is any string of length k over the set {1, 2, . . . , n, 1̄, 2̄, . . . n̄} with
no repeating symbols when taking absolute value. A signed k-permutation is increasing
(decreasing) if it is a subsequence of an increasing (decreasing) signed permutation. For
example, 5672̄4̄ is increasing, but 4̄567 is not.

Remark 2. If a signed permutation p is increasing (decreasing) then both flipn−1(p) and
flipn(p) are decreasing (increasing).

The successor rule given in the following lemma is illustrated in Table 1 (iii). Its proof
uses Remark 2 and follows the exact same inductive style as the proof for Lemma 1.

Lemma 2 (Successor Rule for Minimum Burnt Pancake Flips). If p′ = p′1p
′
2 · · · p′n is a

signed permutation, and L = Min(1 2 · · · n) is the greedy minimum flip order for signed
permutations, then

succ(p′,L) = flipj(p
′) (4)

where p′1p
′
2 · · · p′j is the longest prefix of p′ that is decreasing. Note: See the discussion

prior to Remark 2 for the notion of decreasing used here.

Pseudocode for such a successor function is given in Algorithm 2.

Algorithm 2 Computing the successor of p in the listing Min(12 · · ·n)

1: function Successor(p)
2: incr ← 0
3: for j ← 1 to n− 1 do
4: if |pj | < |pj+1| then incr ← incr + 1

5: if incr = 2 or (incr = 1 and |pj+1| < |p1|) then return j

6: if |pj | < |pj+1| and sign(pj) = sign(pj+1) then return j

7: if |pj | > |pj+1| and sign(pj) 6= sign(pj+1) then return j

8: return n

Theorem 2. Successor(p) returns the size of the flip required to obtain the successor of
p in the listing Min(12 · · ·n) in O(n) time.

Observe that this function runs in expected O(1) time when the permutation is passed by
reference because the average flip size is bounded above by the constant

√
e [24]. Thus, by

repeatedly applying this successor rule, our waitress can iterate through all 2n · n! stacks
of burnt pancakes in constant amortized time starting from p = 12 . . . n. She will return
to the initial stack after she completes a flip of size n and the top pancake is p1 = 1.

9



2.3. Maximum Flips for Permutations

Define the bracelet order of permutation p1 ∈ P(n) as:

brace(p1) = p1,p2, . . . ,p2n such that pi =

{
flipn(pi−1) if i is even

flipn−1(pi−1) if i > 1 is odd.

The last string in brace(p1) is flipn−1(p1). A bracelet class is a set containing the strings
in a bracelet order brace(p1). The following lemma is proved in [24]:

Lemma 3. If p1 and p2 are distinct permutations in P(n−1), then p1 · n and p2 · n are
in the same bracelet class if and only if p2 = flipn−1(p1).

We now give a recursive definition to list P(n):

Max(n) = brace(q1 · n), brace(q3 · n), brace(q5 · n), . . . , brace(qm−1 · n), (5)

where Max(n− 1) = q1,q2, . . . ,qm and Max(1) = 1. This listing corresponds to a greedy
maximum flip strategy [24] for permutations, where the first and last strings differ by a
flip of size 2. The recursive definition is used to prove the correctness of the upcoming
successor rule.

One may observe that every second permutation in Max(n), starting with the first,
contains the subsequence 123, 231, or 312; or in other words, they contain the subsequence
123 when p is considered circularly. If a permutation contains such a subsequence we say
it has property

−→
123. The successor rule given in the following lemma is illustrated in Table

1 (ii).

Lemma 4 (Successor Rule for Maximum Pancake Flips). If p = p1p2 · · · pn is a permuta-
tion, and L = Max(n) is the greedy maximum flip order for permutations, then for n ≥ 3

succ(p,L) =

{
flipn(p) if p has property

−→
123

flipmax(j−1,2)(p) otherwise,
(6)

where j is the largest index such that pj 6= j. Note: See the preceding discussion for the

definition of property
−→
123.

Proof. This successor rule is easy to verify for n = 3. By induction, assume the successor
rule is correct for Max(n − 1), where n > 3. Additionally, by induction, assume the rule
is correct when applied to the first r−1 permutations in Max(n). We must show that the
successor of permutation p = p1p2 · · · pn at rank r is given by (6). Observe that the first

r permutations will alternately have, and not have the property
−→
123. This is because (6)

always flips at least two of the values 1,2, and 3. Thus, p has property
−→
123 if and only if r

is odd. We consider two cases depending on whether r is odd or even.

10



If r is odd, we have established that p has property
−→
123. By (5) and the definition of

a bracelet class, succ(p) = flipn(p), which verifies (6).

If r is even, we have established that p does not have property
−→
123. Consider two cases

depending on the last element pn. If pn 6= n, then by Lemma 3, p will not be the last
permutation in a bracelet class from (5) and thus succ(p) = flipn−1(p), which verifies (6).
If pn = n, then r being even implies that p is the last permutation in a bracelet class
from (5) by Lemma 3. Thus, succ(p) will correspond to succ(p1p2 · · · pn−1) in Max(n− 1)

with n appended to the end. Since p1p2 · · · pn−1 does not have property
−→
123, by induction

succ(p1p2 · · · pn−1) = flipmax(j−1,2)(p1p2 · · · pn−1) where j is the largest index such that
pj 6= j. Thus, since pn = n, succ(p) is equal to flipmax(j−1,2)(p) where j is the largest index
such that pj 6= j, satisfying (6).

Pseudocode for a successor rule based on this lemma is given in Algorithm 3.

Algorithm 3 Computing the successor of p in the listing Max(n)

1: function Successor(p)
2: for j ← 1 to n do
3: if pj = 1 then pos1 ← j

4: if pj = 2 then pos2 ← j

5: if pj = 3 then pos3 ← j

6: if (pos1 < pos2 < pos3) or (pos2 < pos3 < pos1) or (pos3 < pos1 < pos2) then return n

7: j ← n
8: while pj = j and j > 3 do j ← j − 1

9: return j − 1

Theorem 3. Successor(p) returns the successor of the permutation p in the listing
Max(n) in O(n) time.

By applying the observations from this successor rule, our waitress can apply a very sim-
ple and elegant algorithm to generate Max(n). The main idea is to visit two permutations
at a time; pseudocode is given in Algorithm 4. Since the average flip length approaches
n−1

2 , the while loop iterates less than once on average. Thus, this simple algorithm runs
in constant amortized time per flip.

2.4. Maximum Flips for Signed Permutations

Define the signed bracelet order of permutation p1 ∈ P(n) as:

brace(p1) = p1,p2, . . . ,p4n such that pi =

{
flipn(pi−1) if i is even

flipn−1(pi−1) if i > 1 is odd.

11



Algorithm 4 Exhaustive algorithm to list the ordering Max(n) of P(n)

1: procedure Gen
2: p← 12 · · ·n
3: repeat
4: Visit(p)
5: p← flipn(p)
6: Visit(p)
7: j ← n
8: while pj = j do j ← j − 1

9: p← flipj−1(p)
10: until j = 2

Using this definition, we arrive at a similar recurrence to list P(n) as the unsigned case in
the previous section:

Max(n) = brace(q1 · n), brace(q3 · n), brace(q5 · n), . . . , brace(qm−1 · n), (7)

where Max(n−1) = q1,q2, . . . ,qm and Max(1) = 1, 1̄. This listing corresponds to a greedy
maximum flip strategy [24] for signed permutations, where the first and last strings differ
by a flip of size 1.

To find an efficient successor rule for this listing, observe that every second permutation,
starting with the first, contains the subsequence 12, 21̄, 1̄2̄, or 2̄1. If a permutation contains
such a subsequence we say it has property

−→
12. The successor rule given in the following

lemma is illustrated in Table 1 (iv).

Lemma 5 (Successor Rule for Maximum Burnt Pancake Flips). If p = p1p2 · · · pn is a
signed permutation, and L = Max(n) is the greedy maximum flip order for signed permu-
tations, then for n ≥ 2

succ(p,L) =

{
flipn(p) if p has property

−→
12

flipmax(j−1,1)(p) otherwise,
(8)

where j is the largest index such that pj 6= j. Note: See the preceding discussion for the

definition of property
−→
12.

A proof of this lemma is similar to the one for Lemma 4. Pseudocode for a successor rule
based on this lemma is given in Algorithm 5.

Theorem 4. Successor(p) returns the successor of the permutation p in the listing
Max(n) in O(n) time.

By applying the observations from this successor rule, our waitress can apply a simple
and elegant algorithm to generate Max(n). The main idea is to consider two consecu-
tive pancake stacks; pseudocode is given in Algorithm 6. Since the average flip length
approaches n−1

2 , the while loop iterates less than once on average. Thus, this simple
algorithm runs in constant amortized time per flip.

12



Algorithm 5 Computing the successor of p in the listing Max(n)

1: function Successor(p)
2: for j ← 1 to n do
3: if |pj | = 1 then pos1 ← j

4: if |pj | = 2 then pos2 ← j

5: if pos1 < pos2 and sign(ppos1) = sign(ppos2) then return n

6: if pos1 > pos2 and sign(ppos1) 6= sign(ppos2) then return n

7: j ← n
8: while pj = j and j > 2 do j ← j − 1

9: return j − 1

Algorithm 6 Exhaustive algorithm to list the ordering Max(n) of P(n)

1: procedure Gen
2: p← 12 · · ·n
3: repeat
4: Visit(p)
5: p← flipn(p)
6: Visit(p)
7: j ← n
8: while pj = j do j ← j − 1

9: p← flipj−1(p)
10: until j = 1

3. The ‘Big-3’ Flips

In this section our hassled waitstaff turn the tables on their respect problems. Instead
of considering all possible flips, they focus only on flips involving the topmost n, n− 1, or
n− 2 (burnt) pancakes. We offer several conjectures, and then explain our specific interest
in these ‘big-3’ flips.

3.1. The Harried Waiter Revisited

After years of sorting pancakes for his customers, the harried waiter decides to challenge
himself with a new problem: Sorting stacks of pancakes using only flipn−2, flipn−1, and flipn.
For example, the waiter would previously make quick work of the stack 13245: flip3, flip2,
and finally flip3. But without flip2 the waiter must develop a new strategy. In this case the
stack requires eight ‘big-3’ flips to sort, with an example shown below

5
→

4
→

5
→

3
→

5
→

4
→

5
→

4
→

13245 54231 32451 15423 45123 32154 51234 43215 12345

This example is a worst-case stack for n = 5. By using the efficient permutation ranking
and unranking routines of Ruskey and Myrvold [15], we can quickly tabulate the maximum

13



n 1 2 3 4 5 6 7 8 9 10 11 12

all flips 0 1 3 4 5 7 8 9 10 11 13 14
big-3 flips 0 1 3 4 8 12 15 21 27 35 42 50

Table 2: The maximum number of flips required to sort a stack of unburnt pancakes using flip2, flip3, . . . , flipn

(middle row) and flipn−2, flipn−1, and flipn (bottom row).

number of flips required to sort all stacks in Table 2 for small n. Although restricting the
allowed flips can only increase the number of required flips, it doesn’t necessarily make the
problem of determining the minimum number of flips harder. In fact, we conjecture that
the ‘big-3’ pancake and burnt pancake sorting problems are in P .

Conjecture 1 (Big-3 Pancake Sorting). The minimum number of flips required to sort
a given permutation p ∈ P(n) into the sorted permutation 1 2 · · · n ∈ P(n), using only
flipn−2,flipn−1, and flipn, can be computed in polynomial-time with respect to n.

Conjecture 2 (Big-3 Burnt Pancake Sorting). The minimum number of flips required to
sort a given signed permutation p ∈ P(n) into the sorted signed permutation 1 2 · · · n ∈
P(n), using only flipn−2,flipn−1, and flipn, can be computed in polynomial-time with respect
to n.

3.2. The Harassed Waitress Revisited

Given the results of this article, our heroine might also consider a more difficult problem:
Order all pancake stacks using only flipn−2, flipn−1, and flipn. Similarly, she may try
ordering all burnt pancake stacks using only flipn−2, flipn−1, and flipn. For these problems
to be feasible, it must be possible to reach all possible stacks. In other words, the following
graphs must be connected:
• The ‘big-3’ pancake network has permutations in P(n) as vertices, and edges exist

between permutations that differ by flipn−2, flipn−1, or flipn.
• The ‘big-3’ burnt pancake network has signed permutations in P(n) as vertices, and

edges exist between permutations that differ by flipn−2, flipn−1, or flipn.
Notice that the connectedness of these graphs also ensures the feasibility of the sorting
problems in Section 3.1. The connectedness of the first graph was previously observed by
Bass and Sudborough [1], and we prove the connectedness of the second below.

Proposition 1 ([1]). The ‘big-3’ pancake network is connected.

Let a signed variant of a signed permutation p be any signed permutation that is
equivalent to p when their signs are ignored. Each signed permutation has 2n signed
variants. For example, the signed variants of 2̄13 are: 213, 213̄, 21̄3, 2̄13, 21̄3̄, 2̄13̄, 2̄1̄3, and
2̄1̄3̄.

Proposition 2. The ‘big-3’ burnt pancake network is connected.

14



Proof. Since the burnt pancake network is connected when all flip sizes are allowed, we
need only consider n ≥ 4. First we claim that an arbitrary vertex p = p1p2 · · · pn ∈ P(n)
is connected to:

1. p1 = p1p2 · · · pn−2pnpn−1,
2. p2 = pnp1p2 · · · pn−1 and
3. p3 = p1p2 · · · pn−1pn.

Observe that p is connected to p1 by taking successive edges flipn−1, flipn, flipn−1, and

flipn−2. Vertex p is connected to p2 by taking the edge flipn−1 followed by flipn. Finally,
p is connected to p3 via the following sequence of edges:

flipn−2, (flipn−1, flipn−2)n−4, flipn, flipn−1, flipn−2, (flipn, flipn−1)n−3, flipn, flipn−2, flipn−1, flipn.

After the first 1 + 2(n − 4) edges the vertex is p̄2 p̄1 pn−1 pn−2 · · · p3 pn. After the next
three edges the vertex is p̄3 p̄4 · · · p̄n−1 p1 pn p2. After the next 2(n− 3) edges the vertex is
p1 pn p2 p3 · · · pn−1. Finally, the next four flips reach the desired vertex.

We complete the proof by applying these 3 connectivity results to show that any two
vertices p,q ∈ P(n) are connected. Since the first result performs a swap of the last
two elements and the second result performs a rotation, any two adjacent elements can
be swapped if the signs are ignored. Thus, by applying a bubble sort, we see that p is
connected to some signed variant of q. To show that this signed variant is connected to
q, we apply a series of the second and third connectivity results: By applying the second
result n times, we rotate through the permutation complementing each element; if we did
not want a particular element to be complemented then we first apply the third result.

Propositions 1 and 2 have greater significance due to the fact that the graphs in question
are Cayley graphs. More specifically, Proposition 1 proves that

G = {(n−2 n−3 · · · 1 n−1 n), (n−1 n−2 · · · 1 n), (n n−1 · · · 1)}

is a generating set for the symmetric group Sn, and thus the corresponding Cayley graph
Cay(Sn, G) is connected. Similarly, Proposition 2 proves that

G = {(n−2 n−3 · · · 1 n−1 n), (n−1 n−2 · · · 1 n), (n n−1 · · · 1)}

is a generating set for the signed symmetric group Sn,2 (also known as the hyperoctahedral
group), and thus the corresponding Cayley graph Cay(Sn,2, G) is connected.

Conjecture 3 (Lovász). Every connected Cayley graph has a Hamilton cycle.

Given Propositions 1 and 2, Conjecture 3 asserts that the ‘big-3’ pancake network and
‘big-3’ burnt pancake network have Hamilton cycles. We restate these special cases of
Conjecture 3 in terms of Gray codes below.

Conjecture 4. There exist cyclic Gray codes of P(n) using flipn−2, flipn−1, flipn.
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Conjecture 5. There exist cyclic Gray codes of P(n) using flipn−2, flipn−1, flipn.

These conjectures do not preclude the possibility that our greedy max-flip Gray codes
for permutations and signed permutations are max-cardinality. This issue is discussed in
the next section.

3.3. Other Flip Triples

In the previous two subsections we considered pancake problems using flips of length
n−2, n−1, and n. Of course, these problems can also be constrained by using other sets
of flips. Bass and Sudborough [1] considered the connectivity of the pancake network
with different sets of flips, with a focus on triples (since pairs are insufficient for n > 3).
Determining which triples provide connectivity seems to be quite delicate, even for those
containing the ‘big-2’ flipn and flipn−1, as illustrated by Table 3.

n 4 5 6 7 8 9 10 11 12

x 2 2,3 2,4 2,3,4,5 2,4,6 2,3,6,7 2,4,6,8 2,3,4,5,6,7,8,9 2,4,6,8,10

Table 3: Cases where the set {flipx, flipn−1, flipn} ensures connectivity in the pancake network.

One triple that always works is flip2, flipn−1, and flipn [1] and we conjecture that polynomial-
time sorting in this case is possible. This conjecture is quite similar to Conjecture 1 since
the problems involve connecting the bracelet classes formed by flipn and flipn−1 using only
flip2 and flipn−2, respectively. (The Hamilton cycle conjecture for flip2, flipn−1, and flipn is
another special case of the Lovász conjecture and is not explicitly stated here.)

Conjecture 6. The minimum number of flips required to sort a given permutation p ∈
P(n) into the sorted permutation 1 2 · · · n ∈ P(n), using only flip2,flipn−1, and flipn, can be
computed in polynomial-time with respect to n.

Unfortunately, the analogous triple — flip2, flipn−1, and flipn — does not always provide
connectivity in the burnt case. In particular, the reader can verify by computation that
connectivity fails for n = 6.

Remark 3. The signed permutation 1 2 3 · · ·n is not reachable from the signed permutation
1 2 3 · · ·n in the burnt pancake network using only flip2, flipn−1, flipn when n = 6.

We have one more reason for our heroine to be optimistic about the ‘big-3’ flips and
Conjectures 4 and 5. Consider the prefix-rotation of length k operation,

σk(p1p2 · · · pn) = p2p3 · · · pkp1pk+1pk+2 · · · pn.

Ruskey and Williams [21] (and later Holroyd, Ruskey, and Williams [13]) showed that Gray
codes of permutations using σn and σn−1 exist and have simple and efficient successor rules.
The constructions are based on necklace classes (sets of strings closed under rotation) with

16



Total Pancakes Flipped

n Min(n) Max(n) Min(n) Max(n)

1 0 0 1 1
2 2 2 10 11
3 12 13 75 115
4 60 79 628 1315
5 320 523 6325 17059
6 1950 3883 75966 251299
7 13692 32323 1063615 4168099
8 109592 299443 17017960 77066659
9 986400 3061363 306323433 1573745059
10 9864090 34269043 6126468850 35202560419

Table 4: The total number of pancakes flipped by each of the four greedy algorithms.

n − 1 symbols formed by σn−1, and necklace classes with n symbols formed by σn. The
‘big-3’ harassed waitress problem can be seen as a bracelet analogy since the net effect
of flipn then flipn−1 is σn, while the net effect of flipn−1 then flipn−2 is σn−1. In contrast,
permutation Gray codes using σ2 and σn seem to be more difficult, as evidenced by the
50-page paper by Compton and Williamson which also requires the use of σ−1

n (see Section
5 for a result without σ−1

n ). This suggests that the Hamiltonian problem using flip2, flipn−1,
and flipn could also be difficult.

4. Optimality

In this section we consider the total number of (burnt) pancakes that are flipped during
the course of the four greedy algorithms. Recall from Section 1.2 that we use the term
cardinality to refer to the total number of flipped pancakes, and the cardinality of a Gray
code is found by summing its sequence of flip lengths. Our focus is primarily on the
cardinality of the linear Gray code orders, so we do not consider the flip required to
return to the starting stack. The totals for each of the four approaches are provided
in Table 4. Interestingly, the sequence for Min(n) corresponds to sequence A038154 in
the The On-Line Encyclopedia of Integer Sequences (OEIS) [31]. The values are said to
correspond to the number of rank-orderings of (≥ 2)-element subsets of an n-set which
counts nontrivial votes in a rank-ordering voting system. Also, when the final flip of n
pancakes is added to the total for Min(n), then we obtain sequence A007526 from OEIS.
This sequence has been known since the eighteenth century and corresponds to the simple
recurrence an = n(an−1 + 1) with a0 = 0 which has the following closed form [31]:

n! ·
n−1∑
k=0

1

k!
.
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For signed permutations, the total number of pancakes flipped by cyclic Min(n) is given by
the recurrence an = 2n(an−1 + 1) with a0 = 0 which has the following closed form:

2nn! ·
n−1∑
k=0

1

2kk!
.

This recurrence is easily seen by studying the recurrence for the flip sequence for this
algorithm given in [24]. Obtaining the closed form expression is a straightforward exercise
(try it!). For the total pancakes flipped by the linear order, we simply subtract n from
each formula.

Recurrences can also be obtained for the maximum flip algorithms based on the recur-
sive definitions of their flip sequence in [24]. From the flip recurrence from Section 6.1 of
[24] we get the following formula for the total number of pancakes flipped by Max(n):

n
n!

2
+

n−1∑
i=2

i2 · i!
2
.

From the flip recurrence from Section 7.1 of [24] we get the following formula for the total
number of pancakes flipped by Max(n):

n
2nn!

2
+

n−1∑
i=1

i(2i+ 1)
2ii!

2
.

For each of these formulae, we add one to obtain the total number of pancakes flipped
in the cyclic ordering.

In Sections 4.1 and 4.2 we prove that the minimum flip algorithms produce minimum-
cardinality orders for all n. In Sections 4.3 and 4.4 we conjecture that the maximum flip
algorithms produce orders that are maximum-cardinality, and provide some insight into
the relative difficulty of these questions. Throughout this section, we refer to orders of
P(n) in which successive permutations differ by some flipi as flip Gray codes. We also use
this term when referring to orders of P(n) in which successive signed-permutations differ
by some flipi.

4.1. Minimum Total Flipped Pancakes

Recall from in the quote from [35] given in Section 1, the number of flips of size k in
the listing Min(n) is given by n! · k−1

k! . Thus, the total number of flips of size 2, 3, . . . , k in
Min(n) is given by:

n!(
1

2!
+

2

3!
+ · · ·+ k−1

k!
) = n!(

k!− 1

k!
) = n!− n!

k!
.
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Lemma 6. If L is a flip Gray code for P(n) then the total number of flips of sizes 2, 3, . . . , k
for 2 ≤ k ≤ n is less than or equal to

n!− n!

k!
.

Proof. Let L be a flip Gray code for P(n). Suppose there exists some 2 ≤ k ≤ n such that
the number of flips of size 2, 3, . . . , k is greater than n! − n!

k! . Since there are a total of

n! − 1 total flips, this implies there are less than n!
k! − 1 flips of size greater than k. Thus

by the pigeon hole principle, there must be k! + 1 consecutive permutations in L that only
apply flips of size at most k. However, there are most k! different permutations attainable
by applying only those flip sizes. Contradiction.

The following corollary follows immediately from this lemma since it is not possible for
any flip Gray code L for P(n) to have less total flips of size 2, 3, . . . , k compared to Min(n)
for any 2 ≤ k ≤ n.

Corollary 1. Min(n) is a minimum cardinality flip Gray code for P(n).

4.2. Minimum Total Burnt Pancakes Flipped

We recall a formula in [24] for the sequence of flips performed in generating Min(n):

Sn =

{
1 if n = 1

(Sn−1, n)2n−1, Sn−1 if n > 1.
(9)

A simple induction shows that the total the number of flips of size k in the listing Min(n)
is given by 2nn!(2k−1

2kk!
). Thus, the total number of flips of size 1, 2, 3, . . . , k in Min(n) is

given by:

2nn!(
1

211!
+

3

222!
+

5

233!
+ · · ·+ 2k−1

2kk!
) = 2nn!

2kk!− 1

2kk!
= 2nn!− 2nn!

2kk!
.

Lemma 7. If L is a flip Gray code for P(n) then the total number of flips of sizes
1, 2, 3, . . . , k for 1 ≤ k ≤ n is less than or equal to

2nn!− 2nn!

2kk!
.

Proof. Let L be a flip Gray code for P(n). Suppose there exists some 1 ≤ k ≤ n such that
the number of flips of size 1, 2, 3, . . . , k is greater than 2nn!− 2nn!

2kk!
. Since there are a total

of 2nn!− 1 total flips, this implies there are less than 2nn!
2kk!
− 1 flips of size greater than k.

Thus by the pigeon hole principle, there must be 2kk! + 1 consecutive permutations in L
that only apply flips of size at most k. However, there are most 2kk! different permutations
attainable by applying only those flip sizes. Contradiction.
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The following corollary follows immediately from this lemma since it is not possible
for any flip Gray code L for P(n) to have less total flips of size 1, 2, 3, . . . , k compared to
Min(n) for any 1 ≤ k ≤ n.

Corollary 2. Min(n) is a minimum cardinality flip Gray code for P(n).

4.3. Maximum Total Pancakes Flipped

Recall that alternating flips of size n and n − 1 produces a bracelet class. To obtain
a permutation outside a bracelet class, a flip of size less than n − 1 is required. Thus, a
simple upper bound for the average number of pancakes flipped for a maximum-cardinality
permutation Gray code will be n− 1/2. Since the average number of pancakes flipped by
Max(n) is n− 1/2 as n goes to infinity [24], we make the following conjecture:

Conjecture 7. The maximum flip order Max(n) flips the largest number of pancakes of
all flip Gray codes for P(n).

Proving this conjecture seems more challenging than for the minimum flip Gray code.
To illustrate one of the difficulties, consider the following two sequences of length 40:

S = 5,4,5,4,5,4,5,4,5,3,5,4,5,4,5,4,5,4,5,3,5,4,5,4,5,4,5,4,5,3,5,4,5,4,5,4,5,4,5,2,. . .

R = 5,4,5,4,5,4,5,4,5,3,5,4,5,4,5,4,5,4,5,3,5,4,5,4,5,4,5,4,5,3,5,4,5,4,5,3,5,4,5,4,. . .

Sequence S is the beginning of the flip sequence used to create our maximum flip order.
Sequence R is a modified version that also creates unique permutations when flips of the
corresponding sizes are applied. However, R only uses flip3, flip4, and flip5. In particular,
R is created from S by replacing one flip4 by flip3, and one flip2 by flip4, as shown in bold.
Thus, R has a larger sum than S, so more pancakes are flipped in the corresponding list
of 41 unique permutations. Sequence R does not contradict Conjecture 7 since it cannot
be extended to a valid sequence that produces 5! = 120 unique permutations that has a
larger sum (i.e. cardinality) than our maximum flip sequence. However, sequence R does
demonstrate that an ordering can potentially “get ahead” of the greedy algorithm in terms
of total number of flipped pancakes; Conjecture 7 asserts that such any such sequence will
eventually “fall behind” the greedy algorithm once it is complete.

4.4. Maximum Total Burnt Pancakes Flipped

As with permutations, a simple upper bound for the average number of pancakes flipped
for a maximum-cardinality signed permutation Gray code is n − 1/2. Since the average
number of pancakes flipped by Max(n) is n − 1/2 as n goes to infinity [24], we make the
following conjecture:

Conjecture 8. The maximum flip order Max(n) flips the largest number of pancakes of
all flip Gray codes for P(n).

Again, proving this conjecture appears to be more challenging than for the minimum
flip Gray code.
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5. The Bigger Picture

The Lovász Conjecture (see Conjecture 3) is one of the deepest in graph theory and
discrete mathematics. It also has several nice variations, including the following.

Conjecture 9 (Lovász). Every connected vertex-transitive graph has a Hamilton path.

Conjecture 10 (Lovász). Every connected vertex-transitive graph has a Hamilton cycle,
except for five known examples.

Despite significant attention, these conjectures are still wide open. For this reason,
there is value in developing novel approaches to finding Hamilton paths and cycles in
highly symmetric graphs. One such approach is to develop a suitable successor rule for
each graph in question. Typically, successor rules are secondary or derivative results that
are obtained after a particular Hamilton path or cycle has been defined in an alternate
manner. Instead we propose developing successor rules as a first step. Without any
additional guidance this approach would be no better than guessing. For this reason we
must add constraints, and the authors of this article have found success using aggressive
computational complexity goals and various notions of optimality.

To illustrate the approach, let us consider the harassed waitress problem for pancakes.
Our optimality results from Section 4 imply that a minimal-cardinality Gray code would
flip 2 pancakes 1/2 of the time, 3 pancakes 1/3 of the time, and so on, as per the quote
from [35] in Section 1.2. In addition, suppose we want a successor rule that runs in
worst-case O(n)-time and amortized O(1)-time, as per our results in Section 2. Given
these optimality and complexity constraints, the successor rule found in Lemma 1 is now
completely natural. Similarly, the successor rules found in Lemmas 2, 4, and 5 are quite
natural (and ‘guessable’) given their respective optimality and efficiency constraints.

To further justify this approach, we recount several recent successes:

1. Cool-lex order. The following rule uses cyclically creates all
(
n
w

)
binary strings of length

n and weight w, which are also known as (n−w,w)-combinations: Rotate the shortest
prefix ending in 010 or 011 one position to the right (or the entire string if there is no
such prefix). For example, the resulting Gray code for n = 5 and w = 2 appears below
with arrows denoting each rotation

−−−→
11000,

−→
01100,

−−→
10100,

−→
01010,

−−→
00110,

−−−→
10010,

−→
01001,

−−→
00101,

−−−→
00011,

−−−→
10001.

The rule runs in worst-case O(n)-time and amortized O(1)-time with no additional
storage. It is also conjectured to rotate the minimum total number of bits of any prefix-
rotation Gray code for (n−w,w)-combinations. This result has led to applications
involving computer words [20], subsets of binary strings [22], multiset permutations
[32], k-ary trees [7], necklaces and Lyndon words [23], fixed-weight de Bruijn sequences
[19], and bubble languages [18]. See Stevens and Williams [28, 29] for an introduction.
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2. The sigma-tau Gray code. A simple generating set for the symmetric group Sn is the
rotation σ = (1 2 · · · n) and the swap of the first two symbols τ = (1 2). The directed
Cayley graph does not contain a Hamilton cycle for odd values of n and the remaining
Hamiltonicity problems were open for forty years (see Problem 6 in [16]). Williams [34]
recently solved the remaining open Hamilton path and cycle problems with successor
rules that can be applied in worst-case O(n)-time and repeated in worst-case O(1)-time
with O(log n) bits of memory. The successor rules are optimal in the sense that they
apply τ as few times as possible.

3. A new de Bruijn sequence. k-ary de Bruijn sequences are in one-to-one correspondence
with Eulerian cycles in the k-ary de Bruijn graph. Equivalently, they are in one-to-
one correspondence with Hamilton cycles in the corresponding line graph. Recently, a
simple successor rule for creating such a Hamilton cycle when k = 2 was found (see
Sawada, Williams, and Wong [26]): Given a current string b1b2 · · · bn the next string
is b2b3 · · · bnb1 if b2b3 · · · bn1 is a necklace, and otherwise the next string is b2b3 · · · bnb1.
The result generates each symbol of a new de Bruijn sequence in O(n)-time using no
additional memory. It is also optimal in the sense that the resulting list of substrings
applies the “complementing rotation” operation as few times as possible.

More generally, the authors’ underlying assumption is the following:

If a Hamilton graph has ‘simple’ description, then at least one of its Hamilton
paths or cycles has a ‘simple’ successor rule.

Furthermore, the most likely candidates will be optimal in some sense. To investigate this
assumption it will be helpful to build a catalogue of successor rules and their computational
complexities. The entries given by this article are particularly interesting because one of
the associated shortest path problems is NP-hard, and the Gray codes are conjectured to
be unique in a greedy sense (see [24]). Furthermore, we must try to solve new problems
using this approach. In particular, Conjectures 4 and 5 are ideal for this purpose.

To conclude this article, we mention that our human-centric discussion was helpful for
focusing on the simplicity of the successor rules. For further inspiration, human perfor-
mance on the traveling salesman problem is a well-studied topic (for a review see MacGregor
and Chu [14]) including strategies that use limited memory (see Pizlo and Stefanov [17]).
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