
Revisiting the Prefer-same and Prefer-opposite de
Bruijn sequence constructions

Abbas Alhakim Evan Sala Joe Sawada

Abstract

We present a simple greedy algorithm to construct the prefer-same de Bruijn sequence
and prove that it is equivalent to the more complex algorithm first stated by Eldert et
al. without proof [AIEE Transactions 77 (1958)], and later by Fredricksen [SIAM Review
24 (1982)]. Then we prove that the resulting sequence has the lexicographically largest
run-length representation among all de Bruijn sequences. Furthermore, we prove that the
sequence resulting from a prefer-opposite greedy construction has the lexicographically
smallest run-length representation among all de Bruijn sequences.

1 Introduction

A de Bruijn sequence of order n is a sequence of bits that when considered cyclically contains
every length n binary string as a substring exactly once. A consequence of this definition is that
every de Bruijn sequence has length 2n. There are 22

n−1−n distinct de Bruijn sequences [10]
and many known constructions (see surveys in [6] and [8]). Perhaps the most surprising con-
structions, and the ones most accessible to the broadest audience, are the greedy constructions.
A greedy construction starts with a seed string, then repeatedly applies some greedy rule to de-
termine the next bit of the sequence. The algorithm stops when it is impossible to add another
bit without creating a duplicate substring of length n, or some related termination condition is
reached. The most well-known greedy de Bruijn sequence construction is the Prefer-one (or
equivalently Prefer-zero) described as follows.

Prefer-one algorithm [9]

1. Seed with 0n−1

2. Repeat until no new bit is added: Append a 1 if it does not create a duplicate length n

substring; otherwise append a 0 if it does not create a duplicate length n substring

3. Remove the seed

1



For example, applying this construction for n = 4 we obtain the string:

000 1111011001010000.

Note the importance of the string 0n−1 to seed the algorithm1. Starting with any other seed will
not produce a de Bruijn sequence using this greedy approach. For instance, starting with 101
we obtain:

101 1110101.

Adding a 1 to the above string yields the repeated substring 1011 and adding a 0 yields the
repeated substring 1010. Clearly 0000, among others, is missing from this construction.

There are two approaches whose greedy decision is based on the last bit generated (for an
extension of these approaches see [2]): the Prefer-opposite and the Prefer-same. The Prefer-
opposite algorithm (where opposite effectively means complement), presented below, differs
from the original presentation [1] in two ways: (1) a termination condition is applied so that
the string 1n is not missed and (2) the seed prefix 0n−1 is rotated to the end of the resulting
sequence.

Prefer-opposite algorithm

1. Seed with 0n−1

2. Append 0

3. Repeat until the suffix is 1n−1: Append the opposite bit as the last if it does not create a
duplicate length n substring; otherwise append the same bit as the last

4. Append 10n−1

5. Remove the seed

Let On denote the sequence resulting from the Prefer-opposite algorithm for a given n. Apply-
ing this construction for n = 4 we obtain:

O4 = 000 0101001101111000.

In Section 3 we demonstrate that the run-length encoding of On is the lexicographically small-
est over all de Bruijn sequences of order n.

The Prefer-same construction was first described by Eldert et al. [4] in Appendix II, with no
formal proof of correctness. The algorithm is restated by Fredricksen in [6, P. 212], as shown
in Figure 1, along with a proof that the algorithm produces a de Bruijn sequence.

1This algorithm has also been described to be seeded with 0n to generate a linear version of the sequence (the
seed is not removed at the end)[6].

2



Figure 1: The prefer-same algorithm as presented by Fredricksen [6, P. 212].

Observe that this algorithm does not have the same simplistic descriptions as the previous two;
it has an additional condition that requires counting the number of occurrences of specific
substrings as used in Step 2(b). Let Dn denote the sequence resulting from this original Prefer-
same algorithm for a given n. As an example, this algorithm generates the following de Bruijn
sequence for n = 4:

D4 = 1111000011010010.

The two underlined bits are the ones that are not the “same” as the previous bit even though
applying the same bit would not create a duplicate length n substring; the same bit is not chosen
since Step 2(b) is violated. Here we make an important clarification of this step. Prior to stating
the pseudocode shown in Figure 1, Fredricksen [6] defines a run of t 0’s to mean a string of t
zeros surrounded by a 1 (or the empty string) on each side. Similarly for runs of 1’s. These, in
fact are the strings being counted at Step 2(b) from the expression “strings of i’s of length t”.
Going back to the example above, for n = 4 and t = 2, the second underlined bit is not a 1
since we have already seen 24−2−2 = 1 substrings 0110 prior to it.

The primary result of this paper is to provide a simpler Prefer-same construction and prove
that it is equivalent to the original construction. This is done in Section 2. Then in Sec-
tion 3 we prove interesting properties of the Prefer-opposite and Prefer-same sequences with
respect to their run-length encoding. Implementations of these greedy algorithms are available
at http://debruijnsequence.org.

3



2 Revisiting the Prefer-Same Algorithm

In this section we present a simplified Prefer-same construction and prove it is equivalent to the
construction given by Fredricksen [6] which is based on the algorithm from Eldert et al. [4].
The algorithm is as follows:

Simplified Prefer-same algorithm

1. Seed with length n−1 string s = · · · 01010

2. Append 1

3. Repeat until no new bit is added: Append the same bit as the last if it does not create
a duplicate length n substring; otherwise append the opposite bit as the last if it does not
create a duplicate length n substring

4. Remove the seed s

Let Sn denote the sequence resulting from the Simplified Prefer-same algorithm for a given n.
For n = 4, the sequence generated by this construction is the same as the original algorithm:

S4 = 010 1111000011010010.

From the proof of the original Prefer-same algorithm [6] we obtain the following remark where
s denotes the length n−1 seed string · · · 01010.

Remark 2.1 Dn ends with the length n−1 seed s = · · · 01010, for n > 1.

Theorem 2.2 The sequence Sn is a de Bruijn sequence for all n > 1. Moreover, Sn = Dn.

Proof. Let Dn = d1d2 · · · d2n , let Sn = s1s2 · · · sm, and let s denote the length n−1 seed
string s = · · · 01010. Since sSn has no duplicate substrings of length n, m ≤ 2n. It is easy to
observe from the two algorithms that d1d2 · · · d2n = s1s2 · · · s2n = 1n0n. Suppose there exists
a smallest integer 2n < j ≤ m such that dj 6= sj .

• Case 1: Suppose dj = dj−1. Then sj 6= sj−1. Consider d = dj−n+1 · · · dj−1dj . Since Dn

is a de Bruijn sequence, d is not a substring of d1d2 · · · dj−1 = s1s2 · · · sj−1. Thus, since
sj 6= sj−1, by the definition of Sn, it must be that d is a substring of sSn and thus it must
be a substring of ss1s2 · · · sn−1 = s1n−1. However since Dn ends with s (Remark 2.1), d
also appears in the wraparound of Dn, contradicting Dn being a de Bruijn sequence.

• Case 2: Suppose dj 6= dj−1. Then sj = sj−1. Consider b = sj−n+1 · · · sj−1sj . By the
definition of Sn, b is not a substring of ss1s2 · · · sj−1 and hence also not a substring of

4



d1d2 · · · dj−1. From the definition of Dn, because dj−1 6= dj , this means that b will never
become a substring of the linear Dn. Since Dn ends with s (Remark 2.1), b will also not
be found in the wraparound, since it is not a substring of ss1s2 · · · sj−1 and j > 2n. This
contradicts Dn being a de Bruijn sequence.

Since both cases both end in contradictions, dj = sj for all 1 ≤ j ≤ m. Suppose m < 2n. Con-
sider the length n−1 suffix z = sm−n+2 · · · sm−1sm of Sn. Since Sn terminates after generating
m symbols, z0 and z1 both appear in sSn as substrings. But since z = dm−n+2 · · · dm−1dm,
the string zdm+1 does not appear in d1d2 · · · dm since Dn is a de Bruijn sequence, which means
it must appear as a substring of sd1d2 · · · dn−1. But since Dn ends with s (Remark 2.1), this
implies that zdm+1 appears twice as a substring in Dn when considered cyclically. This contra-
dicts Dn being a de Bruijn sequence. Thus m = 2n, Dn = Sn, and Sn is a de Bruijn sequence.

2

In the proof above, Sn is shown to be a de Bruijn sequence by simply establishing that it
coincides with the de Bruijn sequence Dn. A more direct proof similar to the classical proof
that the Prefer-one sequence is a de Bruijn sequence could also have been applied, but then we
still would have to confirm that Sn = Dn.

3 Run-length Properties of On and Sn
The sequences On and Sn both have an interesting property with respect to their run-length
encoding. The run-length encoding of a string w1w2 · · ·wm is a compressed representation that
stores consecutively the lengths of the maximal runs of each symbol. For example the string
11000110 has run-length encoding 2321. Since we are dealing with binary strings we need the
extra information regarding the starting symbol to obtain the original string from its run-length
encoding. As further examples:

O5 = 01010110100100011001110111110000 has run-length encoding 11111211213223154,
and

S5 = 11111000001110110011010001001010 has run-length encoding 5531222113121111.

The main results of this section establish that On and Sn admit extremes with respect to lexi-
cographical run-length encoding. These results are analogous to the well-known fact that the
Prefer-one sequence is the lexicographically largest de Bruijn sequence for a given order n.

Proposition 3.1 The de Bruijn sequence On has the lexicographically smallest run-length en-
coding of all de Bruijn sequences of order n beginning with 0.

Proposition 3.2 The de Bruijn sequence Sn has the lexicographically largest run-length en-
coding of all de Bruijn sequences of order n beginning with 1.

5



To prove the property for On we first prove another property of the sequence. We define
the alternating string of length n, denoted γn, to be the string b1b2 · · · bn where bi = 0 if i is
odd and bi = 1 if i is even. Thus γ5 = 01010 and γ4 = 0101. Observe below that the five
underlined strings 1γ5, 10γ4, 100γ3, 1000γ2, 10000γ1 appear in order from left to right within
O6:

O6 = 0101010010110101110100010011011001000011000111001111011111100000.

This observation is generalized in the upcoming Lemma 3.4. First we remark on the first and
last strings of On. Observe that the first n − 1 applications of step 3 in the Prefer-opposite
algorithm do not result in a duplicate substring by appending the “opposite bit”. Thus On

begins with γn. Furthermore, from step 4 in the algorithm it is clear that On ends with 0n−1.

Remark 3.3 The sequence On begins with γn and ends with 0n−1.

Lemma 3.4 The strings 1γn−1, 10γn−2, 100γn−3, . . . , 10n−2γ1 appear in order from left to right
within On. Moreover, when considering On as a circular string, the bit following each string
is the same as the given string’s last bit.

Proof. Let α = 10j−1γn−j and β = 10jγn−j−1 for some 1 ≤ j ≤ n−2. SinceOn = o1o2 · · · o2n
begins with γn and ends with 0n−1 (see Remark 3.3), β = otot+1 · · · ot+n−1 for some n ≤ t ≤
2n−n+1. Let σ be the substring of length n−j−1 preceding β in On. Since ot+j = 0 and the
Prefer-opposite greedy algorithm sets ot+j+1 = 0 (the start of γn−j−1), it must be that σ10j1 =

σ10j−101 already exists as a substring in 0n−1o1o2 · · · ot+j . This means, by the definition of
the Prefer-opposite algorithm, that either this substring continues into σ10j−1γn−j = σα or α
has previously appeared in 0n−1o1o2 · · · ot+j by applying similar arguments. For the latter case,
since α begins with 1, it must be a substring of o1o2 · · · ot+j . In both cases above, α appears
before β in On and hence the strings 1γn−1, 10γn−2, . . . , 10n−2γ1 appear in order from left to
right in On. Moreover, 0iγn−i is a substring of 0n−1o1o2 · · · on for 0 ≤ i ≤ n − 1. Thus by
the definition of On, the bit following 10iγn−i−1 must be the same as the last bit of γn−i−1. For
the special case when i = n−2, note that On has suffix 10n−2γ1 = 10n−1 which ends with 0.
Considering the wraparound, the next bit is the first bit of On which is 0. 2

We now use this result to prove Proposition 3.1. We do not require such an auxiliary result
to prove Proposition 3.2. Instead, we apply the fact that Sn = Dn.

PROOF OF PROPOSITION 3.1. The proof is by contradiction. Suppose there exists a de
Bruijn sequence B = b1b2 · · · b2n beginning with 0 that has a smaller run-length encoding than
On = o1o2 · · · o2n . Then there exists a smallest index j such that o1o2 · · · oj−1 = b1b2 · · · bj−1,
bj 6= oj , bj−1 6= bj , and oj−1 = oj . From Remark 3.3, On begins with γn. Thus j > n.
Since B is a de Bruijn sequence, the length n string b = bj−n+1bj−n+2 · · · bj cannot exist as
a substring in b1b2 · · · bj−1 (otherwise it appears twice). This means b must be a substring of

6



0n−1o1o2 · · · on−1 because otherwise from step 3 of the Prefer-opposite algorithm we would
have oj 6= oj−1. Thus b = 0iγn−i for some 0 < i < n. Noting that On begins with 0 and
ends with 0n−1 from Remark 3.3, the string 0n is found in the wraparound of On and thus we
further have i < n−1. Also oj−n 6= 0 because otherwise oj−noj−n+1 · · · oj−1 = 0i+1γn−i−1
which is also found in the wraparound of On (by Remark 3.3). Thus bj−n = oj−n = 1

and oj−noj−n+1 · · · oj−1 = 10iγn−i−1. Now, because Bn already contains γn as a prefix, the
bits following b cannot continue to alternate creating a substring γn. Furthermore, Bn cannot
end without repeating consecutive bits after b since otherwise it will not contain the string
10n−1, which is the length n suffix of On, and thus is not already a substring of b1b2 · · · bj .
Thus, there exist some unique 1 ≤ t < n such that the next t − 1 bits following b continue
to alternate, but the t-th bit is the same as the previous bit. This means the length n string
b′ = bj−n+1+t · · · bj+t−1bj+t = 0i−tγn−i+t−1bj+t where the last two bits have the same value.
Since earlier we observed that 10iγn−i−1 appears in o1o2 · · · oj , by Lemma 3.4 this means that
both 10i−tγn−i+t−1 and b′ appear in o1o2 · · · oj−1 = b1b2 · · · bj−1. But this means b′ appears
twice in B, which contradicts the supposition that B is de Bruijn sequence. 2

PROOF OF PROPOSITION 3.2. The proof is by contradiction. Suppose there exists a de Bruijn
sequence B = b1b2 · · · b2n beginning with 1 that has a larger run-length encoding than Dn =

Sn = s1s2 · · · s2n . Then there exists a smallest index j such that s1s2 · · · sj−1 = b1b2 · · · bj−1,
bj 6= sj , bj−1 = bj , and sj−1 6= sj . By construction of Dn, s1s2 · · · sn = 1n, so j > n.
Since B is a de Bruijn sequence, the string b = bj−n+1bj−n+2 · · · bj cannot exist as a substring
in b1b2 · · · bj−1 (otherwise it appears twice). This means the algorithm that constructs Dn sets
sj 6= sj−1 because otherwise setting sj = sj−1 violates some run constraint. Thus, if bj−1 = bj ,
then B also violates a run constraint which contradicts B being a de Bruijn sequence. 2

4 Conclusion

The greedy algorithms outlined in this paper can all be implemented to construct their re-
spective de Bruijn sequences in O(n) time per bit. However they have one major downside;
they require O(2n) memory to store each length n substring. The sequence constructed by
the Prefer-one greedy algorithm can also be constructed using only O(n) space by either a
successor-rule approach [5, 8] or a concatenation scheme [7]. For On and Sn, efficient algo-
rithms have been recently discovered that are experimentally validated up to n = 30 [3]. It is
anticipated that the results provided in this paper will be helpful in discovering a formal proof
of correctness.

7



5 Acknowledgements

We acknowledge the support of the Natural Sciences and Engineering Research Council of
Canada (NSERC), RGPIN-2018-04211.

References
[1] A. Alhakim. A simple combinatorial algorithm for de Bruijn sequences. The American Mathemat-

ical Monthly, 117(8):728–732, 2010.

[2] A. Alhakim. Spans of preference functions for de Bruijn sequences. Discrete Applied Mathematics,
160(7-8):992 – 998, 2012.

[3] A. Alhakim, D. Gabric, J. Sawada, and E. Sala. Efficient constructions of the prefer-same and
prefer-opposite de Bruijn sequences. manuscript, 2019.

[4] C. Eldert, H. Gray, H. Gurk, and M. Rubinoff. Shifting counters. AIEE Trans., 77:70–74, 1958.

[5] H. Fredricksen. Generation of the Ford sequence of length 2n, n large. J. Combin. Theory Ser. A,
12(1):153–154, 1972.

[6] H. Fredricksen. A survey of full length nonlinear shift register cycle algorithms. Siam Review,
24(2):195–221, 1982.

[7] H. Fredricksen and J. Maiorana. Necklaces of beads in k colors and k-ary de Bruijn sequences.
Discrete Math., 23:207–210, 1978.

[8] D. Gabric, J. Sawada, A. Williams, and D. Wong. A framework for constructing de Bruijn se-
quences via simple successor rules. Discrete Mathematics, 341(11):2977 – 2987, 2018.

[9] M. H. Martin. A problem in arrangements. Bull. Amer. Math. Soc., 40(12):859–864, 1934.

[10] T. van Aardenne-Ehrenfest and N. de Bruijn. Circuits and trees in oriented linear graphs, pages
149–163. Birkhäuser Boston, Boston, MA, 1987.

8


