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Abstract

This paper has two main results. First, we develop a simple algorithm to list all non-
isomorphic rooted plane trees in lexicographic order using a level sequence representation.
Then, by selecting a unique centroid to act as the root of a free plane tree, we apply the
rooted plane tree algorithm to develop an algorithm to list all non-isomorphic free plane
trees. The latter algorithm also uses a level sequence representation and lists all free plane
trees with a unique centroid first followed by all free plane trees with two centroids. Both
algorithms are proved to run in constant amortized time using straightforward bounding
methods.

Keywords: rooted plane tree, free plane tree, planar tree, necklace, chord diagram, CAT
algorithm, generate

1 Introduction

The development of algorithms to list all non-isomorphic occurrences of some combinatorial
object is a fundamental pursuit within the realm of theoretical computer science. Such
algorithms find application in many diverse areas including: hardware and software testing,
combinatorial chemistry, and computational biology. In addition, such lists are often studied
with the hope of gaining a more thorough understanding of a particular class of objects.

When developing such algorithms, the ultimate performance goal is for the amount of
computation to be proportional to the number of objects generated. Such algorithms are
said to be CAT for constant amortized time. When analyzing such algorithms, the correct
measure of computation is the total amount of data structure change and not the time
required to print the objects. This is because many applications only process the part of the
object that has undergone some change.

Trees are among the most fundamental of combinatorial objects. A rooted tree is a tree
with a distinguished root node. Since the subtrees of each node are unordered, equivalence
classes can be obtained by re-ordering the subtrees of a node. The first CAT algorithm for
generating all non-isomorphic rooted trees was developed by Beyer and Hedetniemi [2] using
a level sequence representation.

Trees without a distinguished root node (or connected graphs without cycles) are called
free trees. Due to the absence of a root node, the generation of non-isomorphic free trees is a
more difficult problem. The free tree generation algorithms of Wright, Richmond, Odlyzko,
and McKay [15], and Li and Ruskey [7] handle this problem by using a unique center of the
free trees to act as the root. When we consider free plane trees, we will also pick a unique
node to act as the root; however instead of using a center, we will use a centroid. The
definitions of center and centroid [6] are given in Section 4.1.

When a rooted tree is embedded in a plane, a cyclic ordering is induced on the subtrees
of the root. Such trees are called rooted plane trees and equivalence classes are obtained by
rotating (rather than re-ordering) the subtrees of the root node. If there is no specified root,
a tree embedded in a plane is called a free plane tree (also planar trees or plane trees). As
an example, the 10 non-isomorphic rooted plane trees with 5 nodes are shown in Figure 1.
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Figure 1: Non-isomorphic rooted plane trees with 5 nodes.

Notice that the trees (7) and (8) are equivalent rooted trees. Also, observe that the following
sets of rooted plane trees {(1), (6)}, {(2), (3),(7), (8),(9)}, and {(4), (5), (10)} correspond to
the 3 equivalence classes of free plane trees.

One of the first papers discussing rooted and free plane trees was by Harary, Prins, and
Tutte [5]. In that paper, generating functions were discovered to enumerate the number
of non-isomorphic instances of these objects with n nodes. Since then, the following closed
formulae have been obtained by Walkup [14], where 7, denotes the number of non-isomorphic
rooted plane trees with n nodes and f,, denotes the number of non-isomorphic free plane
trees with n nodes. It is assumed that n > 1 and that [P] has value 1 if the proposition P
is true and 0 otherwise. The Euler totient function on a positive integer n, denoted ¢(n), is
the number of integers in the set {0,1,...,n — 1} that are relatively prime to n.
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Using these formulae we compute a table of the r, and f, as follows (the corresponding
sequence numbers in Sloane’s database [13] are A003239 and A002995 respectively):

n|1 234 5 6 7 8 9 10 11 12
m |1 1 2 4 10 26 80 246 810 2704 9252 32066
foll 1 1 2 3 6 14 34 95 280 854 2694

A chord diagram with n chords is a sequence of 2n points embedded on an oriented circle
with the points joined pairwise by chords. A correspondence can be made between free plane
trees with n edges and chord diagrams where the n chords are non-crossing. To observe the
one-to-one correspondence, we place a node within each region of the chord diagram. There
is an edge between two nodes if and only if the two regions share a chord. Clearly, by rotating
the chord diagram, we obtain the same free plane tree. An algorithm for generating chord
diagrams is given in [11], however, there is no efficient algorithm known for generating chord
diagrams with non-crossing chords.



Some special cases of free plane trees have also been studied. For example, plane trees
with bounded degree is studied in [8] and planted plane trees are studied in [4, 5]. Free plane
trees also have an important application in the area of graph drawing [1].

In [9], Nakano develops an efficient algorithm to generate a type of rooted tree which he
also calls a rooted plane tree. However, in his definition, a left to right order is placed on
the children of each vertex, but circular rotation is not considered.

In this paper we consider two problems: the efficient generation of rooted plane trees
and the efficient generation of free plane trees. As background, we discuss the level sequence
representation for trees in Section 2. Also in that section, we present a generation algorithm
for an object that is closely related to plane trees: necklaces. Then, in Section 3, we apply
the necklace generation algorithm to generate rooted plane trees. This new algorithm can
be implemented so the trees are output in lexicographic (or reverse lexicographic) order with
respect to the level sequence representation. The rooted plane tree algorithm is then applied
to generate all free plane trees in Section 4 by choosing a unique centroid to act as the root.
For each algorithm, a straightforward analysis is given to prove that the algorithms run in
constant amortized time.

2 Background

In this section we outline a common representation for trees and give a background on a
related object called a necklace. We also present some algorithms that will be used in the
development of our rooted and free plane tree algorithms discussed in Sections 3 and 4.

2.1 Representation

One of the most common ways to represent a rooted tree is by its level sequence. A level
sequence is obtained by traversing the tree in preorder and recording the level (distance from
the root) of each node as it is visited. For example, the trees in Figure 1 are shown with
their corresponding level sequences in lexicographical order. The root is represented by a
0 and the children of the root are represented by a 1. Observe that an element in such a
sequence cannot exceed the previous value by more than 1. This leads to the following result
used by Scoins [12] to describe an algorithm for generating rooted trees.

THEOREM 1 The sequence agaq - - ay_1 is a (pre-order) level sequence for some rooted tree
T if and only if ag =0 and 1 < a; < a;_1+ 1 forall 1 <1 < n.

This simple theorem can be used directly to generate all possible rooted trees with n
nodes using the level sequence representation. Such an algorithm is shown in Figure 2 where
the initial call is Rooted Tree(1) and ay is initialized to 0. If we consider the computation tree
of this recursive algorithm, then note that every internal node, except the root, has more
than one child. Thus, the number of leaves (rooted trees with n nodes) is greater than or
equal to the number of internal nodes (rooted trees with less than n nodes). Therefore, since
each node is the result of a constant amount of work, the algorithm is CAT. As an example,
the computation tree for n = 5 is shown in Figure 3.



procedure RootedTree ( ¢ : integer )
local j : integer
if t = n then Print()
else
for j €{1,2,...,a4-1+ 1} do
ag :]
RootedTree( t+ 1)
end

Figure 2: Algorithm for generating rooted trees with n nodes.
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Figure 3: Computation tree of RootedTree(t) for n = 5.

Now suppose that we are only interested in rooted trees with n nodes that have a level
sequence that is lexicographically greater than or equal to the level sequence of some rooted
tree T. To generate such trees, we can simply trace the level sequence of 7', branching
to lexicographically larger trees where possible. If we allow a O(n) initialization, then it
is possible to generate such trees in constant amortized time using essentially the same
argument as before. In Figure 3, the more thickly drawn edges (and nodes with bold labels)
represent the computation tree for the generation of all rooted trees with 5 nodes whose level
sequences are lexicographically greater than or equal to 01212.

Each of these algorithms will be applied in Section 4 to generate free plane trees.

2.2 Necklaces

A necklace is defined to be the lexicographically smallest element in an equivalence class
of strings under rotation. Aperiodic necklaces are called Lyndon words and a prefix of
a necklace is called a prenecklace. For example, the set of all length 4 binary necklaces is:
{0000,0001,0011,0101,0111,1111}. The strings in bold are the Lyndon words, and binary
prenecklaces of length 4 are the necklaces combined with the strings {0010,0110}

The following theorem [3] is the basis for a CAT algorithm for generating necklaces,
Lyndon words, and prenecklaces. Pr(n) denotes the set of all k-ary prenecklaces with length
n and the function lyn on strings returns the length of the longest Lyndon prefix of the



procedure Necklace ( ¢, p : integer )
local j : integer
if t =n then
if p | n then Print()
else
for j € {at—p,a—p+1,...,k—1} do
ag :]
if j = a;_, then Necklace( t+1,p)
else Necklace( t+1, 1)
end

Figure 4: Algorithm for generating k-ary necklaces with length n [3].

string:
lyn(aras - --a,) = maz{l <p <n|aay---a,is a Lyndon word}.

THEOREM 2 Let o = ay---a,_1 be a string in Pr(n — 1) and let p = lyn(«). Then ab €
Py (n) if and only if an—p < b < k — 1. Furthermore,

p ifb=a,_
lyn(ab) = { noif ap_p < 2 <k-1.

This theorem can immediately be applied to generate all prenecklaces. Necklaces can be
generated by omitting prenecklaces where n mod p # 0, and Lyndon words can be generated
by omitting prenecklaces where n # p. Pseudocode for an algorithm to generate k-ary
necklaces with length n is shown in Figure 4 where qy is initialized to 0, the function Print()
outputs the current necklace a; - - - a,, and the initial call is Necklace(1,1). Maintaining the
parameter p, which represents the length of the longest Lyndon prefix of the current string
aias - - -as_1, is the key to the algorithm. This algorithm will be modified in Section 3 to
generate all rooted plane trees.

Another consequence of this Theorem 2 is that every prenecklace « that is not a necklace
has the form o = (a;---ap)’a; - - - a,, where p = lyn(a), j > 1 and 0 < m < p. Letting n;
denote the number of occurrences of the symbol ¢ in a; - - - a,, we define v = (Qm01™12m2...
We now define a function that will be useful later in the analysis of our algorithms for rooted
and free plane trees. Let f be a mapping from prenecklaces aias - - - a,, that are not necklaces
such that a; # a, to all k-ary words:

fla)=7(ar---ap).
For example f((1223123)°122312) = 112223(1223123)°. It follows from the proof of Lemma
4.1 in [10], that this mapping is one-to-one. In addition the length is preserved and f(«) is
a Lyndon word (and hence a necklace).

3 Rooted plane trees

Recall that a rooted plane tree is a rooted tree embedded in the plane where equivalence can
be obtained by rotating the subtrees of the root. In this section we consider two algorithms
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+001000111101 111101001000

010001111010 111010010001
100011110100 110100100011
000111101001 101001000111
001111010010 +010010001111
011110100100 100100011110

Figure 5: The corresponding equivalence class of strings for a rooted tree.

for generating all non-isomorphic rooted plane trees. The first method uses a bijection
between rooted plane trees of size n+1 and binary necklaces with n 0’s and n 1’s. The latter
object is an instance of a necklace with fixed density (the number of non-zero characters
is fixed) and a CAT algorithm for generating such necklaces is given in [10]. The second
algorithm uses a correspondence with another restricted class of necklaces and outputs the
trees in a useful level sequence representation. Both algorithms run in constant amortized
time.

3.1 A correspondence

A bijection [13] between rooted plane trees with n + 1 nodes and binary necklaces with n
0’s and n 1’s can be obtained by traversing the outside of a tree (left to right), recording a
0 for each step away from the root, and recording a 1 for each step toward the root. For
example, Figure 5 shows the equivalence class of strings obtained for the given rooted tree.
Notice that the same set of strings is obtained if we rotate the subtrees of the root node. The
necklace (the lexicographically smallest string) that corresponds to the tree in this example is
the string in bold 000111101001. Using the fixed density necklace generation algorithm [10],
we can generate the lexicographically smallest string of each equivalence class in constant
amortized time. Each string generated by this algorithm, however, is not necessarily one
obtained by starting from the root node. In this example, if we start from the root we
obtain the string 001000111101. If we rotate the two subtrees of the root we obtain the
string 010010001111. These strings are marked by a * in Figure 5. Therefore, even though
we have a CAT generation algorithm, the representation of the tree may not be very useful.

3.2 A fast and simple algorithm

The algorithm outlined in the previous subsection is a straightforward application of a pre-
viously known algorithm. However, the representation used for the rooted plane trees is
not standard, particularly since no root node is established. Therefore, we develop another
(simpler) algorithm where the trees are represented more naturally by their preorder level
sequences. This new algorithm will also be applied in the next section when we focus on free
plane trees.



procedure RootedPlane ( ¢, p : integer )
local j : integer

if t = n then
if p| (n — 1) then Print()
else
for j € {at_p, cee,Qp_1,04—1 + 1} do
ag :]

if j = a;—, then RootedPlane( t+1, p )
else RootedPlane( t + 1, ¢ )
end

Figure 6: Algorithm for generating rooted plane trees with n nodes.

If we let a rooted plane tree be represented by its level sequence, then by ignoring the
leading zero, which corresponds to the root, we are left with a sequence of the subtrees whose
roots are represented by a 1. Given such a sequence, we obtain equivalencies by rotating
a different 1 to the front of the string. For example, the rooted tree sequence 012312212
is equivalent to 012212123 and 012123122. Now if we choose the lexicographically smallest
string to be the representative for each equivalence class of rooted trees (the canonic rooted
plane tree), then we can generate all non-isomorphic rooted plane trees with n nodes by
generating all length n — 1 necklaces ajas - - - a,,_1 over an alphabet of size n with the added
restrictions:

e a; =1,
e 1 <ag;<aj_1+1forall2<i<n-—1,and
e ( is appended to the front of the necklaces.

Such an algorithm can be obtained by applying these restrictions to the recursive k-ary
necklace algorithm shown in Figure 4. In fact, the only modification required besides initial-
ization is to modify the bound on the for loop from £—1 to a;_1 + 1. The resulting algorithm
is shown in Figure 6 where qq is initialized to 0 and a, is initialized to 1. The initial call
is RootedPlane(2,1) and the function Print() prints the string ag---a,_;. Notice that the
sequences can be listed in either an increasing or a decreasing order. Experimentally, this
algorithm runs about 4 times faster than the fixed density necklace algorithm mentioned in
Section 3.1.

3.3 Analysis

In this subsection we analyze the algorithm RootedPlane(¢, p) for generating all non-isomorphic
rooted plane trees with n nodes. Even though the original necklace algorithm in [3] is proved
to run in constant amortized time, the result does not immediately apply to our modified
algorithm.

By studying the algorithm, it is obvious that each recursive call is the result of a constant
amount of work. Thus, the total amount of computation is proportional to the size of



the computation tree, where each node in the computation tree corresponds to a unique
prenecklace with length less than n. Let CompTree(n) denote the total number of such
prenecklaces in the computation tree and let P(¢) denote the set of all prenecklaces (sequences
without the starting 0) with length ¢ in the computation tree. Then we have:

n—1

CompTree(n) = Z IP(1)].

t=1

Our goal is to show that CompTree(n) is bounded above by some constant times the total
number 7, of trees generated.

We say that a prenecklace ayas - - - a; is a child of ayas - - - a;_1. Note that every prenecklace
= ajasy - - - a; in the computation tree has at least one child, namely a(a; +1). Also, if o is
a Lyndon word (i.e., lyn(a) = t), then it will have a; + 1 > 2 children. These observations
are used in the proof of the following lemma.

LEMMA 1 For1 <t<n-—1,
21P(t)| < |P(t+1)].

PROOF: Since each node oo = ajay---a; in P(t) has at least one child, we can prove the
lemma by showing that the number of sequences in P(¢) with only one child is less than the
number of sequences with at least 3 children.

Suppose that « has only one child, where lyn(«) = p. This implies that « is not a Lyndon
word, and hence p < ¢t. If we map a to ajas ---a,234---t—p+1, then the resulting sequence
is a Lyndon word in P(¢) that has t —p+2 > 3 children. Because each o € P(¢) has a unique
longest Lyndon prefix (a consequence of Theorem 2), this mapping is one-to-one. Hence the
number of sequences with only one child is less than or equal to the number of sequences
with 3 or more children. Thus on average, the number of children of each sequence in P(t)
is greater than or equal to 2. O

LEMMA 2 Forn > 1,
P(n—1)| < 3rp,.

PROOF: Suppose that & = ay -+ -a,_1 is in P(n — 1) but is not a necklace (i.e., O« is not a
canonic rooted plane tree). We consider two cases. If a,,_; = 1, notice that a; - --a,_92 is a
necklace (from Theorem 2) and thus Oa; - - - a,—22 is a canonic rooted plane tree. Otherwise,
if a,—1 # 1 then observe that since a; = 1, f(a) is a necklace and 0f(«) is a canonic rooted
plane tree, where f is defined in Section 2.2. Since f is a one-to-one mapping, the number
of sequences o € P(n — 1) where O« is not a canonic rooted plane tree is less than or equal
to 2r,. Thus, [P(n—1)| < 3r,. O

Now applying these two lemmas we have:

CompTree(n) Z |P(¢)]
2[P(n—1)]

67),.
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This proves the following theorem.

THEOREM 3 The algorithm RootedPlane(t,p) for generating all non-isomorphic rooted plane
trees with n nodes runs in constant amortized time.

4 Free plane trees

Recall that free plane trees are trees with a given planar embedding and no distinguished
root. In this section we develop an algorithm for generating non-isomorphic free plane trees
followed by an analysis that proves the algorithm runs in constant amortized time.

4.1 Algorithm

Due to the absence of a root, the problem of generating non-isomorphic free plane trees is
more complicated than the rooted plane tree case. The approach we take is similar to the
approaches of the free tree algorithms: we define a unique root for each free tree and then
generate the resulting restricted classes of rooted plane trees.

Two natural candidates for determining a unique root are the center(s) and the cen-
troid(s) [6]. A node v is a center of a tree if the maximum distance to any other node in
the tree is minimum. A tree with one center is called unicentral; a tree with two centers is
called bicentral. If a tree is bicentral then the two centers must be adjacent.

The size of a tree (or subtree) is defined to be the number of nodes it contains. A node
v is a centroid of a tree if the size of the largest subtree that results when the node v is
removed is minimum. A tree may have either one or two centroids. If it has one centroid,
we say that it is unicentroidal; if it has two centroids then we say that it is bicentroidal. A
node v is a unique centroid if and only if the size of its largest subtree is less than or equal
to [(n — 1)/2]. If a tree is bicentroidal then the centroids are adjacent and the removal of
the edge between them results in two subtrees of the same size. Clearly if n is odd, then
there are no bicentroidal trees.

If we pick a center to act as the unique root, then to use the rooted plane tree algorithm
RootedPlane(t, p), we need to maintain the depth of each subtree from the root. We define
the depth of a subtree to be maximum distance from a node in the subtree to the root. If
the trees are unicentral, then we must ensure that the two subtrees (from the root) with the
largest depth in fact have the same depth. In the bicentral case, however, the problem is
much harder because we must ensure that there exists a subtree with maximal depth d and
at least one subtree with depth d — 1. The difficulty is that we may not know which subtree
has maximal depth until the last few characters in the sequence are assigned. This makes
the task of testing whether the root corresponds to the unique center a very difficult one to
perform efficiently, no matter how the unique center is defined.

If we use a centroid to root the free trees, then the problem of generating non-isomorphic
free plane trees becomes much easier. For unicentroidal trees we pick the unique centroid
to be the root. For bicentroidal trees, when we remove the edge between the two centroids
we obtain two subtrees with size n/2. The centroid we choose as the root is the one whose
subtree’s level sequence is the lexicographically smallest. If the sequences are the same then
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procedure Unicentroid ( ¢, p, s : integer )
local j, max : integer

if t = n then
if p | (n—1) then Print()
else
if s=|(n—1)/2] then maz := 1 else mazx :=a;_1 + 1
for j € {a;p,...,maz —1,mazx} do
ag =7

if j = a;_, = 1 then Unicentroid( t+ 1, p, 1)
else if j = a;_, then Unicentroid( ¢t +1, p, s+ 1)
else Unicentroid( ¢t + 1, ¢, s+ 1)

end

Figure 7: Algorithm for generating unicentroidal planar trees with n nodes.

it does not matter which one we pick. We call the centroid chosen as the root the canonical
centroid. The problem is now simplified to the generation of all rooted plane trees where
the root corresponds to the canonical centroid. We divide the problem by considering the
unicentroidal and bicentroidal trees separately.

In the unicentroidal case, we want to generate all rooted plane trees with the restriction
that no subtree from the root can contain more than |(n — 1)/2] nodes. This restriction
is easily added to the algorithm RootedPlane(t, p) by maintaining an additional parameter
s which indicates the size of the current subtree. Once a subtree reaches its maximal size
of [(n —1)/2], then we must start a new subtree. This means that the next character in
the level sequence must be 1. Another way to look at the problem is to ensure that the
maximum distance between successive 1’s in the level sequence representation is bounded by
|(n —1)/2]. This modified version of the rooted plane tree algorithm is shown in Figure 7.
The initial call is Unicentroid(2, 1, 1).

If n is even, then we must also generate the bicentroidal rooted plane trees where the root
is the canonical centroid. To generate such trees we do not have to use the rooted plane tree
algorithm. We can simply generate two level sequences of size n/2 (corresponding to the two
subtrees obtained when the edge is removed between the two centroids) such that the second
level sequence is lexicographically greater than or equal to the first level sequence. Then
by adding 1 to each value in the second level sequence and appending it to the first level
sequence we obtain a rooted plane tree with n nodes whose root is the canonical centroid.
This final step effectively joins the two centroids back together by making the second centroid
a child of the canonical centroid. This algorithm for generating bicentroidal free plane trees
uses the two algorithms outlined in Section 2.1. First we are concerned with generating all
rooted trees with n/2 nodes. Then for each rooted tree a = apa; - - “Qp2—1 generated, we
want to generate all rooted trees with n/2 nodes that are lexicographically greater than or
equal to . When the second sequence is generated, each value is incremented by 1.

Pseudocode for the algorithm just describe is shown in Figure 8 where the initial call
is Bicentroid(1, FALSE) and the value qy is initialized to 0. The code fragment marked [C]
in the algorithm is used to generate the first n/2 values in the level sequence. Notice the

11



procedure Bicentroid ( ¢: integer, samePrefiz : boolean )
local j, min : integer
[A] if ¢ = n then Print()
[B] else if t =n/2 then
a; =1
Bicentroid( ¢ + 1, TRUE )
[C] else if samePrefit = FALSE then
if t > n/2 then min := 2 else min :=1
for j € {min,min+1,...,a;,_1 + 1} do
ay =74
Bicentroid( ¢t + 1, FALSE )

[D] else
for j € {aynpp+1,...,04-1,0,—1 + 1} do
ay =74
if j = a;_n/2 + 1 then Bicentroid( ¢ + 1, TRUE)
else Bicentroid( ¢t + 1, FALSE )
end

Figure 8: Algorithm for generating bicentroidal planar trees with n nodes.

similarity of this fragment to the algorithm RootedTree(t). Fragment [B] is then used to
start the second level sequence of n/2 that is not to be smaller than the first level sequence.
Since we must increment each value in this second sequence, we assign the second centroid
the value 1 making it a child of the canonical centroid. In the remainder of this discussion,
however, when we refer to the second sequence, we will assume that its values have not
been incremented even though the code actually does increment the values by 1. In [B] the
boolean samePrefir is set to TRUE indicating that the current prefix of the second sequence
is the same as the first sequence. When samePrefiz is TRUE, we enter fragment [D]. In this
fragment, the second sequence is generated so that its prefix is not smaller than the prefix
of the first sequence. Once the prefix of the second sequence is greater than the prefix of the
first sequence, the parameter samePrefiz is set to FALSE and the remainder of the generation
is done by [C]. As mentioned, since we are incrementing the values in the second sequence
by 1, a minimum value of 2 must be maintained for the remainder of the sequence. When
the combined level sequences have length n, the fragment [A] prints out the sequence.

4.2 Analysis

In this subsection we prove that our algorithm for generating non-isomorphic free plane trees
runs in constant amortized time. The analysis considers the two sub-algorithms separately.

At first glance, it may appear that we can use the proof from the rooted plane trees case
for the unicentroidal case. However, in this case we have the added restriction that each
subtree can have at most |(n — 1)/2] nodes and hence once a subtree is generated with
this maximum number of nodes we must start a new subtree. This will yield a node in the
computation tree with only one child where previously it may have had many. Instead we

12



come up with a new proof which uses the same idea of comparing the number of generated
sequences with length ¢ and length ¢ 4 1.

Let CompTree'(n) denote the number of nodes (prenecklaces) in the computation tree
for Unicentroid(t, p, s) and let P'(¢) denote the set of all prenecklaces with length ¢ (not
including the leading 0) in the computation tree. Thus we have:

n—1

CompTree' (n) = Z |P'(t)].

t=1

Our goal is to show that CompT'ree’(n) is bounded by some constant times the total number
of canonic unicentroidal free plane trees of size n.

LEMMA 3 For1<t<n-—1,
5
P+ 1] = 7P

PROOF: First observe that there are no dead ends in the computation tree for Unicentroid(z,
p, ). In other words every prenecklace in P’(¢) has at least one child for 1 < ¢ < n—1. This
is because a given prenecklace a = ajas - - - a; in P'(¢) with p = lyn(a) and s corresponding
to the size of the final (rightmost) subtree can always be extended to a new prenecklace by
appending the character a;1;_,. Note in the case when the size of the rightmost subtree
s = |(n —1)/2| that o must be a necklace. Thus, by the nature of the algorithm, it is
always (and only) possible to append the character a; = 1 to obtain a new prenecklace. We
will show that the average number of children for the prenecklaces in P’(#) is at least 5/4 by
mapping sequences with exactly one child to those that have at least two children.

We start by considering all prenecklaces o = ay - - - a; that have only one child where s
denotes the size of the rightmost subtree of a; - --a;_1. We will look at two cases depending
on the size of s'. If s’ = [(n — 1)/2], then as discussed a; must equal 1. We map all such
prenecklaces to f§ = by---b; = 1lay---a;_o. Observe that this will map at most b; + 1
prenecklaces to an image [ because of the restriction that a; 1 < a; o + 1. In the second
case we must have s’ < |(n—1)/2]. In this case, since « has only one child, there is only one
possible value for a;, namely a;—,. If a; > a;—, then o would be a Lyndon word and have at
least two children. We map this prenecklace to the prenecklace 8 = by ---b; = laq---as—1.
Observe that this will map at most one prenecklace to an image f.

Combining these two cases, there are m prenecklaces (each having exactly one child)
mapped to each image 3 where m < (b; + 1) + 1. Furthermore, since « is a prenecklace,
with a; = 1, it is obvious that 1o will also be a prenecklace, and hence each [ will be a
prenecklace in P'(¢). Additionally, by the nature of the maps the rightmost subtree of any
image $ must have size less than |[(n — 1)/2|. Also, it is not hard to see that 5 will be a
Lyndon word if b; # 1, and thus will have b; + 1 children in the computation tree. If b, = 1,
then since we have inserted a 1 at the front of 3, 8 will also have b; + 1 children since we
can add either a 1 or a 2 to extend 3 to a new prenecklace.

Finally, if we combine an image [ together with its m pre-images (each with exactly
one child), we have m + 1 unique prenecklaces in P'(¢) of length ¢ with a combined total of
m + b, + 1 children. Since all unaccounted for prenecklaces in P’(¢) have at least 2 children,
each prenecklace of length ¢ will have at least (m + b, + 1)/(m + 1) children on average.
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Plugging in the upper bound for m = b; + 2 and the lower bound of b; = 1 minimizes this
average at 5/4. O

We can now apply this lemma and induction to obtain the following bound on the size of

the computation tree:
CompTree' (n) < 5|P'(n—1)|.

LEMMA 4 Forn > 1, |[P'(n — 1)] is less than 4 times the number of canonic unicentroidal
free plane trees with n nodes.

PRrRoOOF: We partition the set of prenecklaces in P’(n — 1) that are not necklaces into 3 sets:
those that end 1¥ where k > 1, those that end with c1 where ¢ # 1 and those that do not end
with 1. We will take each partition and show a one-to-one mapping from each prenecklace in
the set to a necklace. Let & = a1 - - - a,—1. If o falls into the first set we map it to a; - - - a,—22.
If « falls in the second set, we map it to la; - - - a,,_». Finally, if it falls into the third set, we
map it to f(«) where f is defined in Section 2.2. In all cases the mappings are one-to-one,
where each image corresponds to a necklace in P'(n — 1). Thus |P’(n — 1)| is less than or
equal to 4 times the number of canonical unicentroidal free plane trees with n nodes. O

Now applying Lemma 4 directly to our last bound on the computation tree we obtain the
following theorem.

THEOREM 4 The algorithm Unicentroid(t,p,s) for generating all non-isomorphic unicen-
troidal free plane trees with n nodes runs in constant amortized time.

It is well known that the number of rooted trees with n nodes, T'(n), can be counted
by the Catalan numbers. For the bicentroidal algorithm Bicentroid(t, samePrefiz), all level
sequences with length n/2 (rooted trees with n/2 nodes) are generated in constant amor-
tized time (see Section 2.1). For each specific rooted tree with n/2 nodes, say aga; - - - an/2-1,
the algorithm generates all level sequences that are lexicographically greater than or equal
to agay - - - anjo—1 in constant amortized time plus an initialization of O(n) (again see Sec-
tion 2.1). Since there are T'(n/2) rooted trees with n/2 nodes, it follows that there are
T(%)(T(%) + 1)/2 non-isomorphic bicentroidal free plane trees with n nodes. These trees
are generated in constant amortized time plus the O(nT'(n/2)) time required to retrace the
initial tree of size n/2. However, since n < T'(n/2) as n gets large, this time for this retracing
of the tree will also be O(T'(%)?). This proves the following theorem.

THEOREM 5 The algorithm Bicentroid(t, samePrefix) for generating all non-isomorphic bi-
centroidal free plane trees with n nodes runs in constant amortized time.

It follows from Theorem 4 and Theorem 5 that we can generate all non-isomorphic free
plane trees with n nodes in constant amortized time using the algorithms Unicentroid(Z, p, s)
and Bicentroid(t, samePrefiz).
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