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Markov Decision Process and 

Reinforcement Learning 

• Objectives 

Markov Decision Process (MDP) 

Utility of State 

Value Iteration 

Passive Reinforcement Learning  

Active Reinforcement Learning 

 

• Reference 

 Russell & Norvig: Chapter 17 & 21 
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Sequential Decision Making 

• Ex Grid world 

Start and terminal states 

Actions and rewards 

Fully observable 

Stochastic: Effects of actions are uncertain. 

• If agent performs (n,n,e,e,e), what is the probability 

of reaching (4,3)?  

• A broad class of problems have a similar nature. 

Robot navigation, project management, planning a 

complex operation, … 
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Markov Decision Process (MDP) 

• An MDP consists of  

a set S of states including an initial state s0, 

a transition model T(s, a, s’), and 

a reward function R(s).  

• What should a solution to an MDP look like? 

 

• A policy  specifies the action (s) for each state s. 

• An optimal policy * is a policy that yields the 

highest expected utility. 
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Utility Function 

• Which policy is optimal depends on utility function. 

• Denote the utility over history [s0, s1, …, sn] as 

Uh([s0, s1, …, sn]). 

Many alternatives for Uh([s0, s1, …, sn]) exist. 

•  Additive rewards  

The utility of state sequence [s0, s1, …, sn] is   

  Uh([s0, s1, …, sn]) = i R(si). 

Y. Xiang, MDP and Reinforcement Learning 4 

ur.pptx


Y. Xiang, MDP and Reinforcement Learning 

2 

Optimal Policies for Grid World 
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• Optimal policy depends on chosen utility function 

which in turn depends on reward function R(s).  

• Ex Possible range of R(s) for s  (4,2) or (4,3) and 

corresponding optimal policy 

a) R(s) = -0.04 

b) R(s) < -1.6284 

c) R(s)  (-0.0221, 0) 

d) R(s) > 0 

Horizon 

• Horizon specifies the maximum length of history 

that matters. 

Finite horizon N 

 Uh([s0, s1, …, sN+k]) = Uh([s0, s1, …, sN]) for k>0. 

Infinite horizon 

• Optimal policy for a finite horizon is non-stationary. 

Ex At (3,1) of grid world 

• For infinite horizon, the optimal policy is stationary. 
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Utility as Discounted Rewards 

• With infinite horizon and utility as additive rewards, 

utility of any infinite state sequence is infinite.  

How can alternative sequences be compared? 

• Discounted rewards 

The utility of state sequence [s0, s1, …] is  

  Uh([s0, s1, …]) = i
 i R(si), where   (0,1]. 

If rewards are bounded and  < 1, then utility of an infinite 

sequence [s0, s1, …] is finite. 

Additive rewards is a special case. 

• We assume infinite horizon and discounted rewards 

below. 
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Utility of State 

• Idea to compute optimal policy 

Compute the utility of each state and use state utilities to 

select optimal action for each state. 

 

• Utility of a state s wrt policy  is      

 U(s) = E( i 
i R(si) | , s0 = s). 

• Utility U(s) of a state s is its utility wrt an optimal 

policy *, i.e., U(s) = U*(s). 

 

• Ex State utilities with R(s) = -0.04 and =1 
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Ex State Utilities of Grid World 

• R(s) = -0.04 and =1 
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State Utility and Optimal Policy 

• From MEU principle, optimal action *(s) at state s 

satisfies the following: 

  a  s’ T(s,*(s),s’)U(s’)    s’ T(s,a,s’)U(s’)   

• Ex What is the optimal action at (1,1)?  

  

• Reflection: If state utility is known for each state, 

then the optimal policy can be obtained. 

How can state utilities be obtained? 

Can they be obtained based on state utility definition?  
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Bellman Equation 

• Bellman equation: Utility of a state is given as 

 U(s) = R(s) +  maxa s’ T(s, a, s’)U(s’). 

Ex Utility for state (1,1) 

The equation suggests an iterative approach to compute 

state utility. 

• Bellman update 

Given transition model T(s, a, s’) and reward function 

R(s), obtain state utilities by  

  Ui +1(s) = R(s) +  maxa s’ T(s,a,s’)Ui(s’),       

where i=0,1,… and U0(s)=0. 
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Value Iteration Algorithm 

valueIteration() { 

 U’[]: vector of utilities for states, initially zero; 

    : max utility change of any state in one round; 

    repeat 

     U = U’;  = 0; 

  for each state s, do 

       U’[s] = R[s] +  maxa s’ T(s,a,s’)U[s’]; 

       if |U’[s] - U[s]| > , then  = |U’[s] - U[s]|; 

 until  < ; 

 return U; 

} 
12 
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Reinforcement  Learning (RL) 

• What has value iteration achieved? 

• Reality in many agent environments 

What agent knows 

 Set of states, start and terminal states 

What agent does not know 

 Transition model T(s, a, s’) 

 Reward function R(s) 

What agent can perceive 

 Current state 

 Reward received at the current state 

• Objective of RL: Learn an optimal policy for the env 

from observed rewards. 
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Passive Reinforcement  Learning 

• Task: Learn utility of each state s wrt a fixed policy , 

i.e., U(s) = E( i 
i R(si) | , s0 = s). 

• In passive RL, agent performs a set of trials. 

• In each trial, agent starts from s, executes policy , 

experiences a sequence of state transitions, receives 

reward at each state, until reaching a terminal state. 

 

• Ex A typical trial 
  (1,1)-.04(1,2) -.04(1,3) -.04(1,2) -.04(1,3) -.04(2,3) -.04(3,3) -.04(4,3) +1 
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Direct State Utility Estimation 

• U(s) is expected total reward from state s 

onward. 

• Each trial provides a sample of expected total 

reward for each state visited. 

• Ex The grid world trial 

• Method to estimate U(s) 

After each trial, update average total reward for each 

state visited. 

As number of trials approaches infinity, average total 

reward for s converges to U(s). 

Y. Xiang, MDP and Reinforcement Learning 15 

Motivation of  

Adaptive Dynamic Programming (ADP) 

• Limitation of direct state utility estimation 

It treats states as if they are independent of each other.  

It often converges very slowly. 

 

• Idea for improvement 

Handle state dependency with Bellman equation. 

1) But Bellman equation is for *, not any ! 

2) Where do R(s) and T(s,a,s’) come from? 
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Utility of State Revisited 

• Utility of a state s wrt policy  is      

 U(s) = E( i 
i R(si) | , s0 = s). 

• Bellman equation: Utility of a state is 

   U(s) = R(s) +  maxa s’ T(s, a,s’)U(s’). 

 

• Simplified Bellman equation: 

   U(s) = R(s) +  s’ T(s, (s),s’)U(s’). 

Utility of a state wrt policy  equals its own reward plus 

expected utility of its successor states.  
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Simplified Value Iteration 

• Source of R(s) 

For each state s experienced, its R(s) is observed. 

• Where does T(s, (s),s’) come from? 

Estimate T(s,a,s’) from the frequency with which s’ is 

reached when a is executed at s. 

Ex Two trials in grid world 

• Simplified value iteration 

  U
i +1 (s) = R(s) +  s’ T(s, (s),s’)U

 i (s’). 

Repeat for K times, where K is a constant. 
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ADP Agent 

• At each step, agent  

performs an action according to policy , 

perceives new state s’,  

Receives reward r’,  

updates its transition model T(), and  

updates state utilities by simplified value iteration. 
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ADP Agent Initialization 

• Set S of states, fixed policy , and discount factor  

 

• Set U of state utilities, initialized to 0  

• Set R of state rewards, initialized to 0 

• Nsa: repetition counters for state-action pairs  

For each pair, initialize counter to 0. 

• Nsas’: repetition counters for s-a-s’ triples 

For each triple, initialize counter to 0. 

• Transition model T: Init each transition prob to 0. 

• Previous state s and action a: initialized to null 
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passiveADP(s’, r’) { 

   static s, a, , ; 

   if 1st visit of s’, then U[s’] = r’; R[s’] = r’; 

 if s  null, do 

  Nsa[s,a]++; Nsas’[s,a,s’]++; 

  for each t such that Nsas’[s,a,t]  0, do 

   T[s,a,t] = Nsas’[s,a,t] / Nsa[s,a]; 

  U = simplifiedValueIteration(S, R, T, , ); 

 if terminal(s’), then s=null; a=null; 

   else s = s’; a = (s’); 

 return a; 

} 
21 

Active Reinforcement Learning 

• In general, agent knows neither which policy to use 

nor state utilities.  How should it act? 

 

• Explore env to learn transition model and state 

utilities. 

• Follow the best policy derived from learned model. 

• As more is known about env, the best policy will 

converge to the optimal policy. 
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Active ADP Agent 

1. Optimistic value iteration: Replace simplified value 

iteration in passiveADP() by the optimistic estimate 

    U+(s) = R(s) +  maxa f( s’T(s,a,s’)U+(s’), N(s,a) ), 

  where   

 

2. At state s, take action a* s.t. the following holds: 

        a    f( s’ T(s,a*,s’)U+(s’), N(s,a*))  

                 f( s’ T(s,a,s’)U+(s’), N(s,a))  

• The activeADP algorithm 

• Execution and properties 
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activeADP(s’, r’) { 

   static s, a, ; 

   if s’ visited 1st time, then U[s’] = r’; R[s’] = r’; 

 if s  null, do 

  Nsa[s,a]++; Nsas’[s,a,s’]++; 

  for each t such that Nsas’[s,a,t]  0, do 

   T[s,a,t] = Nsas’[s,a,t] / Nsa[s,a]; 

  U = optimisticValueIteration(S, R, T, , Nsa); 

 if terminal(s’), then s=null; a=null; 

   else s = s’; a = getBestAction(s’, T, U, Nsa); 

 return a; 

} 
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