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» Objectives
QOMarkov Decision Process (MDP)
Qutility of State
QValue Iteration
OPassive Reinforcement Learning
OActive Reinforcement Learning

* Reference
O Russell & Norvig: Chapter 17 & 21
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 Ex Grid world 3 +
QStart and terminal states 2 -1
QActions and rewards 1 *

QFully observable 1
QOStochastic: Effects of actions are uncertain.
« If agent performs (n,n,e,e,e), what is the probability
of reaching (4,3)?
* A broad class of problems have a similar nature.

QRobot navigation, project management, planning a
complex operation, ...

3 4

Y. Xiang, MDP and Reinforcement Learning 2

* An MDP consists of
Oa set S of states including an initial state s,
Qa transition model T¢(s, a, s’), and
Qa reward function R(s).
» What should a solution to an MDP look like?

* An n* is a policy that yields the
highest expected utility.
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« A n specifies the action n(s) for each state s.

* Which policy is optimal depends on utility function.
» Denote the utility over history [sg, s;, ..., S,] @s

Uh([SOv Sl, ey Sn]).

UMany alternatives for U([Sg, Sy, --., Sp]) €Xist.

UThe utility of state sequence [sg, sy, ...
Uh([sov Slr R Sn]) = z:i R(S\)'

, Snl is
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which in turn depends on reward function R(Ss).

corresponding optimal policy

» Optimal policy depends on chosen utility function

» Ex Possible range of R(s) for s = (4,2) or (4,3) and

a) R(S)=-0-04 3| = —=|—| +1
b) R(s)<-1.6284

) R(s) e (-0.0221, 0) 2 |t t|a
d) R(s)>0 I R R
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» Horizon specifies the maximum length of history
that matters.
QFinite horizon N
Un([So» S1. ---» Snaid) = Un([So S1, -, sy]) for k>0.
Qlnfinite horizon
» Optimal policy for a finite horizon is
UEXx At (3,1) of grid world
 For infinite horizon, the optimal policy is
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utility of any infinite state sequence is infinite.
OHow can alternative sequences be compared?

dThe utility of state sequence [sy, s;, ...] is
Un([So: Sy, ---]) = Ziy' R(s), where v € (0,1].

sequence [Sg, Sy, ...] is finite.
QAdditive rewards is a special case.

below.
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« With infinite horizon and utility as additive rewards,

QIf rewards are bounded and y < 1, then utility of an infinite

* We assume infinite horizon and discounted rewards

* |dea to compute optimal policy

UCompute the utility of each state and use state utilities to
select optimal action for each state.

is
Un(s) = E(Z; v R(s) | m, So = S).
« Utility U(s) of a state s is its utility wrt an optimal
policy n*, i.e., U(s) = U™ (s).

» Ex State utilities with R(s) = -0.04 and y=1
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* R(s) =-0.04 and y=1

3 0812 | 0868 | 0.918 | *1

2 | 0762 - 0660 | -1

1| 0705 | 0655 0.611 | 0.388
1 2 3 4
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* From MEU principle,
satisfies the following:
va g T(s,m*(s),s')U(s’) > Z T(s,a,8")U(s’)
* Ex What is the optimal action at (1,1)?

» Reflection: If state utility is known for each state,
then the optimal policy can be obtained.
OHow can state utilities be obtained?
QCan they be obtained based on state utility definition?
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» Bellman equation: Utility of a state is given as
U(s) = R(s) +y max, Zg T(s, a, s')U(s’).
QEXx Utility for state (1,1)

state utility.
* Bellman update
UGiven transition model
, obtain state utilities by
Ui+l(s) = R(S) + Y maxa 25’ T(S,a,S’)Ui(S’),
where i=0,1,... and Uy(s)=0.
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W The equation suggests an iterative approach to compute

and reward function

[

valuelteration(e) {
U’[]: vector of utilities for states, initially zero;
8: max utility change of any state in one round;
repeat
U=U’;8=0;
for each state s, do
U’[s] = R[s] + y max, Z¢ T(s,a,s’)U[s’];
if |[U’[s] - U[s]| > §, then & = |U’[s] - U[s]];
until < ¢;
return U;
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» What has value iteration achieved?
+ Reality in many agent environments
QOWhat agent knows
= Set of states, start and terminal states
QWhat agent does not know
= Transition model
= Reward function
OWhat agent can perceive
= Current state
= Reward received at the current state
» Objective of RL: Learn an optimal policy for the env
from observed rewards.
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» Task: Learn utility of each state s wrt a fixed policy =,
i.e., U%(s) = E(Z;v' R(S) | T, Sp=S).

* In passive RL, agent performs a set of trials.

* In each trial, agent starts from s, executes policy =,
experiences a sequence of state transitions, receives
reward at each state, until reaching a terminal state.

* Ex Atypical trial
(1.1).04>(1.2) 04> (1.3) .04>(1.2) .042(1,3) .042(2.3) .04>(3.3) .02 (4.3) 11
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» Ur(s) is expected total reward from state s

» Each trial provides a sample of expected total
reward for each state visited.

* Ex The grid world trial

» Method to estimate U%(s)
UAfter each trial, update average total reward for each
state visited.
UAs number of trials approaches infinity, average total
reward for s converges to U%(s).
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 Limitation of direct state utility estimation
Qlt treats states as if they are independent of each other.
QIt often converges very slowly.

* |dea for improvement
OHandle state dependency with Bellman equation.
1) But Bellman equation is for *, not any !
2) Where do R(s) and T(s,a,s’) come from?
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« Utility of a state s wrt policy = is
U™(s) = E(Z; v R(s) | m, 5= 9).

» Bellman equation: Utility of a state is
U(s)=R(s) +y e T(s, a,8")U(s’).

+ Simplified Bellman equation:
Ur(s) = R(s) + v Zg T(s, ni(s),s")U(S).
QUtility of a state wrt policy & equals its own reward plus
expected utility of its successor states.
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* Source of R(s)
QFor each state s experienced, its R(s) is observed.
* Where does T(s, n(s),s’) come from?

QEstimate T(s,a,s’) from the frequency with which s’ is
reached when a is executed at s.

QEx Two trials in grid world
« Simplified value iteration
U7, (S) = R(S) *+ v Z¢ T(s, n(s),s")U%; (s").
ORepeat for K times, where K is a constant.
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» At each step, agent
Qperforms an action according to policy =,
Qperceives new state s’,
OReceives reward r’,
Qupdates its transition model T(), and
Qupdates state utilities by simplified value iteration.
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» Set S of states, fixed policy =, and discount factor y

» Set U of state utilities, initialized to 0

» Set R of state rewards, initialized to O

» Nsa: repetition counters for state-action pairs
QFor each pair, initialize counter to 0.

* Nsas’: repetition counters for s-a-s’ triples
QFor each triple, initialize counter to 0.

* Transition model T: Init each transition prob to 0.

» Previous state s and action a: initialized to null
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passiveADP(s’, r’) {

static s, a, =, v;

if 1stvisit of §’, then U[s’] = r’; R[s'] = I’;

if s = null, do
Nsa[s,a]++; Nsas’[s,a,S']++;
for each t such that Nsas’[s,a,t] # 0, do

T[s,a,t] = Nsas’[s,a,t] / Nsa[s,a];

U = simplifiedValuelteration(S, R, T, =, y);

if terminal(s’), then s=null; a=null;

else s =s’;a = n(s’);

return a;

* In general, agent knows neither which policy to use
nor state utilities. How should it act?

» Explore env to learn transition model and state
utilities.
» Follow the best policy derived from learned model.

» As more is known about env, the best policy will
converge to the optimal policy.
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: Replace simplified value
iteration in passiveADP() by the optimistic estimate

U*(s) = R(s) + y max, f( Z,T(s,a,5")U*(s’), N(s,a) ),
where R* if n<M;
f(u,n)= )
u otherwise.
2. At state s, take action a* s.t. the following holds:
va f(Zg T(s,a*s’)U*(s’), N(s,a*)
> f( 2y T(s,a,8")U*(s’), N(s,a))
» The activeADP algorithm
» Execution and properties
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activeADP(s’, r') {

static s, a, v;
if s’ visited 15t time, then U[s’] =r’; R[s'] = r’;
if s # null, do

Nsa[s,a]++; Nsas’[s,a,s']++;

for each t such that Nsas’[s,a,t] # 0, do

T[s,a,t] = Nsas’[s,a,t] / Nsa[s,a];

U = optimisticValuelteration(S, R, T, y, Nsa);
if terminal(s’), then s=null; a=null;
else s = s’; a = getBestAction(s’, T, U, Nsa);
return a;




