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Markov Decision Process and 

Reinforcement Learning 

• Objectives 

Markov Decision Process (MDP) 

Utility of State 

Value Iteration 

Passive Reinforcement Learning  

Active Reinforcement Learning 

 

• Reference 

 Russell & Norvig: Chapter 17 & 21 

 

Y. Xiang, MDP and Reinforcement Learning 1 

Sequential Decision Making 

• Ex Grid world 

Start and terminal states 

Actions and rewards 

Fully observable 

Stochastic: Effects of actions are uncertain. 

• If agent performs (n,n,e,e,e), what is the probability 

of reaching (4,3)?  

• A broad class of problems have a similar nature. 

Robot navigation, project management, planning a 

complex operation, … 
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Markov Decision Process (MDP) 

• An MDP consists of  

a set S of states including an initial state s0, 

a transition model T(s, a, s’), and 

a reward function R(s).  

• What should a solution to an MDP look like? 

 

• A policy  specifies the action (s) for each state s. 

• An optimal policy * is a policy that yields the 

highest expected utility. 
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Utility Function 

• Which policy is optimal depends on utility function. 

• Denote the utility over history [s0, s1, …, sn] as 

Uh([s0, s1, …, sn]). 

Many alternatives for Uh([s0, s1, …, sn]) exist. 

•  Additive rewards  

The utility of state sequence [s0, s1, …, sn] is   

  Uh([s0, s1, …, sn]) = i R(si). 
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Optimal Policies for Grid World 
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• Optimal policy depends on chosen utility function 

which in turn depends on reward function R(s).  

• Ex Possible range of R(s) for s  (4,2) or (4,3) and 

corresponding optimal policy 

a) R(s) = -0.04 

b) R(s) < -1.6284 

c) R(s)  (-0.0221, 0) 

d) R(s) > 0 

Horizon 

• Horizon specifies the maximum length of history 

that matters. 

Finite horizon N 

 Uh([s0, s1, …, sN+k]) = Uh([s0, s1, …, sN]) for k>0. 

Infinite horizon 

• Optimal policy for a finite horizon is non-stationary. 

Ex At (3,1) of grid world 

• For infinite horizon, the optimal policy is stationary. 
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Utility as Discounted Rewards 

• With infinite horizon and utility as additive rewards, 

utility of any infinite state sequence is infinite.  

How can alternative sequences be compared? 

• Discounted rewards 

The utility of state sequence [s0, s1, …] is  

  Uh([s0, s1, …]) = i
 i R(si), where   (0,1]. 

If rewards are bounded and  < 1, then utility of an infinite 

sequence [s0, s1, …] is finite. 

Additive rewards is a special case. 

• We assume infinite horizon and discounted rewards 

below. 
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Utility of State 

• Idea to compute optimal policy 

Compute the utility of each state and use state utilities to 

select optimal action for each state. 

 

• Utility of a state s wrt policy  is      

 U(s) = E( i 
i R(si) | , s0 = s). 

• Utility U(s) of a state s is its utility wrt an optimal 

policy *, i.e., U(s) = U*(s). 

 

• Ex State utilities with R(s) = -0.04 and =1 
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Ex State Utilities of Grid World 

• R(s) = -0.04 and =1 
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State Utility and Optimal Policy 

• From MEU principle, optimal action *(s) at state s 

satisfies the following: 

  a  s’ T(s,*(s),s’)U(s’)    s’ T(s,a,s’)U(s’)   

• Ex What is the optimal action at (1,1)?  

  

• Reflection: If state utility is known for each state, 

then the optimal policy can be obtained. 

How can state utilities be obtained? 

Can they be obtained based on state utility definition?  
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Bellman Equation 

• Bellman equation: Utility of a state is given as 

 U(s) = R(s) +  maxa s’ T(s, a, s’)U(s’). 

Ex Utility for state (1,1) 

The equation suggests an iterative approach to compute 

state utility. 

• Bellman update 

Given transition model T(s, a, s’) and reward function 

R(s), obtain state utilities by  

  Ui +1(s) = R(s) +  maxa s’ T(s,a,s’)Ui(s’),       

where i=0,1,… and U0(s)=0. 
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Value Iteration Algorithm 

valueIteration() { 

 U’[]: vector of utilities for states, initially zero; 

    : max utility change of any state in one round; 

    repeat 

     U = U’;  = 0; 

  for each state s, do 

       U’[s] = R[s] +  maxa s’ T(s,a,s’)U[s’]; 

       if |U’[s] - U[s]| > , then  = |U’[s] - U[s]|; 

 until  < ; 

 return U; 

} 
12 
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Reinforcement  Learning (RL) 

• What has value iteration achieved? 

• Reality in many agent environments 

What agent knows 

 Set of states, start and terminal states 

What agent does not know 

 Transition model T(s, a, s’) 

 Reward function R(s) 

What agent can perceive 

 Current state 

 Reward received at the current state 

• Objective of RL: Learn an optimal policy for the env 

from observed rewards. 
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Passive Reinforcement  Learning 

• Task: Learn utility of each state s wrt a fixed policy , 

i.e., U(s) = E( i 
i R(si) | , s0 = s). 

• In passive RL, agent performs a set of trials. 

• In each trial, agent starts from s, executes policy , 

experiences a sequence of state transitions, receives 

reward at each state, until reaching a terminal state. 

 

• Ex A typical trial 
  (1,1)-.04(1,2) -.04(1,3) -.04(1,2) -.04(1,3) -.04(2,3) -.04(3,3) -.04(4,3) +1 
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Direct State Utility Estimation 

• U(s) is expected total reward from state s 

onward. 

• Each trial provides a sample of expected total 

reward for each state visited. 

• Ex The grid world trial 

• Method to estimate U(s) 

After each trial, update average total reward for each 

state visited. 

As number of trials approaches infinity, average total 

reward for s converges to U(s). 
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Motivation of  

Adaptive Dynamic Programming (ADP) 

• Limitation of direct state utility estimation 

It treats states as if they are independent of each other.  

It often converges very slowly. 

 

• Idea for improvement 

Handle state dependency with Bellman equation. 

1) But Bellman equation is for *, not any ! 

2) Where do R(s) and T(s,a,s’) come from? 
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Utility of State Revisited 

• Utility of a state s wrt policy  is      

 U(s) = E( i 
i R(si) | , s0 = s). 

• Bellman equation: Utility of a state is 

   U(s) = R(s) +  maxa s’ T(s, a,s’)U(s’). 

 

• Simplified Bellman equation: 

   U(s) = R(s) +  s’ T(s, (s),s’)U(s’). 

Utility of a state wrt policy  equals its own reward plus 

expected utility of its successor states.  
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Simplified Value Iteration 

• Source of R(s) 

For each state s experienced, its R(s) is observed. 

• Where does T(s, (s),s’) come from? 

Estimate T(s,a,s’) from the frequency with which s’ is 

reached when a is executed at s. 

Ex Two trials in grid world 

• Simplified value iteration 

  U
i +1 (s) = R(s) +  s’ T(s, (s),s’)U

 i (s’). 

Repeat for K times, where K is a constant. 
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ADP Agent 

• At each step, agent  

performs an action according to policy , 

perceives new state s’,  

Receives reward r’,  

updates its transition model T(), and  

updates state utilities by simplified value iteration. 
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ADP Agent Initialization 

• Set S of states, fixed policy , and discount factor  

 

• Set U of state utilities, initialized to 0  

• Set R of state rewards, initialized to 0 

• Nsa: repetition counters for state-action pairs  

For each pair, initialize counter to 0. 

• Nsas’: repetition counters for s-a-s’ triples 

For each triple, initialize counter to 0. 

• Transition model T: Init each transition prob to 0. 

• Previous state s and action a: initialized to null 
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passiveADP(s’, r’) { 

   static s, a, , ; 

   if 1st visit of s’, then U[s’] = r’; R[s’] = r’; 

 if s  null, do 

  Nsa[s,a]++; Nsas’[s,a,s’]++; 

  for each t such that Nsas’[s,a,t]  0, do 

   T[s,a,t] = Nsas’[s,a,t] / Nsa[s,a]; 

  U = simplifiedValueIteration(S, R, T, , ); 

 if terminal(s’), then s=null; a=null; 

   else s = s’; a = (s’); 

 return a; 

} 
21 

Active Reinforcement Learning 

• In general, agent knows neither which policy to use 

nor state utilities.  How should it act? 

 

• Explore env to learn transition model and state 

utilities. 

• Follow the best policy derived from learned model. 

• As more is known about env, the best policy will 

converge to the optimal policy. 
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Active ADP Agent 

1. Optimistic value iteration: Replace simplified value 

iteration in passiveADP() by the optimistic estimate 

    U+(s) = R(s) +  maxa f( s’T(s,a,s’)U+(s’), N(s,a) ), 

  where   

 

2. At state s, take action a* s.t. the following holds: 

        a    f( s’ T(s,a*,s’)U+(s’), N(s,a*))  

                 f( s’ T(s,a,s’)U+(s’), N(s,a))  

• The activeADP algorithm 

• Execution and properties 
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activeADP(s’, r’) { 

   static s, a, ; 

   if s’ visited 1st time, then U[s’] = r’; R[s’] = r’; 

 if s  null, do 

  Nsa[s,a]++; Nsas’[s,a,s’]++; 

  for each t such that Nsas’[s,a,t]  0, do 

   T[s,a,t] = Nsas’[s,a,t] / Nsa[s,a]; 

  U = optimisticValueIteration(S, R, T, , Nsa); 

 if terminal(s’), then s=null; a=null; 

   else s = s’; a = getBestAction(s’, T, U, Nsa); 

 return a; 

} 
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