
Y. Xiang, MDP and Reinforcement Learning

1

Markov Decision Process and

Reinforcement Learning

• Objectives

Markov Decision Process (MDP)

Utility of State

Value Iteration

Passive Reinforcement Learning

Active Reinforcement Learning

• Reference

 Russell & Norvig: Chapter 17 & 21

Y. Xiang, MDP and Reinforcement Learning 1

Sequential Decision Making

• Ex Grid world

Start and terminal states

Actions and rewards

Fully observable

Stochastic: Effects of actions are uncertain.

• If agent performs (n,n,e,e,e), what is the probability

of reaching (4,3)?

• A broad class of problems have a similar nature.

Robot navigation, project management, planning a

complex operation, …

Y. Xiang, MDP and Reinforcement Learning 2

+1

-1

1 2 3 4

1

2

3

Markov Decision Process (MDP)

• An MDP consists of

a set S of states including an initial state s0,

a transition model T(s, a, s’), and

a reward function R(s).

• What should a solution to an MDP look like?

• A policy specifies the action (s) for each state s.

• An optimal policy * is a policy that yields the

highest expected utility.

Y. Xiang, MDP and Reinforcement Learning 3

Utility Function

• Which policy is optimal depends on utility function.

• Denote the utility over history [s0, s1, …, sn] as

Uh([s0, s1, …, sn]).

Many alternatives for Uh([s0, s1, …, sn]) exist.

• Additive rewards

The utility of state sequence [s0, s1, …, sn] is

 Uh([s0, s1, …, sn]) = i R(si).

Y. Xiang, MDP and Reinforcement Learning 4

ur.pptx

Y. Xiang, MDP and Reinforcement Learning

2

Optimal Policies for Grid World

Y. Xiang, MDP and Reinforcement Learning 5

+1

-1

1 2 3 4

1

2

3

• Optimal policy depends on chosen utility function

which in turn depends on reward function R(s).

• Ex Possible range of R(s) for s (4,2) or (4,3) and

corresponding optimal policy

a) R(s) = -0.04

b) R(s) < -1.6284

c) R(s) (-0.0221, 0)

d) R(s) > 0

Horizon

• Horizon specifies the maximum length of history

that matters.

Finite horizon N

 Uh([s0, s1, …, sN+k]) = Uh([s0, s1, …, sN]) for k>0.

Infinite horizon

• Optimal policy for a finite horizon is non-stationary.

Ex At (3,1) of grid world

• For infinite horizon, the optimal policy is stationary.

Y. Xiang, MDP and Reinforcement Learning 6

Utility as Discounted Rewards

• With infinite horizon and utility as additive rewards,

utility of any infinite state sequence is infinite.

How can alternative sequences be compared?

• Discounted rewards

The utility of state sequence [s0, s1, …] is

 Uh([s0, s1, …]) = i
 i R(si), where (0,1].

If rewards are bounded and < 1, then utility of an infinite

sequence [s0, s1, …] is finite.

Additive rewards is a special case.

• We assume infinite horizon and discounted rewards

below.

Y. Xiang, MDP and Reinforcement Learning 7

Utility of State

• Idea to compute optimal policy

Compute the utility of each state and use state utilities to

select optimal action for each state.

• Utility of a state s wrt policy is

 U(s) = E(i
i R(si) | , s0 = s).

• Utility U(s) of a state s is its utility wrt an optimal

policy *, i.e., U(s) = U*(s).

• Ex State utilities with R(s) = -0.04 and =1

Y. Xiang, MDP and Reinforcement Learning 8

Y. Xiang, MDP and Reinforcement Learning

3

Ex State Utilities of Grid World

• R(s) = -0.04 and =1

Y. Xiang, MDP and Reinforcement Learning 9

+1

-1

1 2 3 4

1

2

3 0.812

0.762

0.705

0.868 0.918

0.655 0.611

0.660

0.388

State Utility and Optimal Policy

• From MEU principle, optimal action *(s) at state s

satisfies the following:

 a s’ T(s,*(s),s’)U(s’) s’ T(s,a,s’)U(s’)

• Ex What is the optimal action at (1,1)?

• Reflection: If state utility is known for each state,

then the optimal policy can be obtained.

How can state utilities be obtained?

Can they be obtained based on state utility definition?

Y. Xiang, MDP and Reinforcement Learning 10

Bellman Equation

• Bellman equation: Utility of a state is given as

 U(s) = R(s) + maxa s’ T(s, a, s’)U(s’).

Ex Utility for state (1,1)

The equation suggests an iterative approach to compute

state utility.

• Bellman update

Given transition model T(s, a, s’) and reward function

R(s), obtain state utilities by

 Ui +1(s) = R(s) + maxa s’ T(s,a,s’)Ui(s’),

where i=0,1,… and U0(s)=0.

Y. Xiang, MDP and Reinforcement Learning 11

Value Iteration Algorithm

valueIteration() {

 U’[]: vector of utilities for states, initially zero;

 : max utility change of any state in one round;

 repeat

 U = U’; = 0;

 for each state s, do

 U’[s] = R[s] + maxa s’ T(s,a,s’)U[s’];

 if |U’[s] - U[s]| > , then = |U’[s] - U[s]|;

 until < ;

 return U;

}
12

Y. Xiang, MDP and Reinforcement Learning

4

Reinforcement Learning (RL)

• What has value iteration achieved?

• Reality in many agent environments

What agent knows

 Set of states, start and terminal states

What agent does not know

 Transition model T(s, a, s’)

 Reward function R(s)

What agent can perceive

 Current state

 Reward received at the current state

• Objective of RL: Learn an optimal policy for the env

from observed rewards.

 Y. Xiang, MDP and Reinforcement Learning 13

Passive Reinforcement Learning

• Task: Learn utility of each state s wrt a fixed policy ,

i.e., U(s) = E(i
i R(si) | , s0 = s).

• In passive RL, agent performs a set of trials.

• In each trial, agent starts from s, executes policy ,

experiences a sequence of state transitions, receives

reward at each state, until reaching a terminal state.

• Ex A typical trial
 (1,1)-.04(1,2) -.04(1,3) -.04(1,2) -.04(1,3) -.04(2,3) -.04(3,3) -.04(4,3) +1

Y. Xiang, MDP and Reinforcement Learning 14

Direct State Utility Estimation

• U(s) is expected total reward from state s

onward.

• Each trial provides a sample of expected total

reward for each state visited.

• Ex The grid world trial

• Method to estimate U(s)

After each trial, update average total reward for each

state visited.

As number of trials approaches infinity, average total

reward for s converges to U(s).

Y. Xiang, MDP and Reinforcement Learning 15

Motivation of

Adaptive Dynamic Programming (ADP)

• Limitation of direct state utility estimation

It treats states as if they are independent of each other.

It often converges very slowly.

• Idea for improvement

Handle state dependency with Bellman equation.

1) But Bellman equation is for *, not any !

2) Where do R(s) and T(s,a,s’) come from?

Y. Xiang, MDP and Reinforcement Learning 16

Y. Xiang, MDP and Reinforcement Learning

5

Utility of State Revisited

• Utility of a state s wrt policy is

 U(s) = E(i
i R(si) | , s0 = s).

• Bellman equation: Utility of a state is

 U(s) = R(s) + maxa s’ T(s, a,s’)U(s’).

• Simplified Bellman equation:

 U(s) = R(s) + s’ T(s, (s),s’)U(s’).

Utility of a state wrt policy equals its own reward plus

expected utility of its successor states.

Y. Xiang, MDP and Reinforcement Learning 17

Simplified Value Iteration

• Source of R(s)

For each state s experienced, its R(s) is observed.

• Where does T(s, (s),s’) come from?

Estimate T(s,a,s’) from the frequency with which s’ is

reached when a is executed at s.

Ex Two trials in grid world

• Simplified value iteration

 U
i +1 (s) = R(s) + s’ T(s, (s),s’)U

 i (s’).

Repeat for K times, where K is a constant.

Y. Xiang, MDP and Reinforcement Learning 18

ADP Agent

• At each step, agent

performs an action according to policy ,

perceives new state s’,

Receives reward r’,

updates its transition model T(), and

updates state utilities by simplified value iteration.

Y. Xiang, MDP and Reinforcement Learning 19

ADP Agent Initialization

• Set S of states, fixed policy , and discount factor

• Set U of state utilities, initialized to 0

• Set R of state rewards, initialized to 0

• Nsa: repetition counters for state-action pairs

For each pair, initialize counter to 0.

• Nsas’: repetition counters for s-a-s’ triples

For each triple, initialize counter to 0.

• Transition model T: Init each transition prob to 0.

• Previous state s and action a: initialized to null

Y. Xiang, MDP and Reinforcement Learning 20

Y. Xiang, MDP and Reinforcement Learning

6

passiveADP(s’, r’) {

 static s, a, , ;

 if 1st visit of s’, then U[s’] = r’; R[s’] = r’;

 if s null, do

 Nsa[s,a]++; Nsas’[s,a,s’]++;

 for each t such that Nsas’[s,a,t] 0, do

 T[s,a,t] = Nsas’[s,a,t] / Nsa[s,a];

 U = simplifiedValueIteration(S, R, T, ,);

 if terminal(s’), then s=null; a=null;

 else s = s’; a = (s’);

 return a;

}
21

Active Reinforcement Learning

• In general, agent knows neither which policy to use

nor state utilities. How should it act?

• Explore env to learn transition model and state

utilities.

• Follow the best policy derived from learned model.

• As more is known about env, the best policy will

converge to the optimal policy.

Y. Xiang, MDP and Reinforcement Learning 22

Active ADP Agent

1. Optimistic value iteration: Replace simplified value

iteration in passiveADP() by the optimistic estimate

 U+(s) = R(s) + maxa f(s’T(s,a,s’)U+(s’), N(s,a)),

 where

2. At state s, take action a* s.t. the following holds:

 a f(s’ T(s,a*,s’)U+(s’), N(s,a*))

 f(s’ T(s,a,s’)U+(s’), N(s,a))

• The activeADP algorithm

• Execution and properties

Y. Xiang, MDP and Reinforcement Learning 23

.

;
),(

otherwiseu

MnifR
nuf

activeADP(s’, r’) {

 static s, a, ;

 if s’ visited 1st time, then U[s’] = r’; R[s’] = r’;

 if s null, do

 Nsa[s,a]++; Nsas’[s,a,s’]++;

 for each t such that Nsas’[s,a,t] 0, do

 T[s,a,t] = Nsas’[s,a,t] / Nsa[s,a];

 U = optimisticValueIteration(S, R, T, , Nsa);

 if terminal(s’), then s=null; a=null;

 else s = s’; a = getBestAction(s’, T, U, Nsa);

 return a;

}

 24

