
Y. Xiang, MDP and Reinforcement Learning

1

Markov Decision Process and

Reinforcement Learning

• Objectives

Markov Decision Process (MDP)

Utility of State

Value Iteration

Passive Reinforcement Learning

Active Reinforcement Learning

• Reference

 Russell & Norvig: Chapter 17 & 21

Y. Xiang, MDP and Reinforcement Learning 1

Sequential Decision Making

• Ex Grid world

Start and terminal states

Actions and rewards

Fully observable

Stochastic: Effects of actions are uncertain.

• If agent performs (n,n,e,e,e), what is the probability

of reaching (4,3)?

• A broad class of problems have a similar nature.

Robot navigation, project management, planning a

complex operation, …

Y. Xiang, MDP and Reinforcement Learning 2

+1

-1

1 2 3 4

1

2

3

Markov Decision Process (MDP)

• An MDP consists of

a set S of states including an initial state s0,

a transition model T(s, a, s’), and

a reward function R(s).

• What should a solution to an MDP look like?

• A policy  specifies the action (s) for each state s.

• An optimal policy * is a policy that yields the

highest expected utility.

Y. Xiang, MDP and Reinforcement Learning 3

Utility Function

• Which policy is optimal depends on utility function.

• Denote the utility over history [s0, s1, …, sn] as

Uh([s0, s1, …, sn]).

Many alternatives for Uh([s0, s1, …, sn]) exist.

• Additive rewards

The utility of state sequence [s0, s1, …, sn] is

 Uh([s0, s1, …, sn]) = i R(si).

Y. Xiang, MDP and Reinforcement Learning 4

ur.pptx

Y. Xiang, MDP and Reinforcement Learning

2

Optimal Policies for Grid World

Y. Xiang, MDP and Reinforcement Learning 5

+1

-1

1 2 3 4

1

2

3

• Optimal policy depends on chosen utility function

which in turn depends on reward function R(s).

• Ex Possible range of R(s) for s  (4,2) or (4,3) and

corresponding optimal policy

a) R(s) = -0.04

b) R(s) < -1.6284

c) R(s)  (-0.0221, 0)

d) R(s) > 0

Horizon

• Horizon specifies the maximum length of history

that matters.

Finite horizon N

 Uh([s0, s1, …, sN+k]) = Uh([s0, s1, …, sN]) for k>0.

Infinite horizon

• Optimal policy for a finite horizon is non-stationary.

Ex At (3,1) of grid world

• For infinite horizon, the optimal policy is stationary.

Y. Xiang, MDP and Reinforcement Learning 6

Utility as Discounted Rewards

• With infinite horizon and utility as additive rewards,

utility of any infinite state sequence is infinite.

How can alternative sequences be compared?

• Discounted rewards

The utility of state sequence [s0, s1, …] is

 Uh([s0, s1, …]) = i
 i R(si), where   (0,1].

If rewards are bounded and  < 1, then utility of an infinite

sequence [s0, s1, …] is finite.

Additive rewards is a special case.

• We assume infinite horizon and discounted rewards

below.

Y. Xiang, MDP and Reinforcement Learning 7

Utility of State

• Idea to compute optimal policy

Compute the utility of each state and use state utilities to

select optimal action for each state.

• Utility of a state s wrt policy  is

 U(s) = E(i 
i R(si) | , s0 = s).

• Utility U(s) of a state s is its utility wrt an optimal

policy *, i.e., U(s) = U*(s).

• Ex State utilities with R(s) = -0.04 and =1

Y. Xiang, MDP and Reinforcement Learning 8

Y. Xiang, MDP and Reinforcement Learning

3

Ex State Utilities of Grid World

• R(s) = -0.04 and =1

Y. Xiang, MDP and Reinforcement Learning 9

+1

-1

1 2 3 4

1

2

3 0.812

0.762

0.705

0.868 0.918

0.655 0.611

0.660

0.388

State Utility and Optimal Policy

• From MEU principle, optimal action *(s) at state s

satisfies the following:

 a s’ T(s,*(s),s’)U(s’)  s’ T(s,a,s’)U(s’)

• Ex What is the optimal action at (1,1)?

• Reflection: If state utility is known for each state,

then the optimal policy can be obtained.

How can state utilities be obtained?

Can they be obtained based on state utility definition?

Y. Xiang, MDP and Reinforcement Learning 10

Bellman Equation

• Bellman equation: Utility of a state is given as

 U(s) = R(s) +  maxa s’ T(s, a, s’)U(s’).

Ex Utility for state (1,1)

The equation suggests an iterative approach to compute

state utility.

• Bellman update

Given transition model T(s, a, s’) and reward function

R(s), obtain state utilities by

 Ui +1(s) = R(s) +  maxa s’ T(s,a,s’)Ui(s’),

where i=0,1,… and U0(s)=0.

Y. Xiang, MDP and Reinforcement Learning 11

Value Iteration Algorithm

valueIteration() {

 U’[]: vector of utilities for states, initially zero;

 : max utility change of any state in one round;

 repeat

 U = U’;  = 0;

 for each state s, do

 U’[s] = R[s] +  maxa s’ T(s,a,s’)U[s’];

 if |U’[s] - U[s]| > , then  = |U’[s] - U[s]|;

 until  < ;

 return U;

}
12

Y. Xiang, MDP and Reinforcement Learning

4

Reinforcement Learning (RL)

• What has value iteration achieved?

• Reality in many agent environments

What agent knows

 Set of states, start and terminal states

What agent does not know

 Transition model T(s, a, s’)

 Reward function R(s)

What agent can perceive

 Current state

 Reward received at the current state

• Objective of RL: Learn an optimal policy for the env

from observed rewards.

 Y. Xiang, MDP and Reinforcement Learning 13

Passive Reinforcement Learning

• Task: Learn utility of each state s wrt a fixed policy ,

i.e., U(s) = E(i 
i R(si) | , s0 = s).

• In passive RL, agent performs a set of trials.

• In each trial, agent starts from s, executes policy ,

experiences a sequence of state transitions, receives

reward at each state, until reaching a terminal state.

• Ex A typical trial
 (1,1)-.04(1,2) -.04(1,3) -.04(1,2) -.04(1,3) -.04(2,3) -.04(3,3) -.04(4,3) +1

Y. Xiang, MDP and Reinforcement Learning 14

Direct State Utility Estimation

• U(s) is expected total reward from state s

onward.

• Each trial provides a sample of expected total

reward for each state visited.

• Ex The grid world trial

• Method to estimate U(s)

After each trial, update average total reward for each

state visited.

As number of trials approaches infinity, average total

reward for s converges to U(s).

Y. Xiang, MDP and Reinforcement Learning 15

Motivation of

Adaptive Dynamic Programming (ADP)

• Limitation of direct state utility estimation

It treats states as if they are independent of each other.

It often converges very slowly.

• Idea for improvement

Handle state dependency with Bellman equation.

1) But Bellman equation is for *, not any !

2) Where do R(s) and T(s,a,s’) come from?

Y. Xiang, MDP and Reinforcement Learning 16

Y. Xiang, MDP and Reinforcement Learning

5

Utility of State Revisited

• Utility of a state s wrt policy  is

 U(s) = E(i 
i R(si) | , s0 = s).

• Bellman equation: Utility of a state is

 U(s) = R(s) +  maxa s’ T(s, a,s’)U(s’).

• Simplified Bellman equation:

 U(s) = R(s) +  s’ T(s, (s),s’)U(s’).

Utility of a state wrt policy  equals its own reward plus

expected utility of its successor states.

Y. Xiang, MDP and Reinforcement Learning 17

Simplified Value Iteration

• Source of R(s)

For each state s experienced, its R(s) is observed.

• Where does T(s, (s),s’) come from?

Estimate T(s,a,s’) from the frequency with which s’ is

reached when a is executed at s.

Ex Two trials in grid world

• Simplified value iteration

 U
i +1 (s) = R(s) +  s’ T(s, (s),s’)U

 i (s’).

Repeat for K times, where K is a constant.

Y. Xiang, MDP and Reinforcement Learning 18

ADP Agent

• At each step, agent

performs an action according to policy ,

perceives new state s’,

Receives reward r’,

updates its transition model T(), and

updates state utilities by simplified value iteration.

Y. Xiang, MDP and Reinforcement Learning 19

ADP Agent Initialization

• Set S of states, fixed policy , and discount factor 

• Set U of state utilities, initialized to 0

• Set R of state rewards, initialized to 0

• Nsa: repetition counters for state-action pairs

For each pair, initialize counter to 0.

• Nsas’: repetition counters for s-a-s’ triples

For each triple, initialize counter to 0.

• Transition model T: Init each transition prob to 0.

• Previous state s and action a: initialized to null

Y. Xiang, MDP and Reinforcement Learning 20

Y. Xiang, MDP and Reinforcement Learning

6

passiveADP(s’, r’) {

 static s, a, , ;

 if 1st visit of s’, then U[s’] = r’; R[s’] = r’;

 if s  null, do

 Nsa[s,a]++; Nsas’[s,a,s’]++;

 for each t such that Nsas’[s,a,t]  0, do

 T[s,a,t] = Nsas’[s,a,t] / Nsa[s,a];

 U = simplifiedValueIteration(S, R, T, , );

 if terminal(s’), then s=null; a=null;

 else s = s’; a = (s’);

 return a;

}
21

Active Reinforcement Learning

• In general, agent knows neither which policy to use

nor state utilities. How should it act?

• Explore env to learn transition model and state

utilities.

• Follow the best policy derived from learned model.

• As more is known about env, the best policy will

converge to the optimal policy.

Y. Xiang, MDP and Reinforcement Learning 22

Active ADP Agent

1. Optimistic value iteration: Replace simplified value

iteration in passiveADP() by the optimistic estimate

 U+(s) = R(s) +  maxa f(s’T(s,a,s’)U+(s’), N(s,a)),

 where

2. At state s, take action a* s.t. the following holds:

 a f(s’ T(s,a*,s’)U+(s’), N(s,a*))

  f(s’ T(s,a,s’)U+(s’), N(s,a))

• The activeADP algorithm

• Execution and properties

Y. Xiang, MDP and Reinforcement Learning 23



 




.

;
),(

otherwiseu

MnifR
nuf

activeADP(s’, r’) {

 static s, a, ;

 if s’ visited 1st time, then U[s’] = r’; R[s’] = r’;

 if s  null, do

 Nsa[s,a]++; Nsas’[s,a,s’]++;

 for each t such that Nsas’[s,a,t]  0, do

 T[s,a,t] = Nsas’[s,a,t] / Nsa[s,a];

 U = optimisticValueIteration(S, R, T, , Nsa);

 if terminal(s’), then s=null; a=null;

 else s = s’; a = getBestAction(s’, T, U, Nsa);

 return a;

}

 24

