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Inference with Uncertain Knowledge 

• Objectives 

Why must agent use uncertain knowledge? 

Fundamentals of Bayesian probability 

Inference with full joint distributions 

Inference with Bayes’ rule 

Bayesian networks (BNs) 

Exact inference in BNs 

• Reference 

 Russell & Norvig: Chapter 13 & 14 
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Limitation of Logic Inference 

• When a logic agent knows enough about its env, it 
can derive plans that guarantee to work. 
What if it does not have all necessary facts? 

 

• Ex Wumpus World has at most 2 pits.  Starting 
from [1,1], agent senses breeze at [1,2] and [2,1].   
What should agent do? 

 

• A logic agent may not be able to act under 
uncertainty. 
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Review of Wumpus World 

• Gold is located in a room. 

Gold glitters. 

• Wumpus eats anyone in its room. 

Stench in room next to wumpus 

• Pits trap explorers. 

Breeze in room next to a pit 

• Goal of agent 

 Find gold without being  

 eaten or falling into a pit.  

 

      

 

1,4 2,4 3,4 4,4 

1,3 2,3 3,3 4,3 

1,2 2,2 3,2 4,2 

1,1 2,1 3,1 4,1 

 Uncertainty and Decision Making 

• The presence of uncertainty in env radically 

changes how agent should make decisions. 

A logic agent can select or reject an action on whether 

it achieves the goal, regardless of what other actions 

might achieve. 

• Ex Flight will departure 9am at Pearson airport. 

Action a1: Drive from Guelph at 6:30am. 

Action a2: Drive from Guelph at 5:30am. 

Action a3: Drive from Guelph at 1:30am. 

Which action should be selected? 
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Preference and Utility 

• Making decision under uncertainty requires agent 

to have preferences over env states. 

The degree of desirability of a state is specified by a 

numerical utility. 

The degrees of desirability over all relevant states is 

specified by a utility function. 

How to specify preference using utility functions is 

investigated in utility theory. 

• Ex Catching 9am flight 
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Decision Theory 

• Making decision under uncertainty also requires 

agent to estimate likelihood of env states resultant 

from alternative actions. 

Likelihood of the unobservable given observations is 

investigated by probability theory, among others. 

Ex Catching 9am flight 

• Decision theory = probability theory + utility theory 

• Let utility of state s be U(s) and probability of s from 

action a be P(s|a), then expected utility of action a 

is EU(a) = s U(s)P(s|a). 

What is EU(a1), where a1 is leaving Guelph at 6:30am? 
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 Maximum Expected Utility Principle 

• Maximum expected utility (MEU) principle 

Rational agent should select action a* with max EU(a). 

Ex Catching 9am flight: a1, a2 or a3? 

• Can a probabilistic WW agent do better? 

Which room should be entered, [1,3], [2,2] or [3,1]? 

• Focus 

Likelihood estimation by probability theory 

• Approach 

Extend propositional logic to Bayesian probability 
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Variables and Their Domains 

• Describe env state by a set V = {x1,…,xn} of 

discrete variables.  

Ex Health state of a cough patient 

 

• Associate each variable xi in V with a finite 

domain Di = {xi1
,…,xik

} of possible values. 
Values in each domain must be mutually exclusive 

and exhaustive. 

Ex An athlete's highest achievement in an Olympic 
game 

 

Y. Xiang, Inference with Uncertain Knowledge 8 



Y. Xiang, Inference with Uncertain Knowledge 

3 

Propositions 

• A proposition is an assertion about an env state. 

• A simple proposition asserts an assignment 

over x  V.  

• A complex proposition is formed by combining 

simple propositions with logical connectives. 

A complex proposition asserts an assignment over   

X  V. 

• Intuitively, a proposition asserts an event in env. 
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Atomic Event 

• An atomic event is a conjunction of simple 

propositions one over each x  V.  

It corresponds to a complete assignment. 

• Properties of atomic events 

They are mutually exclusive. 

They are collectively exhaustive. 

An atomic event entails the truth value of every 

proposition. 

Any proposition q is logically equivalent to disjunction of 

all atomic events that entail the truth of q. 

• An atomic event is also referred to as a model. 
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Express Uncertain Knowledge Probabilistically 

• Represent an env state s by a proposition q. 

• Express an agent’s uncertain knowledge about s by 

assigning q a probability p.  

p is degree of belief of the agent over q or s. 

• Agent’s belief state is the collection of probabilities 

it assigns to all env states. 

• Frequentist versus Bayesian probability 
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Prior Probability 

• Prior probability P(q) for proposition q is an agent’s 

degree of belief over q at initial belief state. 

• Prior probability distribution P(x) for x  V is a set 

of probabilities one for each value of x. 

• Joint probability distribution P(X) for X  V is a set 

of probabilities one for each assignment over X. 

• Full joint probability distribution P(V) is a set of 

probabilities one for each atom event. 
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Conditional Probability 

• Conditional or posterior probability P(q|e), where q 

and e are propositions, is agent’s degree of belief 

over q, after knowing e beyond initial belief state. 

• Conditional probability is related to prior probability 

according to product rule: 

P(q|e) = P(q  e) / P(e), whenever P(e)>0 

Alternatively: P(q  e) = P(q|e) P(e) 

• Conditional probability distribution P(X|y) for 

assignment y over Y is the set of all conditional 

probabilities P(x|y), one for each assignment x of X. 

• P(q) is a special case of conditional probability. 
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Conditional Probability Table 

• Conditional probability table (CPT) P(X|Y) is a set 

of conditional probability distributions (CPDs), one 

for each assignment y over Y. 

• Ex CPD P(lung_cancer|pos_x_ray) 

   = {    P(early_lung_cancer|pos_x_ray),  

             P(late_lung_cancer|pos_x_ray),  

        P(absent_lung_cancer|pos_x_ray)  } 

• Ex CPT P(lung_cancer|x_ray) 

   = {  P(lung_cancer|pos_x_ray),  

         P(lung_cancer|neg_x_ray) }  
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Axioms of Probability 

• Since degree of belief is subjective, can agent 

assign numerical values to propositions arbitrarily? 

• Probability assignment must satisfy a set of axioms, 

where q, r and e are propositions: 

1. [range] For any proposition q and r, 0 ≤ P(q|r) ≤ 1. 

2. [certainty] P(q|q) = 1. 

3. [sum] If q and r are mutually exclusive,  

     P(q  r|e) = P(q|e) + P(r|e). 

4. [product] P(q  r|e) = P(q|r  e) P(r|e). 

Y. Xiang, Inference with Uncertain Knowledge 15 

Properties Derived from Axioms 

• Rest of probability theory is derivable from axioms. 

• In the following, h, e and q are propositions. 

 

• [Bayes rule] P(h|e  q) = P(e|h  q)P(h|q)/P(e|q) 

• [Negation] P(q|e) = 1 - P(q|e) 

• [Marginalization] Given P(X,Z), P(X) =  z P(X, z), 

where z is an assignment over Z 

Marginal distribution  
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Properties Derived from Axioms (Cont) 

• [Sum to 1] For any Z  V, the sum z P(z) = 1, 

where z is an assignment over Z. 

 

• Marginalization and Sum to 1 hold for conditional 

probability as well. 

 

• [Sum from atomic events]  

 For any proposition q, it holds P(q) = z P(z), 

where z is an atomic event that entails q. 
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Why Should Agent Belief be Probability? 

• Degree of belief of agent Ag in proposition e 

being p implies the following: 
When offered alternative lotteries L1 = {$1|e, $0|e} and 

L2 = {$p|ee},  Ag is indifferent btw them. 

Ag is indifferent among lotteries  L3 = {$(p-1)|e, $p|e}, 

L4 = {$(1-p)|e, -$p|e}, and L5 = {$0|ee}.  

• Ag’s degree of belief either follows axioms of 

probability (hence it is probability), or it does not. 

• There exists a combination lottery that guarantees 

Ag’s loss iff its degree of belief is not probability. 
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When Agent Belief is Not Probability 

Y. Xiang, Constraint Satisfaction Problems 
19 

Proposition Belief Lottery ab ab ab ab 

a 0.1 {-$0.9|a, 

$0.1|a} 

-$0.9 -$0.9 $0.1 $0.1 

b 0.6 {-$0.4|b, 

$0.6|b} 

-$0.4 $0.6 -$0.4 $0.6 

a  b 0.8 {$0.2|ab,       

-$0.8|(ab)} 

$0.2 $0.2 $0.2 -$0.8 

Combo 

Lottery: 

-$1.1 -$0.1 -$0.1 -$0.1 

Reflection  

• In stochastic and partially observable envs, agent 

frequently faces decision situations like lotteries. 

• If agent does not base its belief on probability, it 

will encounter situations (by nature or by design) 

where its performance is guaranteed sub-optimal. 

• The only way that agent can always avoid such 

undesirable position is to adopt probabilistic belief. 
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Probabilistic Inference 

• To act effectively, agent needs to determine what is 

the state of env given perception (observation). 

• In stochastic and partially observable env, this task 

becomes computation of posterior distribution 

P(X|e) from prior distribution P(X) and observation 

e, where X  V. 

This task is referred to as probabilistic inference. 

• Ex Given P(hygiene, cavity, toothache) and 

observation toothache=yes, what is the posterior 

P(hygiene | toothache=yes)? 
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Ex Dental Hygiene 

• V = {hygiene, cavity, toothache}, where        
hygiene  {good, bad}, cavity  {yes, no}, and 
toothache  {yes, no} 

 

Y. Xiang, Inference with Uncertain Knowledge 22 

h c t P(h,c,t) 

good yes yes 0.0595 

good yes no 0.0105 

good no yes 0.0315 

good no no 0.5985 

bad yes yes 0.2040 

bad yes no 0.0360 

bad no yes 0.0030 

bad no no 0.0570 

Inference Using Full Joint Distribution 

• Query: What is P(hygiene | toothache=yes)? 

• Algorithm 

1. Constrain P(h,c,t) to P(h,c,t=y) 

2. Compute P(t=y) 

3. Condition P(h,c,t=y) into P(h,c,t|t=y) 

4. Marginalize out c and t to get P(h|t=y) 

 

• Normalization: Steps 2 and 3 above 

Normalization constant:  = 1/P(t=y) 

• Hence, P(h|t=y) =  c,t P(h,c,t=y) 
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Inference by Bayes Rule 

• [Bayes rule] P(h|e) = P(e|h)P(h)/P(e) 

Compute probability of hypothesis h given observation e. 

 

• Ex Meningitis patients often have stiff neck. 

P(s|m): knowledge on causal mechanism 

P(m): disease incidence rate in the population 

P(s): symptom statistics from the population 

Y. Xiang, Inference with Uncertain Knowledge 24 



Y. Xiang, Inference with Uncertain Knowledge 

7 

Complexity of Inference Using Full Joint 

• Suppose |V|=n, |Dx|≤k for xV, and V’=V\{x}. 

• How many independent probability parameters are 

needed to specify P(V)? 

• How may parameters in P(V) make up P(V’|x=x0)? 

These parameters must be processed to compute    

P(y|x=x0) for y  V’. 

• Inference using full joint distributions is intractable! 

Idea for efficiency improvement: 

    Explore independence using graphical models 
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Explore Independence 

• Inference by full joint assumes that every variable is 

directly dependent on every other. 

This is often not the case in an application env. 

• Ex Knowing child’s dental hygiene affects belief on 

suffering of toothache.   

But P(t|c,h) = P(t|c) 

This allows full joint over V={h,c,t} to be specified with a 

less number of (independent) parameters. 

• Variables x and y are conditionally independent 

given variable z, iff  P(x’|y’,z’) = P(x’|z’) holds for 

every value x’, y’, z’ of x, y, z, respectively. 
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Conditional Independence 

• When x and y are conditionally independent given z, 

we write P(x|y,z) = P(x|z) and I(x,z,y). 

• Subsets of variables X and Y are conditionally 

independent given Z, where X, Y and Z are disjoint, 

iff  P(x|y,z) = P(x|z) holds for every assignment x, y, 

z of X, Y, Z, respectively.  

We write P(X|Y,Z) = P(X|Z) and I(X,Z,Y). 

• Ex V = {x0,…,x9} and |Di|=2, where xk+1 (k=1,…,8) is 

conditionally independent of x0, …, xk-1 given xk. 

How many parameters are needed to specify P(V)? 

• Symmetry of I(X,Z,Y) & unconditional independence 
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Encode Conditional Independence Concisely 

• When |V| is large, how can agent encode 

knowledge on conditional independence concisely? 

• Many dependence and independence relations can 

be encoded in a graph. 

1. Direct dependence 

2. Indirect dependence 

3. Causal dependence 

4. Unconditional independence 

5. Conditional independence 

 

Y. Xiang, Inference with Uncertain Knowledge 28 



Y. Xiang, Inference with Uncertain Knowledge 

8 

Bayesian Network (BN) 

• A BN is an acyclic, directed graph G, where each 

node is associated with a CPT. 

V is a set of discrete env variables. 

Each node in G is labeled by a variable v  V. 

Each node v with parent set (v) is associated with 

conditional probability table P(v|(v)). 

• Ex Burglar-quake  

A home burglar alarm is reliable, but responds to quakes 

on occasion.   Neighbor John calls if alarm is heard, but 

may be confused with phone ringing.  Mary also calls, but 

may miss the alarm due to loud music. 

Number of independent probability parameters 
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Semantics of BNs 

1. A variable v in BN is conditionally independent of 

its non-descendants given its parents (v). 

• [Chain rule] Given a BN over V, the full joint 

distribution is P(V) = vV P(v|(v)).  

Ex Reduced BN for burglar alarm.  

• Markov blanket of a variable in BN includes its 

parents, children, and children’s parents. 

2. A variable in BN is conditionally independent of all 

other variables given its Markov blanket. 
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Inference in BNs 

• BNs avoid specification of intractable number of 

probability parameters through chain rule. 

• Ex Burglar-quake  

Compute P(b | j=t, m=t) through chain rule. 

• Key operations 

Product: multiply(B1(X1), …, Bm(Xm)) 

 Multiply a set of potentials. 

Marginalization: marginOut(B(X), Z) 

 Marginalize out variables in Z from potential B(X). 

• A potential is a non-negative real function with at 

least one positive value. 
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Ex Burglary-Quake 

• Compute P(b | j=t, m=t) 
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b q b P(b) 

t 0.001 

f 0.999 

q P(q) 

t 0.002 

f 0.998 

a j P(j|a) 

t t 0.90 

t f 0.10 

f t 0.05 

f f 0.95 

a m P(m|a) 

t t 0.70 

t f 0.30 

f t 0.01 

f f 0.99 

b q a P(a|b,q) 

t t t 0.95 

t t f 0.05 

t f t 0.94 

t f f 0.06 

f t t 0.29 

f t f 0.71 

f f t 0.001 

f f f 0.999 

m j 

a 
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Multiply Potentials 

multiply(B1(X1), …, Bm(Xm)) { 

    Z = i=1,…,m Xi; 

    init F(Z) s.t. F(z) = 1 for each assignment z of Z; 

    for each assignment z of Z, 

 for i=1 to m, 

      xi = assignment of Xi consistent with z ; 

      F(z) *= Bi(xi); 

    return F(Z); 

} 
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Marginalize Out Variables 

marginOut(B(X), Z) { 

    Y = X\Z; 

    init F(Y) s.t. F(y) = 0 for each assignment y of Y; 

    for each assignment y of Y, 

 for each assignment z of Z,  

      F(y) += B(y ⋈ z); 

    return F(Y); 

 } 
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BN Inference By Variable Elimination  

• When BN inference is based on full joint, it still  

processes an intractable number of parameters. 

• Ideas to improve inference efficiency 

Avoid processing full joint directly. 

Reduce size of intermediate result (potential or factor). 

 Marginalize as soon as possible. 

 Multiply as late as possible. 

• Algorithm varElim(S, x, y) 

Given a BN S, a query variable x, and observation y 

over Y, compute posterior P(x|y). 
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varElim(S, x, y) { // S: over V; y over YV; xV\Y; 

    T = set of all CPTs in S; 

    for each vY with v=u in y, 

         pick potential B over v in T; constrain B by v=u; 

    for i=1 to |V|-1, 

     select variable z  x covered by a potential in T; 

 Q = set of potentials over z in T; 

 B1 = multiply( potentials in Q ); 

 B2 = marginOut(B1, z);  

 T = (T\Q)  {B2} ;  

F = multiply( potentials in T ); 

normalize  F and return result; 

} 
36 
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Select Variable to Eliminate 

• Heuristic: Select the variable whose elimination 

produces the smallest potential. 

• Algorithm 

 for each variable v to be eliminated, 

             Uv = {}; 

     for each potential B(X) s.t. v  X, 

  Uv = Uv  X; 

         return variable y s.t. |Uy| is minimal; 
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Complexity of VE 

• What is the complexity if  BN has a chain topology? 

• If each variable in BN is directly connected to each 

other variable, what is the complexity? 

• The sparser the BN topology, the more efficient the 

inference computation. 

 

• VE can be extended to query about a set X  V of 

variables directly. 
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Remarks 

• Logic reasoning was once considered as sufficient 

for AI, but that view was soon found to be flawed. 

• BNs and related graphical models are the dominant 

paradigm for uncertain reasoning in AI today. 

• More advanced topics 

Acquisition of BNs by learning or elicitation 

Alternative BN inference paradigms 

BNs with mixed variables or under dynamic envs 

Multi-agent BNs 

Decision making with graphical models 

Uncertain reasoning in practical applications 
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